MULTIGRADED RINGS, DIAGONAL SUBALGEBRAS, AND RATIONAL SINGULARITIES

KAZUHIKO KURANO, EI-ICHI SATO, ANURAG K. SINGH, AND KEI-ICHI WATANABE

1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings and their diagonal subalgebras. The main focus is on diagonal subalgebras of bigraded rings; these constitute an interesting class of rings since they arise naturally as homogeneous coordinate rings of blow-ups of projective varieties.

Let X be a projective variety over a field K, with homogeneous coordinate ring A. Let $a \subseteq A$ be a homogeneous ideal, and $V \subseteq X$ the closed subvariety defined by a. For g an integer, we use a_g to denote the K-vector space consisting of homogeneous elements of a of degree g. If $g \gg 0$, then a_g defines a very ample complete linear system on the blow-up of X along V, and hence $K[a_g]$ is a homogeneous coordinate ring for this blow-up. Since the ideals a^h define the same subvariety V, the rings $K[(a^h)_g]$ are homogeneous coordinate rings for the blow-up provided $g \gg h > 0$.

Suppose that A is a standard \mathbb{N}-graded K-algebra, and consider the \mathbb{N}^2-grading on the Rees algebra $A[\mathfrak{a}t]$, where $\deg rt^j = (i, j)$ for $r \in A_i$. The connection with diagonal subalgebras stems from the fact that if a^h is generated by elements of degree less than or equal to g, then

$$K[(a^h)_g] \cong \bigoplus_{k \geq 0} A[\mathfrak{a}t]_{(gk, hk)}.$$

Using $\Delta = (g, h)\mathbb{Z}$ to denote the (g, h)-diagonal in \mathbb{Z}^2, the diagonal subalgebra $A[\mathfrak{a}t]_{\Delta} = \bigoplus_{k} A[\mathfrak{a}t]_{(gk, hk)}$ is a homogeneous coordinate ring for the blow-up of $\text{Proj} A$ along the subvariety defined by a, whenever $g \gg h > 0$.

The papers [GG, GGH, GGP, Tr] use diagonal subalgebras in studying blow-ups of projective space at finite sets of points. For A a polynomial ring and a a homogeneous ideal, the ring theoretic properties of $K[a_g]$ are studied by Simis, Trung, and Valla in [STV] by realizing $K[a_g]$ as a diagonal subalgebra of the Rees algebra $A[\mathfrak{a}t]$. In particular, they determine when $K[a_g]$ is Cohen-Macaulay for a a complete intersection ideal generated by forms of equal degree, and also for a the

Date: March 24, 2008.
2000 Mathematics Subject Classification. Primary 13A02; Secondary 13A35, 13H10, 14B15.
A.S. was supported in part by grants from the National Science Foundation.
ideal of maximal minors of a generic matrix. Some of their results are extended by Conca, Herzog, Trung, and Valla as in the following theorem:

Theorem 1.1. [CHTV, Theorem 4.6] Let $K[x_1, \ldots, x_m]$ be a polynomial ring over a field, and let \mathfrak{a} be a complete intersection ideal minimally generated by forms of degrees d_1, \ldots, d_r. Fix positive integers g and h with $g/h > d = \max\{d_1, \ldots, d_r\}$.

Then $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay if and only if $g > (h-1)d - m + \sum_{j=1}^{r} d_j$.

When A is a polynomial ring and \mathfrak{a} an ideal for which $A[\mathfrak{a}^t]$ is Cohen-Macaulay, Lavila-Vidal [Lv1, Theorem 4.5] proved that the diagonal subalgebras $K[(\mathfrak{a}^h)_g]$ are Cohen-Macaulay for $g \gg h \gg 0$, thereby settling a conjecture from [CHTV]. In [CH] Cutkosky and Herzog obtain affirmative answers regarding the existence of a constant c such that $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay whenever $g \geq ch$. For more work on the Cohen-Macaulay and Gorenstein properties of diagonal subalgebras, see [HHR, Hy2, Lv2], and [LvZ].

As a motivating example for some of the results of this paper, consider a polynomial ring $A = K[x_1, \ldots, x_m]$ and an ideal $\mathfrak{a} = (z_1, z_2)$ generated by relatively prime forms z_1 and z_2 of degree d. Setting $\Delta = (d+1, 1)\mathbb{Z}$, the diagonal subalgebra $A[\mathfrak{a}^t]_\Delta$ is a homogeneous coordinate ring for the blow-up of $\text{Proj } A = \mathbb{P}^{m-1}$ along the subvariety defined by \mathfrak{a}. The Rees algebra $A[\mathfrak{a}^t]$ has a presentation

$$R = K[x_1, \ldots, x_m, y_1, y_2]/(y_2 z_1 - y_1 z_2),$$

where $\deg x_i = (1, 0)$ and $\deg y_j = (d, 1)$, and consequently R_Δ is the subalgebra of R generated by the elements x_iy_j. When K has characteristic zero and z_1 and z_2 are general forms of degree d, the results of Section 3 imply that R_Δ has rational singularities if and only if $d \leq m$, and that it is of F-regular type if and only if $d < m$. As a consequence, we obtain large families of rings of the form R_Δ, standard graded over a field, which have rational singularities, but which are not of F-regular type.

It is worth pointing out that if R is an \mathbb{N}^2-graded ring over an infinite field $R_{(0,0)} = K$, and $\Delta = (g, h)\mathbb{Z}$ for coprime positive integers g and h, then R_Δ is the ring of invariants of the torus K^* acting on R via

$$\lambda: r \mapsto \lambda^{hi-gj} r \quad \text{where } \lambda \in K^* \text{ and } r \in R_{(i,j)}.$$

Consequently there exist torus actions on hypersurfaces for which the rings of invariants have rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal rings R, with isolated singularities, for which $H^2_{m}(R)_0 = 0$ and $H^2_{m}(R)_1 \neq 0$. If S is the localization of such a ring R at its homogeneous maximal ideal, then, by Danilov’s results, the divisor class group of S is a finitely generated abelian group, though S does not have a discrete divisor class group. Such rings R are also of interest in view of the results of [RSS], where it is proved that the image of
$H^2_m(R)_0$ in $H^2_m(R^+_0)$ is annihilated by elements of R^+_0 of arbitrarily small positive degree; a corresponding result for $H^2_m(R)_1$ is not known at this point, and the rings constructed in Section 4 constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and modules. In Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses results on rational singularities and F-regular rings proved in Sections 5 and 6 respectively.

The authors would like to thank Shiro Goto and Ken-ichi Yoshida for their valuable comments.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1, GW2, HHR], and [HIO] for further details.

By an \mathbb{N}_r-graded ring we mean a ring $R = \bigoplus_{n \in \mathbb{N}_r} R_n$, which is finitely generated over the subring R_0. If (R_0, m) is a local ring, then R has a unique homogeneous maximal ideal $\mathfrak{M} = mR + R_+$, where $R_+ = \oplus_{n \neq 0} R_n$.

For $m = (m_1, \ldots, m_r)$ and $n = (n_1, \ldots, n_r) \in \mathbb{Z}_r$, we say $n > m$ (resp. $n \geq m$) if $n_i > m_i$ (resp. $n_i \geq m_i$) for each i.

Let M be a \mathbb{Z}_r-graded R-module. For $m \in \mathbb{Z}_r$, we set $M_{\geq m} = \bigoplus_{n \geq m} M_n$, which is a \mathbb{Z}_r-graded submodule of M. One writes $M(m)$ for the \mathbb{Z}_r-graded R-module with shifted grading $[M(m)]_n = M_{m+n}$ for each $n \in \mathbb{Z}_r$.

Let M and N be \mathbb{Z}_r-graded R-modules. Then $\text{Hom}_R(M, N)$ is the \mathbb{Z}_r-graded module with $[\text{Hom}_R(M, N)]_n$ being the abelian group consisting of degree preserving R-linear homomorphisms from M to $N(n)$.

The functor $\text{Ext}^i_R(M, -)$ is the i-th derived functor of $\text{Hom}_R(M, -)$ in the category of \mathbb{Z}_r-graded R-modules. When M is finitely generated, $\text{Ext}^i_R(M, N)$ and $\text{Ext}^i_R(M, N)$ agree as underlying R-modules. For a homogeneous ideal \mathfrak{a} of R, the local cohomology modules of M with support in \mathfrak{a} are the \mathbb{Z}_r-graded modules

$$H^i_\mathfrak{a}(M) = \lim_{\longrightarrow} \text{Ext}^i_R(R/\mathfrak{a}^n, M).$$

Let $\varphi: \mathbb{Z}_r \rightarrow \mathbb{Z}_s$ be a homomorphism of abelian groups satisfying $\varphi(\mathbb{N}_r) \subseteq \mathbb{N}_s$. We write R^{φ} for the ring R with the \mathbb{N}_s-grading where

$$[R^{\varphi}]_n = \bigoplus_{\varphi(m)=n} R_m.$$
If M is a \mathbb{Z}^r-graded R-module, then M^φ is the \mathbb{Z}^s-graded R^φ-module with

$$[M^\varphi]_n = \bigoplus_{\varphi(m) = n} M_m. $$

The change of grading functor $(-)^\varphi$ is exact; by [HHR, Lemma 1.1] one has

$$H^i_{\mathbb{N}^r}(M)^\varphi = H^i_{\mathbb{N}^s}(M^\varphi).$$

Consider the projections $\varphi_i: \mathbb{Z}^r \rightarrow \mathbb{Z}$ with $\varphi_i(m_1, \ldots, m_r) = m_i$, and set

$$a(R^\varphi) = \max \{ a \in \mathbb{Z} | [H^i_{\mathbb{N}^r}(R)^{\varphi_i}]_a \neq 0 \};$$

this is the α-invariant of the \mathbb{N}-graded ring R^φ in the sense of Goto and Watanabe [GW1]. As in [HHR], the multigraded α-invariant of R is

$$a(R) = (a(R^{\varphi_1}), \ldots, a(R^{\varphi_s})).$$

Let R be a \mathbb{Z}^2-graded ring and let g, h be positive integers. The subgroup $\Delta = (g, h)\mathbb{Z}$ is a diagonal in \mathbb{Z}^2, and the corresponding diagonal subalgebra of R is

$$R_\Delta = \bigoplus_{k \in \mathbb{Z}} R_{(gk, hk)}.$$

Similarly, if M is a \mathbb{Z}^2-graded R-module, we set

$$M_\Delta = \bigoplus_{k \in \mathbb{Z}} M_{(gk, hk)},$$

which is a \mathbb{Z}-graded module over the \mathbb{Z}-graded ring R_Δ.

Lemma 2.1. Let A and B be \mathbb{N}-graded normal rings, finitely generated over a field $A_0 = K = B_0$. Set $T = A \otimes_K B$. Let g and h be positive integers and set $\Delta = (g, h)\mathbb{Z}$. Let a, b, and m denote the homogeneous maximal ideals of A, B, and T_Δ respectively. Then, for each $q \geq 0$ and $i, j, k \in \mathbb{Z}$, one has

$$H^q_m(T(i, j)_\Delta)_k = (A_{i+gk} \otimes H^q_b(B)_{j+hk}) \oplus (H^q_a(A)_{i+gk} \otimes B_{j+hk}) \oplus \bigoplus_{q_1 + q_2 = q+1} (H^q_a(A)_{i+gk} \otimes H^q_b(B)_{j+hk}).$$

Proof. Let $A^{(g)}$ and $B^{(h)}$ denote the respective Veronese subrings of A and B. Set

$$A^{(g, i)} = \bigoplus_{k \in \mathbb{Z}} A_{i+gk} \quad \text{and} \quad B^{(h, j)} = \bigoplus_{k \in \mathbb{Z}} B_{j+hk}.$$

These are graded modules over $A^{(g)}$ and $B^{(h)}$ respectively, and

$$T(i, j)_\Delta = \bigoplus_{k \in \mathbb{Z}} A_{i+gk} \otimes_K B_{j+hk} = A^{(g, i)} \# B^{(h, j)}.$$

The ideal $A_+^{(g)} A$ is a-primary; likewise, $B_+^{(h)} B$ is b-primary. The Künneth formula for local cohomology, [GW1, Theorem 4.1.5], now gives the desired result. \

Notation 2.2. We use bold letters to denote lists of elements, e.g., $z = z_1, \ldots, z_s$ and $\gamma = \gamma_1, \ldots, \gamma_s$.
3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of \(\mathbb{N}^2 \)-graded hypersurfaces. The proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let \(K \) be a field, let \(m, n \) be integers with \(m, n \geq 2 \), and let
\[
\mathcal{R} = K[x_1, \ldots, x_m, y_1, \ldots, y_n]/(f)
\]
be a normal \(\mathbb{N}^2 \)-graded hypersurface where \(\deg x_i = (1, 0) \), \(\deg y_j = (0, 1) \), and \(\deg f = (d, e) > (0, 0) \). For positive integers \(g \) and \(h \), set \(\Delta = (g, h)\mathbb{Z} \). Then:

1. The ring \(\mathcal{R}_\Delta \) is Cohen-Macaulay if and only if \(\lfloor (d - m)/g \rfloor < e/h \) and \(\lfloor (e - n)/h \rfloor < d/g \). In particular, if \(d < m \) and \(e < n \), then \(\mathcal{R}_\Delta \) is Cohen-Macaulay for each diagonal \(\Delta \).

2. The graded canonical module of \(\mathcal{R}_\Delta \) is \(\mathcal{R}(d - m, e - n)_\Delta \). Hence \(\mathcal{R}_\Delta \) is Gorenstein if and only if \((d - m)/g = (e - n)/h \), and this is an integer.

If \(K \) has characteristic zero, and \(f \) is a generic polynomial of degree \((d, e) \), then:

3. The ring \(\mathcal{R}_\Delta \) has rational singularities if and only if it is Cohen-Macaulay and \(d < m \) or \(e < n \).

4. The ring \(\mathcal{R}_\Delta \) is of \(F \)-regular type if and only if \(d < m \) and \(e < n \).

For \(m, n \geq 3 \) and \(\Delta = (1, 1)\mathbb{Z} \), the properties of \(\mathcal{R}_\Delta \), as determined by \(m, n, d, e \), are summarized in Figure 1.

![Figure 1. Properties of \(\mathcal{R}_\Delta \) for \(\Delta = (1, 1)\mathbb{Z} \).](image-url)
Remark 3.2. Let \(m, n \geq 2 \). A generic hypersurface of degree \((d, e) > (0, 0)\) in \(m, n \) variables is normal precisely when
\[
m > \min(2, d) \quad \text{and} \quad n > \min(2, e).
\]
Suppose that \(m = 2 = n \), and that \(f \) is nonzero. Then \(\dim \mathcal{R}_\Delta = 2 \); since \(\mathcal{R}_\Delta \) is generated over a field by elements of equal degree, \(\mathcal{R}_\Delta \) is of F-regular type if and only if it has rational singularities; see [Wa2]. This is the case precisely if
\[
d = 1, \quad e \leq h + 1, \quad \text{or} \quad e = 1, \quad d \leq g + 1.
\]

Following a suggestion of Hara, the case \(n = 2 \) and \(e = 1 \) was used in [Si, Example 7.3] to construct examples of standard graded rings with rational singularities which are not of F-regular type.

Proof of Theorem 3.1. Set \(A = K[x], B = K[y], \) and \(T = A \otimes_K B \). By Lemma 2.1, \(H^q_m(T(\Delta)) = 0 \) for \(q \neq m + n - 1 \). The local cohomology exact sequence induced by
\[
0 \longrightarrow T(-d, -e)_{\Delta} \longrightarrow T_{\Delta} \longrightarrow \mathcal{R}_{\Delta} \longrightarrow 0
\]
therefore gives \(H^{q-1}_m(\mathcal{R}_{\Delta}) = H^q_m(T(-d, -e)_{\Delta}) \) for \(q \leq m + n - 2 \), and also shows that \(H^{m+n-2}_m(\mathcal{R}_{\Delta}) \) and \(H^{m+n-1}_m(\mathcal{R}_{\Delta}) \) are, respectively, the kernel and cokernel of
\[
H^{m+n-1}_m(T(-d, -e)_{\Delta}) \longrightarrow H^{m+n-1}_m(\mathcal{R}_{\Delta})
\]
\[
[H^m_a(A(-d)) \otimes H^n_b(B(-e))]_{\Delta} \longrightarrow [H^m_a(A) \otimes H^n_b(B)]_{\Delta}.
\]
The horizontal map above is surjective since its graded dual
\[
[A(d - m) \otimes B(e - n)]_{\Delta} \longleftarrow [A(-m) \otimes B(-n)]_{\Delta}
\]
\[
T(d - m, e - n)_{\Delta} \longleftarrow T(-m, -n)_{\Delta}
\]
is injective. In particular, \(\dim \mathcal{R}_{\Delta} = m + n - 2 \).

It follows from the above discussion that \(\mathcal{R}_{\Delta} \) is Cohen-Macaulay if and only if \(H^q_m(T(-d, -e)_{\Delta}) = 0 \) for each \(q \leq m + n - 2 \). By Lemma 2.1, this is the case if and only if, for each integer \(k \), one has
\[
A_{-d+gk} \otimes H^n_b(B)_{-e+hk} = 0 = H^m_a(A)_{-d+gk} \otimes B_{-e+hk}.
\]
Hence \(\mathcal{R}_{\Delta} \) is Cohen-Macaulay if and only if there is no integer \(k \) satisfying
\[
d/g \leq k \leq (e - n)/h \quad \text{or} \quad e/h \leq k \leq (d - m)/g,
\]
which completes the proof of (1).

For (2), note that the graded canonical module of \(\mathcal{R}_{\Delta} \) is the graded dual of \(H^{m+n-2}_m(\mathcal{R}_{\Delta}) \), and hence that it equals
\[
coker(T(-m, -n)_{\Delta} \longrightarrow T(d - m, e - n)_{\Delta}) = \mathcal{R}(d - m, e - n)_{\Delta}.
\]
This module is principal if and only if \(R(d - m, e - n)_\Delta = R_\Delta(a) \) for some integer \(a \), i.e., \(d - m = ga \) and \(e - n = ha \).

When \(f \) is a general polynomial of degree \((d, e)\), the ring \(R_\Delta \) has an isolated singularity. Also, \(R_\Delta \) is normal since it is a direct summand of the normal ring \(R \). By Theorem 5.1, \(R_\Delta \) has rational singularities precisely if it is Cohen-Macaulay and \(a(R_\Delta) < 0 \); this proves (3).

It remains to prove (4). If \(d < m \) and \(e < n \), then Theorem 5.2 implies that \(R \) has rational singularities. By Theorem 6.2, it follows that for almost all primes \(p \), the characteristic \(p \) models \(R_p \) of \(R \) are \(F \)-rational hypersurfaces which, therefore, are \(F \)-regular. Alternatively, \(R_\Delta \) is a generic hypersurface of degree \((d, e) < (m, n)\), so Theorem 6.5 implies that \(R_p \) is \(F \)-regular. Since \((R_p)_\Delta \) is a direct summand of \(R_p \), it follows that \((R_p)_\Delta \) is \(F \)-regular. The rings \((R_p)_\Delta \) are characteristic \(p \) models of \(R_\Delta \), so we conclude that \(R_\Delta \) is of \(F \)-regular type.

Suppose \(R_\Delta \) has \(F \)-regular type, and let \((R_p)_\Delta \) be a characteristic \(p \) model which is \(F \)-regular. Fix an integer \(k > d/g \). Then Proposition 6.3 implies that there exists an integer \(q = p^e \) such that

\[
\text{rank}_K ((R_p)_\Delta)_k \leq \text{rank}_K \left[H_{m+n-2}^{m+n-2}((\omega(q))^\Delta) \right]_k,
\]

where \(\omega \) is the graded canonical module of \((R_p)_\Delta \). Using (2), we see that

\[
H_{m+n-2}^{m+n-2}((\omega(q))^\Delta) = H_{m+n-2}^{m+n-2}(R_p(qd - qm, qe - qn)_\Delta).
\]

Let \(T_p \) be a characteristic \(p \) model for \(T \) such that \(T_p/fT_p = R_p \). Multiplication by \(f \) on \(T_p \) induces a local cohomology exact sequence

\[
\cdots \longrightarrow H_{m_p}^{m+n-2}(T_p(qd - qm, qe - qn)_\Delta) \longrightarrow H_{m_p}^{m+n-2}(R_p(qd - qm, qe - qn)_\Delta) \longrightarrow \cdots.
\]

Since \(H_{m_p}^{m+n-2}(T_p(qd - qm, qe - qn)_\Delta) \) vanishes by Lemma 2.1, we conclude that

\[
\text{rank}_K ((R_p)_\Delta)_k \leq \text{rank}_K \left[H_{m_p}^{m+n-2}(T_p(qd - qm - d, qe - qn - e)_\Delta) \right]_k = \text{rank}_K H_{m_p}^{n-1}(A_p)_{qd-qm-d+gk} \otimes H_{bq}^{n-1}(B_p)_{qe-qn-e+hk}.
\]

Hence \(qd - qm - d + gk < 0 \); as \(d - gk < 0 \), we conclude \(d < m \). Similarly, \(e < n \). □

We conclude this section with an example where a local cohomology module of a standard graded ring is not rigid in the sense that \(H^2_m(R)_0 = 0 \) while \(H^2_m(R)_1 \neq 0 \). Further such examples are constructed in Section 4.

Proposition 3.3. Let \(K \) be a field and let

\[
R = K[x_1, x_2, x_3, y_1, y_2]/(f)
\]

where \(\deg x_i = (1, 0) \), \(\deg y_j = (0, 1) \), and \(\deg f = (d, e) \) for \(d \geq 4 \) and \(e \geq 1 \). Let \(g \) and \(h \) be positive integers such that \(g \leq d - 3 \) and \(h \geq e \), and set \(\Delta = (g, h) \mathbb{Z} \). Then \(H^2_m(R_\Delta)_0 = 0 \) and \(H^2_m(R_\Delta)_1 \neq 0 \).
Proof. Using the resolution of \mathcal{R} over the polynomial ring T as in the proof of Theorem 3.1, we have an exact sequence
\[H^2_m(T_\Delta) \longrightarrow H^2_m(\mathcal{R}_\Delta) \longrightarrow H^3_m(T(-d,-e)_\Delta) \longrightarrow H^3_m(T_\Delta). \]
Lemma 2.1 implies that $H^2_m(\mathcal{R}_\Delta) = 0 = H^3_m(T_\Delta)$. Hence, again by Lemma 2.1,
\[H^2_m(R_\Delta)_0 = H^3(A)_{-d} \otimes B_{-e} = 0 \quad \text{and} \quad H^2_m(R_\Delta)_1 = H^3(A)_{g-d} \otimes B_{h-e} \neq 0. \]

4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over \mathbb{C}, with only isolated singularities, for which $H^2_m(R)_0 = 0$ and $H^2_m(R)_1 \neq 0$. Let S be the localization of such a ring R at its homogeneous maximal ideal. By results of Danilov [Da1, Da2], Theorem 4.1 below, it follows that the divisor class group of S is finitely generated, though S does not have a discrete divisor class group, i.e., the natural map $\text{Cl}(S) \longrightarrow \text{Cl}(S[[t]])$ is not bijective. Here, remember that if A is a Noetherian normal domain, then so is $A[[t]]$.

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra over $R_0 = \mathbb{C}$. Assume, moreover, that $X = \text{Proj} R$ is smooth. Set (S, m) to be the local ring of R at its homogeneous maximal ideal, and \hat{S} to be the m-adic completion of S. Then

1. the group $\text{Cl}(S)$ is finitely generated if and only if $H^1(X, \mathcal{O}_X) = 0$;
2. the map $\text{Cl}(S) \longrightarrow \text{Cl}(\hat{S})$ is bijective if and only if $H^1(X, \mathcal{O}_X(i)) = 0$ for each integer $i \geq 1$; and
3. the map $\text{Cl}(S) \longrightarrow \text{Cl}(S[[t]])$ is bijective if and only if $H^1(X, \mathcal{O}_X(i)) = 0$ for each integer $i \geq 0$.

The essential point in our construction is in the following proposition:

Theorem 4.2. Let A be a Cohen-Macaulay ring of dimension $d \geq 2$, which is a standard graded algebra over a field K. For $s \geq 2$, let z_1, \ldots, z_s be a regular sequence in A, consisting of homogeneous elements of equal degree, say k. Consider the Rees ring $\mathcal{R} = A[z_1 t, \ldots, z_s t]$ with the \mathbb{Z}^2-grading where $\deg x = (n,0)$ for $x \in A_n$, and $\deg z_i t = (0,1)$.

Let $\Delta = (g,h)\mathbb{Z}$ where g, h are positive integers, and let m denote the homogeneous maximal ideal of \mathcal{R}_Δ. Then:

1. $H^2_m(\mathcal{R}_\Delta) = 0$ if $q \neq d - s + 1, d$; and
2. $H^{d-s+1}_m(\mathcal{R}_\Delta) i \neq 0$ if and only if $1 \leq i \leq (a + ks - k)/g$, where a is the a-invariant of A.

In particular, \mathcal{R}_Δ is Cohen-Macaulay if and only if $g > a + ks - k$.

\[\]

8 KAZUHIKO KURANO, EI-IICHIF SATO, ANURAG K. SINGH, AND KEI-IICHIF WATANABE
Example 4.3. For $d \geq 3$, let $A = \mathbb{C}[x_0, \ldots, x_d]/(f)$ be a standard graded hypersurface such that $\text{Proj} A$ is smooth over \mathbb{C}. Take general k-forms $z_1, \ldots, z_{d-1} \in A$, and consider the Rees ring $R = A[z_1t, \ldots, z_{d-1}t]$. Since $(z) \subseteq A$ is a radical ideal, $\text{gr}(z), A \cong A/(z)[y_1, \ldots, y_{d-1}]$ is a reduced ring, and therefore $R = A[z_1t, \ldots, z_{d-1}t]$ is integrally closed in $A[t]$. Since A is normal, so is R. Note that $\text{Proj} R_\Delta$ is the blow-up of $\text{Proj} A$ at the subvariety defined by (z), i.e., at $k^d/(\text{deg} f)$ points. It follows that $\text{Proj} R_\Delta$ is smooth over \mathbb{C}. Hence R_Δ is a standard graded \mathbb{C}-algebra, which is normal and has an isolated singularity.

If $\Delta = (g, h)\mathbb{Z}$ is a diagonal with $1 \leq g \leq \text{deg} f + k(d-2) - (d+1)$ and $h \geq 1$, then Theorem 4.2 implies that

$$H^2_m(R_\Delta) |_0 = 0 \quad \text{and} \quad H^2_m(R_\Delta)_1 \neq 0.$$

The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field K is infinite. Then one can find linear forms x_1, \ldots, x_{d-s} in A such that $x_1, \ldots, x_{d-s}, z_1, \ldots, z_s$ is a maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let a be the homogeneous maximal ideal of A. Set $I = (z_1, \ldots, z_s)A$. Let r be a positive integer.

1. $H^q_a(I^r) = 0$ if $q \neq d - s + 1, d$.
2. Assume $d > s$. Then, $H^{d-s+1}_a(I^r)_i \neq 0$ if and only if $i \leq a + ks + rk - k$.
3. Assume $d = s$. Then, $H^{d-s+1}_a(I^r)_i \neq 0$ if and only if $0 \leq i \leq a + ks + rk - k$.

Proof. Recall that A and A/I^r are Cohen-Macaulay rings of dimension d and $d - s$, respectively. By the exact sequence

$$0 \rightarrow I^r \rightarrow A \rightarrow A/I^r \rightarrow 0$$

we obtain

$$H^q_a(I^r) = \begin{cases} H^q_a(A) & \text{if } q = d \\ H^{d-s}_a(A/I^r) & \text{if } q = d - s + 1 \\ 0 & \text{if } q \neq d - s + 1, d, \end{cases}$$

which proves (1).

Next we prove (2) and (3). Since A/I^r is a standard graded Cohen-Macaulay ring of dimension $d - s$, it is enough to show that the a-invariant of this ring equals $a + ks + rk - k$. This is straightforward if $r = 1$, and we proceed by induction. Consider the exact sequence

$$0 \rightarrow I^r/I^{r+1} \rightarrow A/I^{r+1} \rightarrow A/I^r \rightarrow 0.$$

Since z_1, \ldots, z_s is a regular sequence of k-forms, I^r/I^{r+1} is isomorphic to $((A/I)(-rk))^{(d-s+1)}$.

Thus, we have the following exact sequence:

\[0 \rightarrow H^d_{\alpha}(A/I)(-rk)^{(\ell+1)^{\text{even}}}) \rightarrow H^d_{\alpha}(A/I^{\ell+1}) \rightarrow H^d_{\alpha}(A/I^{r+1}) \rightarrow 0. \]

The \(\alpha \)-invariant of \((A/I)(-rk)\) equals \(a + ks + rk\), and that of \(A/I^{r+1}\) is \(a + ks + rk - k\) by the inductive hypothesis. Thus, \(A/I^{r+1}\) has \(\alpha\)-invariant \(a + ks + rk\). \(\square\)

Proof of Theorem 4.2. Let \(B = K[y_1, \ldots, y_s]\) be a polynomial ring, and set

\[T = A \otimes_K B = A[y_1, \ldots, y_s]. \]

Consider the \(\mathbb{Z}^2\)-grading on \(T\) where \(\text{deg } x = (n, 0)\) for \(x \in A_n\), and \(\text{deg } y_i = (0, 1)\) for each \(i\). One has a surjective homomorphism of graded rings

\[T \rightarrow R = A[z_1 t, \ldots, z_s t] \quad \text{where } y_i \mapsto z_i t, \]

and this induces an isomorphism

\[R \cong T/I_2(\frac{z_1}{y_1} \cdots \frac{z_s}{y_s}). \]

The minimal free resolution of \(R\) over \(T\) is given by the Eagon-Northcott complex

\[0 \rightarrow F^{-(s-1)} \rightarrow F^{-(s-2)} \rightarrow \cdots \rightarrow F^0 \rightarrow 0, \]

where \(F^0 = T(0, 0)\), and \(F^{-i}\) for \(1 \leq i \leq s - 1\) is the direct sum of \(\binom{s}{i+1}\) copies of

\[T(-k, -i) \oplus T(-2k, -(i-1)) \oplus \cdots \oplus T(-ik, -1). \]

Let \(n\) be the homogeneous maximal ideal of \(T_\Delta\). One has the spectral sequence:

\[E_2^{p,q} = H^p(H^q_\Delta(F_\Delta^*)) \Rightarrow H^{p+q}_m(R_\Delta). \]

Let \(G\) be the set of \((n, m)\) such that \(T(n, m)\) appears in the Eagon-Northcott complex above, i.e., the elements of \(G\) are

\[(0, 0), \]
\[(k, -1), \]
\[(k, -2), (2k, -1), \]
\[(k, -3), (2k, -2), (3k, -1), \]
\[\vdots \]
\[(k, -(s-1)), \ldots (s-1)k, -1). \]

Let \(a\) and \(b\) be the homogeneous maximal ideal of \(A\) and \(B\) respectively. For integers \(n\) and \(m\), the Künneth formula gives

\[H^n_\alpha(T(n, m)) \]
\[= H^n_\alpha(A(n) \otimes_K B(m)) \]
\[= (H^n_\alpha(A(n)) \otimes B(m)) \oplus (A(n) \otimes H^n_\alpha(B(m))) \oplus \bigoplus_{i+j=q+1} H^n_\alpha(A(n)) \otimes H^n_\alpha(B(m)) \]
\[= H^n_\alpha(T(n, m)) \oplus H^n_\alpha(T(n, m)) \oplus \bigoplus_{i+j=q+1} H^n_\alpha(A(n)) \otimes_K H^n_\alpha(B(m)). \]
As \(A \) and \(B \) are Cohen-Macaulay of dimension \(d \) and \(s \) respectively, it follows that
\[
H^n_d(F^\bullet) = 0 \quad \text{if } q \neq s, d, d + s - 1.
\]
In the case where \(d > s \), one has
\[
H^n_d(F^\bullet) = H^n_b(F^\bullet) \quad \text{and} \quad H^n_a(F^\bullet) = H^n_d(F^\bullet),
\]
and if \(d = s \), then
\[
H^n_d(F^\bullet) = H^n_a(F^\bullet) \oplus H^n_b(F^\bullet).
\]
We claim \(H^n_b(F^\bullet)_\Delta = 0 \). If not, there exists \((n,m) \in G \) and \(\ell \in \mathbb{Z} \) such that
\[
H^n_b(T(n,m))_{(g\ell,h\ell)} \neq 0.
\]
This implies that
\[
H^n_b(T(n,m))_{(g\ell,h\ell)} = A(n)_{g\ell} \otimes_K H^n_b(B(m))_{h\ell} = A_{n+g\ell} \otimes_K H^n_b(B)_{m+h\ell}
\]
is nonzero, so
\[
n + g\ell \geq 0 \quad \text{and} \quad m + h\ell \leq -s,
\]
and hence
\[
-n \leq \ell \leq -\frac{s + m}{h}.
\]
But \((n,m) \in G\), so \(n \leq 0 \) and \(m \geq -(s - 1) \), implying that
\[
0 \leq \ell \leq -\frac{1}{h},
\]
which is not possible. This proves that \(H^n_b(F^\bullet)_\Delta = 0 \). Thus, we have
\[
H^n_a(F^\bullet)_\Delta = \begin{cases}
0 & \text{if } q \neq d, d + s - 1, \\
H^n_d(F^\bullet)_\Delta & \text{if } q = d.
\end{cases}
\]
It follows that
\[
E^{p,q}_2 = H^p(H^n_a(F^\bullet)) = E^{p,q}_\infty
\]
for each \(p \) and \(q \). Therefore,
\[
H^i_m(R_\Delta) = E^{i-d,d}_2 = H^{i-d}(H^n_a(F^\bullet)_\Delta) = H^{i-d}(H^n_d(F^\bullet)_\Delta) = H^i_a(R)_\Delta
\]
for \(d - s + 1 \leq i \leq d - 1 \), and
\[
H^i_m(R_\Delta) = 0 \quad \text{for } i < d - s + 1.
\]

We next study \(H^i_a(R) \). Since
\[
R = A \oplus I(k) \oplus I^2(2k) \oplus \cdots \oplus I^r(rk) \oplus \cdots,
\]
we have
\[
H^i_a(R) = H^i_a(A) \oplus H^i_a(I)(k) \oplus H^i_a(I^2)(2k) \oplus \cdots \oplus H^i_a(I^r)(rk) \oplus \cdots.
\]
Theorem 4.2 (1) now follow using Lemma 4.4 (1).

Assume that \(d > s \). Then, by Lemma 4.4 (2), \(H^{d-s+1}_a(I^r(rk))_i \neq 0 \) if and only if \(i \leq a + ks - k \).
Assume that \(d = s \). Then, by Lemma 4.4 (3), \(H^d_{a}(I^r(rk)) \neq 0 \) if and only if \(-rk \leq i \leq a + ks - k \).

In each case, \(H^d_{a}(R) \neq 0 \) if and only if \(1 \leq i \leq a + ks - k \).

\[\square \]

5. Rational singularities

Let \(R \) be a normal domain, essentially of finite type over a field of characteristic zero, and consider a desingularization \(f: Z \rightarrow \text{Spec} R \), i.e., a proper birational morphism with \(Z \) a nonsingular variety. One says \(R \) has rational singularities if \(R^i \cdot O_Z = 0 \) for each \(i \geq 1 \); this does not depend on the choice of the desingularization \(f \). For \(\mathbb{N} \)-graded rings, one has the following criterion due to Flenner [Fl] and Watanabe [Wa1].

Theorem 5.1. Let \(R \) be a normal \(\mathbb{N} \)-graded ring which is finitely generated over a field \(R_0 \) of characteristic zero. Then \(R \) has rational singularities if and only if it is Cohen-Macaulay, \(a(R) < 0 \), and the localization \(R_p \) has rational singularities for each \(p \in \text{Spec} R \setminus \{ R_+ \} \).

When \(R \) has an isolated singularity, the above theorem gives an effective criterion for determining if \(R \) has rational singularities. However, a multigraded hypersurface typically does not have an isolated singularity, and the following variation turns out to be useful:

Theorem 5.2. Let \(R \) be a normal \(\mathbb{N}^r \)-graded ring such that \(R_0 \) is a local ring essentially of finite type over a field of characteristic zero, and \(R \) is generated over \(R_0 \) by elements

\[x_{11}, x_{12}, \ldots, x_{1t}, \quad x_{21}, x_{22}, \ldots, x_{2t_2}, \quad \ldots, \quad x_{r1}, x_{r2}, \ldots, x_{rt_r}, \]

where \(\deg x_{ij} \) is a positive integer multiple of the \(i \)-th unit vector \(e_i \in \mathbb{N}^r \). Then \(R \) has rational singularities if and only if

1. \(R \) is Cohen-Macaulay,
2. \(R_p \) has rational singularities for each \(p \) belonging to

\[\text{Spec} R \setminus (V(x_{11}, x_{12}, \ldots, x_{1t}) \cup \cdots \cup V(x_{r1}, x_{r2}, \ldots, x_{rt})), \]

and

3. \(a(R) < 0 \), i.e., \(a(R^p) < 0 \) for each coordinate projection \(\varphi_i: \mathbb{N}^r \rightarrow \mathbb{N} \).

Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let \(R \) be an \(\mathbb{N} \)-graded ring. We use \(R^T \) to denote the Rees algebra with respect to the filtration \(F_n = R_{\geq n} \), i.e.,

\[R^T = F_0 \oplus F_1 T \oplus F_2 T^2 \oplus \cdots. \]
When considering \(\text{Proj} \, R^\oplus \), we use the \(\mathbb{N} \)-grading on \(R^\oplus \) where \([R^\oplus]_n = F_n T^n\). The inclusion \(R = [R^\oplus]_0 \hookrightarrow R^\oplus \) gives a map

\[
\text{Proj} \, R^\oplus \xrightarrow{f} \text{Spec} \, R.
\]

Also, the inclusions \(R_n \hookrightarrow F_n \) give rise to an injective homomorphism of graded rings \(R \hookrightarrow R^\oplus \), which induces a surjection

\[
\text{Proj} \, R^\oplus \twoheadrightarrow \text{Proj} \, R.
\]

Lemma 5.4. Let \(R \) be an \(\mathbb{N} \)-graded ring which is finitely generated over \(R_0 \), and assume that \(R_0 \) is essentially of finite type over a field of characteristic zero.

If \(R_p \) has rational singularities for all primes \(p \in \text{Spec} \, R \setminus V(R_+) \), then \(\text{Proj} \, R^\oplus \) has rational singularities.

Proof. Note that \(\text{Proj} \, R^\oplus \) is covered by affine open sets \(D_+(r T^n) \) for integers \(n \geq 1 \) and homogeneous elements \(r \in R_{\geq n} \). Consequently, it suffices to check that \([R^\oplus]_0 \) has rational singularities. Next, note that

\[
[R^\oplus]_0 = R + \frac{1}{r} [R]_{\geq n} + \frac{1}{r^2} [R]_{\geq 2n} + \cdots.
\]

In the case \(\text{deg} \, r > n \), the ring above is simply \(R_r \), which has rational singularities by the hypothesis of the lemma. If \(\text{deg} \, r = n \), then

\[
[R^\oplus]_0 = [R_r]_{\geq 0}.
\]

The \(\mathbb{Z} \)-graded ring \(R_r \) has rational singularities and so, by [Wa1, Lemma 2.5], the ring \([R_r]_{\geq 0}\) has rational singularities as well. \(\square \)

Lemma 5.5. [Hy2, Lemma 2.3] Let \(R \) be an \(\mathbb{N} \)-graded ring which is finitely generated over a local ring \((R_0, m)\). Suppose \([H^i_{m+R_+}(R)]_{\geq 0} = 0 \) for all \(i \geq 0 \). Then, for all ideals \(a \) of \(R_0 \), one has

\[
[H^i_a + R_+ (R)]_{\geq 0} = 0 \quad \text{for all } i \geq 0.
\]

We are now in a position to prove the following theorem, which is a variation of [Fl, Satz 3.1], [Wa1, Theorem 2.2], and [Hy1, Theorem 1.5].

Theorem 5.6. Let \(R \) be an \(\mathbb{N} \)-graded normal ring which is finitely generated over \(R_0 \), and assume that \(R_0 \) is a local ring essentially of finite type over a field of characteristic zero. Then \(R \) has rational singularities if and only if

(1) \(R \) is Cohen-Macaulay,

(2) \(R_p \) has rational singularities for all \(p \in \text{Spec} \, R \setminus V(R_+) \), and

(3) \(a(R) < 0 \).

Proof. It is straightforward to see that conditions (1)–(3) hold when \(R \) has rational singularities, and we focus on the converse. Consider the morphism

\[
Y = \text{Proj} \, R^\oplus \xrightarrow{f} \text{Spec} \, R
\]
as in Remark 5.3. Let \(g : Z \longrightarrow Y \) be a desingularization of \(Y \); the composition

\[
Z \xrightarrow{g} Y \xrightarrow{f} \text{Spec } R
\]

is then a desingularization of \(\text{Spec } R \). Note that \(Y = \text{Proj } R^\natural \) has rational singularities by Lemma 5.4, so

\[
g_* \mathcal{O}_Z = \mathcal{O}_Y \quad \text{and} \quad R^q g_* \mathcal{O}_Z = 0 \quad \text{for all } q \geq 1.
\]

Consequently the Leray spectral sequence

\[
E_2^{p,q} = H^p(Y, R^q g_* \mathcal{O}_Z) = H^{p+q}(Z, \mathcal{O}_Z)
\]

degenerates, and we get \(H^p(Z, \mathcal{O}_Z) = H^p(Y, \mathcal{O}_Y) \) for all \(p \geq 1 \). Since \(\text{Spec } R \) is affine, we also have \(R^p(g \circ f)_* \mathcal{O}_Z = H^p(Z, \mathcal{O}_Z) \). To prove that \(R \) has rational singularities, it now suffices to show that \(H^p(Y, \mathcal{O}_Y) = 0 \) for all \(p \geq 1 \). Consider the map \(\pi : Y \longrightarrow X = \text{Proj } R \). We have

\[
H^p(Y, \mathcal{O}_Y) = H^p(X, \pi_* \mathcal{O}_X) = \bigoplus_{n \geq 0} H^p(X, \mathcal{O}_X(n)) = [H^1_{R^+}(R)]_{p \geq 0}.
\]

By condition (1), we have \([H^1_{m+R^+}(R)]_{p \geq 0} = 0 \) for all \(p \geq 0 \), and so Lemma 5.5 implies that \([H^1_{R^+}(R)]_{p \geq 0} = 0 \) for all \(p \geq 0 \) as desired. \(\square \)

Proof of theorem 5.2. If \(R \) has rational singularities, it is easily seen that conditions (1)–(3) must hold. For the converse, we proceed by induction on \(r \). The case \(r = 1 \) is Theorem 5.6 established above, so assume \(r \geq 2 \). It suffices to show that \(R_\mathfrak{M} \) has rational singularities where \(\mathfrak{M} \) is the homogeneous maximal ideal of \(R \). Set

\[
\mathfrak{m} = \mathfrak{M} \cap [R^\natural]_0,
\]

and consider the \(\mathbb{N} \)-graded ring \(S \) obtained by inverting the multiplicative set \([R^\natural]_0 \setminus \mathfrak{m} \) in \(R^\natural \). Since \(R_{\mathfrak{M}} \) is a localization of \(S \), it suffices to show that \(S \) has rational singularities. Note that \(a(S) = a(R^\natural) \), which is a negative integer by (1). Using Theorem 5.6, it is therefore enough to show that \(R_\mathfrak{P} \) has rational singularities for all \(\mathfrak{P} \in \text{Spec } R \setminus V(x_{r1}, x_{r2}, \ldots, x_{rt}) \). Fix such a prime \(\mathfrak{P} \), and let

\[
\psi : \mathbb{Z}^r \longrightarrow \mathbb{Z}^{r-1}
\]

be the projection to the first \(r-1 \) coordinates. Note that \(R_\mathfrak{P} \) is the ring \(R \) regraded such that \(\deg x_{rj} = 0 \), and the degrees of \(x_{ij} \) for \(i < r \) are unchanged. Set

\[
\mathfrak{p} = \mathfrak{P} \cap [R_\psi^\natural]_0,
\]

and let \(T \) be the ring obtained by inverting the multiplicative set \([R_\psi^\natural]_0 \setminus \mathfrak{p} \) in \(R_\psi \). It suffices to show that \(T \) has rational singularities. Note that \(T \) is an \(\mathbb{N}^{r-1} \)-graded ring defined over a local ring \((T_0, \mathfrak{p}) \), and that it has homogeneous maximal ideal \(\mathfrak{p} + bT \) where

\[
b = (R_\psi^\natural)_+ = (x_{ij} \mid i < r)R.
\]
Using the inductive hypothesis, it remains to verify that $a(T) < 0$. By condition (1), for all integers $1 \leq j \leq r - 1$, we have

$$[H^i_{\mathfrak{m}}(R^{\varphi_j})]_{\geq 0} = 0 \quad \text{for all } i \geq 0,$$

and using Lemma 5.5 it follows that

$$[H^i_{p^b}(R^{\varphi_j})]_{\geq 0} = 0 \quad \text{for all } i \geq 0.$$

Consequently $a(T^{\varphi_j}) < 0$ for $1 \leq j \leq r - 1$, which completes the proof. □

6. F-regularity

For the theory of tight closure, we refer to the papers [HH1, HH2] and [HH3]. We summarize results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

1. Regular rings are F-regular.
2. Direct summands of F-regular rings are F-regular.
3. F-rational rings are normal; an F-rational ring which is a homomorphic image of a Cohen-Macaulay ring is Cohen-Macaulay.
4. F-rational Gorenstein rings are F-regular.
5. Let R be an \mathbb{N}-graded ring which is finitely generated over a field R_0. If R is weakly F-regular, then it is F-regular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] respectively; (3) is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7]. Lastly, (5) is [LS, Corollary 4.4]. □

The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of characteristic zero. A finitely generated K-algebra $R = K[x_1, \ldots, x_m]/a$ is of F-regular type if there exists a finitely generated \mathbb{Z}-algebra $A \subseteq K$, and a finitely generated free A-algebra

$$R_A = A[x_1, \ldots, x_m]/a_A,$$

such that $R \cong R_A \otimes_A K$ and, for all maximal ideals μ in a Zariski dense subset of Spec A, the fiber rings $R_A \otimes_A A/\mu$ are F-regular rings of characteristic $p > 0$. Similarly, R is of F-rational type if for a dense subset of μ, the fiber rings $R_A \otimes_A A/\mu$ are F-rational. Combining results from [Ha, HW, MS, Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then R has rational singularities if and only if it is of F-rational type. If R is \mathbb{Q}-Gorenstein, then it has log terminal singularities if and only if it is of F-regular type.
Proposition 6.3. Let K be a field of characteristic $p > 0$, and R an \mathbb{N}-graded normal ring which is finitely generated over $R_0 = K$. Let ω denote the graded canonical module of R, and set $d = \dim R$.

Suppose R is F-regular. Then, for each integer k, there exists $q = p^r$ such that
\[
\text{rank}_K R_k \leq \text{rank}_K [H^d_m(\omega^{(q)})]_k.
\]

Proof. If $d \leq 1$, then R is regular and the assertion is elementary. Assume $d \geq 2$.

Let $\xi \in [H^d_m(\omega)]_0$ be an element which generates the socle of $H^d_m(\omega)$. Since the map $\omega^{[q]} \to \omega^{(q)}$ is an isomorphism in codimension one, $F^e(\xi)$ may be viewed as an element of $H^d_m(\omega^{(q)})$ as in [Wa2].

Fix an integer k. For each $e \in \mathbb{N}$, set V_e to be the kernel of the vector space homomorphism
\[
(6.3.1) \quad R_k \longrightarrow [H^d_m(\omega^{(p^e)})]_k, \quad \text{where } c \longrightarrow cF^e(\xi).
\]

If $cF^{e+1}(\xi) = 0$, then $F(cF^e(\xi)) = c^p F^{e+1}(\xi) = 0$; since R is F-pure, it follows that $cF^e(\xi) = 0$. Consequently the vector spaces V_e form a descending sequence
\[
V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots.
\]

The hypothesis that R is F-regular implies $\bigcap_e V_e = 0$. Since each V_e has finite rank, $V_e = 0$ for $e \gg 0$. Hence the homomorphism (6.3.1) is injective for $e \gg 0$. \hfill \Box

We next record tight closure properties of general \mathbb{N}-graded hypersurfaces. The results for F-purity are essentially worked out in [HR].

Theorem 6.4. Let $A = K[x_1, \ldots, x_m]$ be a polynomial ring over a field K of positive characteristic. Let d be a nonnegative integer, and set $M = \binom{d+m-1}{d} - 1$. Consider the affine space \mathbb{A}_K^M parameterizing the degree d forms in A in which x_1^d occurs with coefficient 1.

Let U be the subset of \mathbb{A}_K^M corresponding to the forms f for which A/fA F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$.

Let V be the set corresponding to forms f for which A/fA is F-regular. Then V contains a nonempty Zariski open set if $d < m$, and is empty otherwise.

Proof. The set U is Zariski open by [HR, page 156] and it is empty if $d > m$ by [HR, Proposition 5.18]. If $d \leq m$, the square-free monomial $x_1 \cdots x_d$ defines an F-pure hypersurface $A/(x_1 \cdots x_d)$. A linear change of variables yields the polynomial
\[
f = x_1(x_1 + x_2) \cdots (x_1 + x_d)
\]
in which x_1^d occurs with coefficient 1. Hence U is nonempty for $d \leq m$.

If $d \geq m$, then A/fA has a-invariant $d - m \geq 0$ so A/fA is not F-regular. Suppose $d < m$. Consider the set $W \subseteq \mathbb{A}_K^M$ parameterizing the forms f for which A/fA is F-pure and $(A/fA)_{x_1}$ is regular; W is a nonempty open subset of \mathbb{A}_K^M. Let f correspond to a point of W. The element $\varpi_1 \in A/fA$ has a power which
is a test element; since A/fA is F-pure, it follows that \mathfrak{p}_1 is a test element. Note that $\mathfrak{p}_2, \ldots, \mathfrak{p}_m$ is a homogeneous system of parameters for A/fA and that \mathfrak{p}_1^{d-1} generates the socle modulo $(\mathfrak{p}_2, \ldots, \mathfrak{p}_m)$. Hence the ring A/fA is F-regular if and only if there exists a power q of the prime characteristic p such that

$$x_1^{(d-1)q+1} \notin (x_2^q, \ldots, x_m^q, f)A.$$

The set of such f corresponds to an open subset of W; it remains to verify that this subset is nonempty. For this, consider

$$f = x_1^d + x_2 \cdots x_{d+1},$$

which corresponds to a point of W, and note that A/fA is F-regular since

$$x_1^{(d-1)p+1} \notin (x_2^p, \ldots, x_m^p, f)A.$$

These ideas carry over to multi-graded hypersurfaces; we restrict below to the bigraded case. The set of forms in $K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ of degree (d, e) in which $x_1^q y_1^e$ occurs with coefficient 1 is parametrized by the affine space \mathbb{A}_K^n where $N = (d+e-1)(e+n-1) - 1$.

Theorem 6.5. Let $B = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ be a polynomial ring over a field K of positive characteristic. Consider the \mathbb{N}^2-grading on B with $\deg x_i = (1, 0)$ and $\deg y_j = (0, 1)$. Let d, e be nonnegative integers, and consider the affine space \mathbb{A}_K^n parameterizing forms of degree (d, e) in which $x_1^q y_1^e$ occurs with coefficient 1.

Let U be the subset of \mathbb{A}_K^n corresponding to forms f for which B/fB is F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$ and $e \leq n$.

Let V be the set corresponding to forms f for which B/fB is F-regular. Then V contains a nonempty Zariski open set if $d < m$ and $e < n$, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if $d \leq m$ and $e \leq n$, then the polynomial $x_1 \cdots x_d y_1 \cdots y_e$ defines an F-pure hypersurface.

If B/fB is F-regular, then $a(B/fB) < 0$ implies $d < m$ and $e < n$. Conversely, if $d < m$ and $e < n$, then there is a nonempty open set W corresponding to forms f for which the hypersurface B/fB is F-pure and $(B/fB)_{x_1 y_1}$ is regular. In this case, $x_1 y_1^e \in B/fB$ is a test element. The socle modulo the parameter ideal $(x_1 - y_1, x_2, \ldots, x_m, y_2, \ldots, y_n)B/fB$ is generated by x_1^{d+e-1}, so B/fB is F-regular if and only if there exists a power $q = p^r$ such that

$$x_1^{(d+e-1)q+1} \notin (x_1^q - y_1^q, x_2^q, \ldots, x_m^q, y_2^q, \ldots, y_n^q, f)B.$$

The subset of W corresponding to such f is open; it remains to verify that it is nonempty. For this, use $f = x_1^q y_1^e + x_2 \cdots x_{d+1} y_2 \cdots y_{e+1}$.

\square
References

Department of Mathematics, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki-shi 214-8571, Japan
E-mail address: kurano@math.meiji.ac.jp

Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-, Fukuoka-city 812-8581, Japan
E-mail address: esato@math.kyushu-u.ac.jp

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA
E-mail address: singh@math.utah.edu

Department of Mathematics, Nihon University, Sakura-Josui 3-25-40, Setagaya, Tokyo 156-8550, Japan
E-mail address: watanabe@math.chs.nihon-u.ac.jp