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GRAPH-THEORETIC ALBANESE MAPS REVISITED

MOTOKO KOTANI AND TOSHIKAZU SUNADA

1. INTRODUCTION

In [6], [5], we introduced the notion of Albanese maps in the graph-
theoretic context (see also [7], [8]). An Albanese map is a harmonic
map of a finite graph as a 1-dimensional singular space into a flat torus
which, together with the flat metric, is characterized by a minimizing
property for certain energy functional, and is related to asymptotic
behaviors of random walks on crystal lattices. On the other hand, the
notion of Abel-Jacobi maps was brought in graph theory by R. Bacher,
P. De La Harpe, and T. Nagnibeda [1] (see also [3]). A graph version
of Abel-Jacobi maps is a certain class of harmonic functions defined on
vertices with values in finite abelian groups. The aim of this note is to
give a relationship between these notions.

2. ALBANESE MAPS

We first explain Albanese maps in a bit different way from the orig-
inal one given in [8].

Let X = (V, E) be a finite graph with a set of vertices V' and a set
of oriented edges E. By o(e) (resp. t(e)) we denote the origin (resp.
terminus) of e € E. The symbol € stands for the inverse edge of e.
Define the bilinear form on C;(X,Z), the group of 1-chains on X, by

1 (e= e_/)
(1) (e.€) =41 (e=¢)
0  (otherwise),

where e, e’ € F, oriented edges in X. This extends to an inner prod-
uct on C1(X,R), and is restricted to the homology group H;(X,R) =
Ker 0, where 0 : C1(X) — Cy(X) is the boundary map. The Albanese
torus A(X) is defined to be the flat torus H;(X,R)/H,(X,Z) with the
flat metric induced from this inner product.

The Albanese map % : X — A(X) is defined as follows. Let P :

C1(X,R) — H;(Xo,R) be the orthogonal projection. Fix a reference
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point zg € V, and let ¢ = (eq,--- ,e,) be a path with o(c) =z, t(c) =
x. Then put &% (xy) = 0 and
() = P(ey + -+ +e,) = Ple)) + -+ P(e,) (mod Hy(X,Z)).
If ¢ = (e}, -+ ,el.) be another path joining zy and z, then
e1 4 -+e,— (e +---+€) e Hi(X,Z),
so that
Pley+---+e,) = P(e})+---+ P(e],) (mod Hy(X,Z)).

Hence ¢ as a map from V into A(X) is well-defined. We extend &% to
edges as a piecewise linear maps. The map &% : X — A(X) obtained
in this way is a harmonic map in the sense that

AP (z) = Z [ (te) — " (0e)] =0,

where E, = {e € E; o(e) = z}. In fact, for any closed path ¢ =

(€1, ,e,) in X,
Z (e,c) =0
eckE,
since, if t(e;) = o(e;+1) = x, then (e;, ¢) + (€;1+1,c¢) = 0. Hence

Y e e Hi(X,R)*,

e€EF,

and AP (z) = P(> .. €) = 0.

3. ABEL-JACOBI MAPS INTO FINITE ABELIAN GROUPS

There are several definitions of Abel-Jacobi maps. We take up a
definiton which resembles the classical one in algebraic geometry.
Define the group of divisors of degree zero by

Div’(X) ={) a,x € Co(X,Z)| > a, =0}
zeV T
and the group of principal divisors by
Prin(X) = 900*(Co(X, Z))

where 0* is the adjoint of 0 with respect to the inner products on
Co(X,R)
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and the one on C1(X,R) defined in the previous section. The Picard
group is defined as

Pic(X) = Div?(X)/Prin(X).

The order |Pic(X)| coincides with (X)), the number of spanning trees
in X. The discrete Abel-Jacobi map &% : V — Pic(X) is defined by

DY (z) = [z — 0]

4. DISCRETE ALBANESE TORI AND ABEL’S THEOREM

Let us now establish a relationship between Albanese maps and dis-
crete Abel-Jacobi maps.

The homology group H;(X,Z) with coefficients in Z is an integral
lattice in Hy(X,R) with respect to the inner product (1). Denote by
Hy(X,Z)# the dual lattice of Hy(X,Z) in H;(X,R). Since the lattice
H,(X,Z) is integral, we have H,(X,Z) C H,(X,Z)#. The discrete
Albanese torus A(X) is defined to be Hy(X,Z)#/H,(X,7Z) which is
identified with a finite subgroup of A(X).

For any e € E and a € H(X,Z), we find (P(e),a) = (e, P(a)) =
{e,a) € Z, and hence P(e) € Hy(X,Z)#. Thus we have

Lemma 4.1. Let &% be the Albanese map of X into A(X). Then
o(V) C A(X).

We shall call |V : V — A(X) the discrete Albanese map.

In order to prove that (V) generates A(X), take a spanning tree
T of X, and let ey,...,¢, (b = rank Hy(X,Z)) be all edges not in 7.
Then P(ey),..., P(ey) constitute a Z-basis of H,(X,Z)# since, if we
take circuits ¢i,...,¢, in X such that ¢; contains e;, then {cy,..., ¢}
is a Z-basis of Hy(X,Z), and (¢;, P(e;)) = (P(c;), e;) = (¢, ;) = 0yj.

Theorem 4.1. (A discrete version of Abel’s theorem) The correspon-
dence v € V +— &% (z) € A(X) induces an isomorphism ¢ of Pic(X)
onto A(X) such that ¢ o ¥ = P,

Proof. This is actually a consequence of the universality of Abel-
Jacobi maps (cf. [2]). For the completeness, we will give a proof.

Define the homomorphism ¢ : Div’(X) — A(X) by setting op(z —
7o) = % (z) (note that {z —zo; ¥ # 79 € V} is a Z-basis of Div?(X)).
On the other hand, an easy computation leads us to

88*(2 amx) = - Z Uy Z (t(e) = o(e)),

eV zeV ecE,
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and hence

gp(@a* ( 3 ax)) =3 a Y (#(He) — 3(o(e))) = 0.

e€FE,
which implies that ¢ induces a homomorphism ¢ : Pic(X) — A(X).
From what we have seen above, ¢ is surjective.
To check that ¢ is an isomorphism, it is enough to see that |A(X)| =
k(X). For this, we take a look at the following exact sequence

0— AX) = AX) - H(XR)/H\(X,Z)* — 0.
We therefore have the following identity for the order of A(X).
|A(X)| = vol(A(X))/vol(H (X.R)/H. (X, Z)¥).
We also have
vol(H,(X.R)/Hy(X,Z)#) = vol(A(X)) ™,
and hence we obtain
|A(X)| = vol(A(X))%

It is known ([5]) that vol(A(X))? coincides with x(X), and hence
[AX)] = #(X).

A non-degenerate symmetric bilinear form on A(X) with values in
Q/Z is induced from the inner product on H;(X,R). Thinking of
this form as an analogue of “polarization”, one may ask whether the
Torelli type theorem holds in the discrete realm. More specifically, one
asks whether two regular graphs X; and X, with the same degree are
isomorphic when there exists a group isomorphism between A(X;) and
A(Xy) preserving polarizations®.
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