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RAY-SINGER ZETA FUNCTIONS FOR COMPACT FLAT
MANIFOLDS

TOSHIKAZU SUNADA AND HAJIME URAKAWA

1. Introduction

Let M be a compact oriented Riemannian manifold, and let ρ : π1(M) −→ U(N)
be a representation of the fundamental group of M by unitary matrices. We denote
by Eρ the flat vector bundle associated with ρ, and by ∆ρ

p the Laplacian acting on
Eρ-valued p-forms on M . The Ray-Singer zeta function is defined by

Zρ(s) =
n∑

p=0

(−1)ppζp(s),

where

ζp(s) = Γ(s)−1

∫ ∞

0

ts−1
[
tr(e−t∆ρ

p) − dim Ker ∆ρ
p

]
dt.

We shall show that Zρ(s) for a compact flat manifold is expressed in terms of
the Hurwits zeta function

ζ(s, θ) =
∞∑

n=0

(n + θ)−s (0 < θ ≤ 1).

The number θ appearing in the expression turns out to be closely connected with a

certain class of closed geodesics. We may in particular evaluate the value
1
2
Z ′

ρ(0),

which equals the logarithm of the Reidemeister-Franz torsion (W. Müller [3] and
J. Cheeger [1]). A trace formula applied to flat manifolds plays a crucial role in our
discussion (see [7], [10],[11],[12]).

2. Trace formulae

A compact orientable flat manifold M is expressed as M = Rn/Γ with a torsion
free discrete subgroup of the group of orientation preserving motions of Rd. There is
a natural one-to-one correspondence between the set of conjugacy classes [γ], γ ∈ Γ,
and the set of free homotopy classes of maps of S1 into M . We denote by M[γ]

the set of closed geodesics c : S1 −→ M belonging to the homotopy class [γ]. The
space M[γ] equipped with compact open topology is a compact connected manifold,
and the map M[γ] −→ M defined by c �→ c(0) is an immersion which induces a flat
metric on M[γ] (see [8], [9]). The fundamental group of M[γ] is isomorphic to the
centralizer Γγ of γ. We set ℓγ = length of c ∈ M[γ], which depends only on the
class [γ].

The following proposition is a straightforward generalization of the trace formula
established in [7].
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Proposition 2.1. Let ∆E be the Laplacian acting on sections of the flat vector
bundle E associated with a representation ρ : Γ −→ U(N). Then

(1) tr(e−t∆E ) =
∑

[γ]∈[Γ]

tr ρ(γ)vol(M[γ])α(γ)(4πt)−dim M[γ]/2 exp(−ℓ2[γ]/4t),

where α(γ) =
∣∣ det

(
A(γ)− I|Im(A(γ)− I)

)∣∣−1, A(γ) being the rotation part of the
motion γ.

As an illustration, consider the case M = S1 = R/Z and ρ(n) = exp 2π
√−1αn.

The eigenvalues of ∆E in this case are 4π2(n + α)2, n ∈ Z. Therefore the trace
formula reduces to the classical summation formula

(2)
∑
n∈Z

exp
( − 4π2(n + α)2t

)
= (4πt)−1/2

∑
n∈Z

exp
(
2π

√−1nα − n2/4t
)
,

which is useful in later discussion.
Let A : Γ −→ O(n) is the representation defined by taking the rotation part of

each element in Γ. The p-th exterior product of the cotangent bundle, ∧pT ∗M , is
the flat bundle associated with the representation

∧pA : Γ −→ O(∧pRn),

so that the tensor product Eρ ⊗ ∧pT ∗M is the flat bundle associated with the
representation ρ ⊗ ∧pA. Applying the proposition above, we get

tr(e−t∆ρ
p)

=
∑

[γ]∈[Γ]

tr ρ(γ) · tr( ∧p A(γ)
)
vol(M[γ])α(γ)(4πt)−dim M[γ]/2 exp(−ℓ2[γ]/4t).

For brevity, we set

Dρ(t) =
n∑

p=0

(−1)pp tr(e−t∆ρ
p)

=
∑

[γ]∈[Γ]

tr ρ(γ) ·
( n∑

p=0

(−1)pp tr
( ∧p A(γ)

))
vol(M[γ])α(γ)

×(4πt)−dim M[γ]/2 exp(−ℓ2[γ]/4t).

To transform Dρ still further, we divide the case into two parts.

(i) n = 2k. This being the case, the eigenvalues of A(γ) are e±
√−1θ1 , . . . , e±

√−1θk .
Since det(I − xA) =

∑n
p=0(−1)pxptr(∧pA), we have

n∑
p=0

(−1)pp tr
( ∧p A(γ) =

d

dx

∣∣∣
x=1

det
(
I − xA(γ)

)
=

d

dx

∣∣∣
x=1

k∏
i=1

(x2 − 2x cos θi + 1) = k2k
k∏

i=1

(1 − cos θi).

(ii) n = 2k+1. In this case, the eigenvalues of A(γ) are 1, e±
√−1θ1 , . . . , e±

√−1θk .
In the same way as (i), we find

n∑
p=0

(−1)pp tr
( ∧p A(γ)

)
= −2k

k∏
i=1

(1 − cos θi).
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We should note that, for any γ ∈ Γ, the kernel of A(γ) − I is a non-zero vector
subspace, and hence, in the case n = 2k, there exists some i with θi ∈ 2πZ. This
implies Dρ ≡ 0, and Zρ ≡ 0.

From now on, we shall confine ourselves to the case n = 2k + 1. Note that∏k
i=1(1−cos θi) ̸= 0 if and only if dim Ker

(
A(γ)−I

)
= 1, or equivalently dim M[γ] =

1. On the other hand, we have

α(γ) =
k∏

i=1

(2 − 2 cos θi)−1.

Consequently we have

Proposition 2.2.

Dρ(t) = −
∑
[γ]

tr ρ(γ)vol(M[γ])(4πt)−1/2 exp
( − ℓ2[γ]/4t

)
,

where [γ] runs over all conjugacy classes with dim M[γ] = 1.

Corollary 2.1. If dim M[γ] ≥ 2 for every [γ], then
n∑

p=0

(−1)pp dim Hp(M,Eρ) = 0.

3. Primitive geodesics

We will call a homotopy class [γ] isolated if dim M[γ] = 1. Intuitively speaking,
this is equivalent to that there is no way to deform c ∈ M[γ] as geodesics except for
changing the parameter of c.

Lemma 3.1. If [γ] is isolated, then the ratio ℓ[γ]/vol(M[γ]) is a positive integer.

Proof. Define the map ω̃ : S1 −→ M[γ] by ω̃(s) = cs, where cs(t) = c(s + t). If
we equip S1 with the metric induced from c : S1 −→ M , then ω̃ is a local isometry.
Since vol(S1) = ℓ[γ], and ℓ[γ]/vol(M[γ]) equals the degree of the covering map ω̃,
we are done.

A class [γ] is said to be primitive if [γ] is isolated and ℓ[γ]/vol(M[γ]) = 1. The
geometric meaning of this concept is the following: A closed geodesic is said to be
prime if it is not an m-fold cover of another geodesic with m > 1. Here we define
the m-fold cover cm of c by cm(t) = c(mt). A class [γ] is primitive if and only if [γ]
is isolated and a geodesic c ∈ M[γ] is prime. One may also give a group theoretic
meaning. A class [γ] is isolated if and only if Γγ is isomorphic to Z. An isolated
[γ] is primitive if and only if γ generates Γγ .

Lemma 3.2. (1) If [γ] is primitive, then so is [γ−1].
(2) For any isolated class [γ], there exist a unique primitive class [µ] and a

positive integer m such that [γ] = [µm].

Since (1) is obvious, we shall prove (2). Let c ∈ M[γ]. There exist a unique prime
closed geodesic c1 and m ≥ 1 with c = cm

1 . Suppose c1 ∈ M[ν] (and hence [γ] =
[νm]). The class [ν] is isolated because 1 = dim M[γ] ≥ dim M[ν] ≥ 1. Here we have
used the fact that the map M[ν] −→ M[νm] = M[γ] given by c 7→ cm is an immersion.
Next suppose that there is another primitive class [ν′] with [(ν′)m′

] = [γ],m′ ≥ 1.
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Take c′ ∈ M[ν′]. Then one can find some s ∈ R with c′(m′t) = c(s+ t), t ∈ R, which
implies that m = m′ and c′(t) = c1(t + ms), so that [ν′] = [ν].

In view of the lemma above, one can find a set of primitive classes {[µα]}α∈A

such that any isolated class [γ] can be written uniquely as [γ] = [µm
α ] for some

α ∈ A and some m ∈ Z. Noting that vol(M[µm
α ]) = ℓ[µα], we have

(3) Dρ(t) = −(4πt)−1/2
∑
α∈A

∑
h∈Z

′tr ρ(µh
α)ℓ[µα] exp

( − h2ℓ2[µα]/4t
)
,

where, in the inner sum
∑′, h runs over all integers with isolated [µh

α]. From now
on, we write ℓα for ℓ[µα]. In order to describe such integers h, we let {1, exp

( ±
2π

√−1bα1/aα1

)
, . . . , exp

( ± 2π
√−1bαk/aαk

)} be the eigenvalues of A(µα), where
aαj , bαj (j = 1, . . . , k) are positive integers with (aαj , bαj) = 1 (co-prime). Since
dim Ker

(
A(µα) − I

)
= 1, we have aαi > 1. Note that [µh

α] is isolated if and only
if aαj is not a divisor of h for any j = 1, . . . , k. Therefore the “Inclusion-Exclusion
Principle” leads us to∑

h∈Z

′tr ρ(µh
α) exp

( − h2ℓ2α/4t
)

(4)

=
∑
h∈Z

tr ρ(µh
α) exp

( − h2ℓ2α/4t
) − k∑

m=1

∑
h∈Z

tr ρ(µhaαm
α ) exp

( − h2a2
αmℓ2α/4t

)
+

∑
1≤m1<m2≤k

∑
h∈Z

tr ρ(µh[aαm1 ,aαm2 ]
α exp

( − h2[aαm1 , aαm2 ]
2ℓ2α/4t

) − · · · ,

where the symbol [p.q.r. · · · ] means the least common multiple of numbers p.q.r. . . ..
We now let {exp 2π

√−1θα1, . . . , exp 2π
√−1θαN} be the eigenvalues of ρ(µα).

Substituting these values for tr ρ(µh
α), we obtain

Dρ(t) = −
∑
α∈A

N∑
j=1

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

(4πt)−1/2ℓα

·
∑
h∈Z

exp
(
2π

√−1θαjh[aαm1 , . . . , aαmu ] − h2[aαm1 , . . . , aαmu ]2ℓ2α/4t
)
.

Here, for u = 0, we understand [aαm1 , . . . , aαmu ] to be 1. This is the stage to use
the summation formula (2) to get

Dρ(t) = −
∑
α∈A

N∑
j=1

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

[aαm1 , . . . , aαmu ]−1(5)

·
∑
h∈Z

exp
(
− 4π2

(
h − θα[aαm1 , . . . , aαmu ]

)2
t

[aαm1 , . . . , aαmu ]2ℓ2α

)
.

Proposition 3.1. There exist only finite many primitive classes.

Proof. In (5), we let ρ be the trivial representation 1. It should be noted
that the series in the right hand side of (5) converges absolutely and each term is
dominated by a positive Kαjℓm1···mℓ

, which does not depend on t > 0 and satisfies∑
Kαjℓm1···mℓ

< ∞. Therefore, we may first take the limit (t ↑ ∞) of each term in
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the series, and find

lim
t→∞D1(t) = −

∑
α∈A

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

[aαm1 , . . . , aαmu ]−1.

On the other hand, we have

lim
t→∞D1(t) =

n∑
p=0

(−1)pp dim Ker ∆p =
n∑

p=0

(−1)pp dim Hp(M, R).

We set, for a sequence of positive integers a1, . . . , ak with ai > 1,

[[a1, . . . , ak]] =
k∑

u=0

(−1)u
∑

1≤m1<···<mu≤k

[am1 , . . . , amu
]−1.

Since, as shown below,

(6) [[a1, . . . , ak]] ≥
k∏

i=1

(
1 − ai

−1
)

(≥ 2−k),

and
lim

t→∞D1(t) = −
∑
α∈A

[[aα1, . . . , aαk]], (aαj > 1),

the set A is necessarily finite.
We shall prove (6) by induction on k. In the same time, we prove

(7) [[θ1a1, . . . , θkak]] ≥ [[a1, . . . , ak]]

for positive integers θ1, . . . , θk. For k = 1, we have [[a1]] = 1 − a1
−1 and [[θ1a1]] =

1 − (θ1a1)−1 ≥ 1 − a1
−1 = [[a1]]. Suppose that our claim holds up to k − 1. An

easy computation leads us to

(8) [[a1, . . . , ak]] = [[a2, . . . , ak]] − 1
a1

[[ [a1, a2]
a1

, . . . ,
[a1, ak]

a1

]]
.

Hence, noting ai =
[a1, ai]

a1
(a1, ai), and using the induction hypothesis, we get

[[a1, . . . , ak]] ≥ (1 − a1
−1)[[a2, . . . , ak]] ≥

k∏
i=1

(1 − ai
−1).

We shall show (7). For this, it is enough to check [[θa1, a2, . . . , ak]] ≥ [[a1, . . . , ak]].
Using again (8), we obtain

[[θa1, a2, . . . , ak]] − [[a1, . . . , ak]] =
1
a1

{[[ [a1, a2]
a1

, . . . ,
[a1, ak]

a1

]]
−1

θ

[[ [θa1, a2]
θa1

, . . . ,
[θa1, ak]

θa1

]]}
≥ 1

a1
(1 − θ−1)

[[ [a1, a2]
a1

, . . . ,
[a1, ak]

a1

]]
≥ 0,

where we have used that
[a1, ai]

a1

/ [θa1, ai]
θa1

=
(θa1, ai)
(a1, ai)

is a positive integer.
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Corollary 3.1.
n∑

p=0

(−1)pp dim Hp(M, Eρ)

=
∑
α∈A

N∑
j=1

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

[aαm1 , . . . , aαmu ]−1〈θαj [aαm1 , . . . , aαmu ]〉,

where the symbol 〈·〉 denotes the characteristic function of Z in R; that is, 〈a〉 = 1
if a ∈ Z, otherwise 〈a〉 = 0. In particular

n∑
p=0

(−1)pp dim Hp(M, R) = −
∑
α∈A

[[aα1, . . . , aαk]] ≤ 0.

4. Zeta functions and torsions

We are now in a position to calculate the Ray-Singer zeta function

Zρ(s) = Γ(s)−1

∫ ∞

0

ts−1
(
Dρ(t) − lim

t→∞Dρ(t)
)
dt.

In virtue of the identity

Γ(s)−1

∫ ∞

0

ts−1 exp
(
− 4π2 (h − α)2t

a2

)
dt =

( a2

4π2

)s

(h − α)−2s (h ̸= α),

we obtain

Zρ(s) = −
∑
α∈A

N∑
j=1

k∑
ℓ=0

(−1)ℓ
∑

1≤m1<···<mℓ≤k

[aαm1 , . . . , aαmℓ
]2s−1

(
ℓα/2π

)2s

×
∑
h∈Z

′(h − θαj [aαm1 , . . . , aαmℓ
]
)−2s

,

where h runs over integers with h ̸= θαj [aαm1 , . . . , aαmℓ
]. Therefore in terms of the

Hurwitz zeta function ζ(s, θ), we have

Theorem 4.1.

Zρ(s) = −
∑
α∈A

N∑
j=1

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

[aαm1 , . . . , aαmu ]2s−1
(
ℓα/2π

)2s

×
{
〈θαj [aαm1 , . . . , aαmu ]〉2ζ(2s)

+(1 − 〈θαj [aαm1 , . . . , aαmu ]〉) ×
(
ζ(2s, 〈〈θαj [aαm1 , . . . , aαmu ]〉〉)

+ζ(2s, 1 − 〈〈θαj [aαm1 , . . . , aαmu ]〉〉)
)}

where 〈〈α〉〉 = α − [α].

The expression of Zρ(s) above allows us to compute the Reidemeister-Franz
torsion. Since

ζ(s, θ) =
(1

2
− θ

)
+ log

(Γ(θ)√
2π

)
s + · · ·



RAY-SINGER ZETA FUNCTIONS FOR COMPACT FLAT MANIFOLDS 7

around s = 0, we have

Z ′
ρ(0) = −2

∑
α∈A

N∑
j=1

k∑
u=0

(−1)u
∑

1≤m1<···<mu≤k

[aαm1 , . . . , aαmu ]−1

×
{
− 〈θαj [aαm1 , . . . , aαmu ]〉 log

(
[aαm1 , . . . , aαmu ]

ℓα

2π

)
+

(
1 − 〈θαj [aαm1 , . . . , aαmu ]〉) log

( 1
2π

Γ
(〈〈θαj [aαm1 , . . . , aαmu ]〉〉)

×Γ
(
1 − 〈〈θαj [aαm1 , . . . , aαmu

]〉〉))}
,

which, in view of the identity Γ(x)Γ(1 − x) =
π

sin πx
, leads us to

Theorem 4.2. The torsion Tρ(M) = exp
(1

2
Z ′

ρ(0)
)

equals

∏
α∈A

N∏
j=1

k∏
u=0

∏
1≤m1<···<mu≤k(

[aαm1 , . . . , aαmu ]
ℓα

2π

)(−1)u〈θαj [aαm1 ,...,aαmu ]〉/[aαm1 ,...,aαmu ]

×
(
2 sin π〈〈θαj [aαm1 , . . . , aαmu ]〉〉

)(−1)u
(
1−〈θαj [aαm1 ,...,aαmu ]〉

)
/[aαm1 ,...,aαmu ]

.
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