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RAY-SINGER ZETA FUNCTIONS FOR COMPACT FLAT
MANIFOLDS

TOSHIKAZU SUNADA AND HAJIME URAKAWA

1. INTRODUCTION

Let M be a compact oriented Riemannian manifold, and let p : m (M) — U(N)
be a representation of the fundamental group of M by unitary matrices. We denote
by E, the flat vector bundle associated with p, and by Af the Laplacian acting on
E,-valued p-forms on M. The Ray-Singer zeta function is defined by

n

Zy(s) =Y _(=1)PpGy(s),

p=0
where
Cp(s) = F(s)fl/ 51 [tr(e*m;) — dim Ker A?]dt.
0
We shall show that Z,(s) for a compact flat manifold is expressed in terms of
the Hurwits zeta function

oo

()= (n+0) (0<0<1).

n=0
The number 6 appearing in the expression turns out to be closely connected with a
1
certain class of closed geodesics. We may in particular evaluate the value §Z;,(0),

which equals the logarithm of the Reidemeister-Franz torsion (W. Miiller [3] and
J. Cheeger [1]). A trace formula applied to flat manifolds plays a crucial role in our
discussion (see [7], [10],[11],[12]).

2. TRACE FORMULAE

A compact orientable flat manifold M is expressed as M = R"/T" with a torsion
free discrete subgroup of the group of orientation preserving motions of R¢. There is
a natural one-to-one correspondence between the set of conjugacy classes [y], v € T,
and the set of free homotopy classes of maps of S' into M. We denote by M,
the set of closed geodesics ¢ : S — M belonging to the homotopy class [y]. The
space M}, equipped with compact open topology is a compact connected manifold,
and the map M, — M defined by c + ¢(0) is an immersion which induces a flat
metric on M, (see [8], [9]). The fundamental group of M|,; is isomorphic to the
centralizer I'y of v. We set £, = length of ¢ € M],), which depends only on the
class [7].

The following proposition is a straightforward generalization of the trace formula
established in [7].

1
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Proposition 2.1. Let Ag be the Laplacian acting on sections of the flat vector
bundle E associated with a representation p:T' — U(N). Then

(@) ) = 35t phooMhalr) ) i -t ),

[V]elr]
where a(y) = | det (A(y) — I|Im(A )|7 ) being the rotation part of the
motion 7.

As an illustration, consider the case M = S* = R/Z and p(n) = exp 27v/—1lan.
The eigenvalues of Ag in this case are 472(n + «)%,n € Z. Therefore the trace
formula reduces to the classical summation formula
(2) Z exp ( (n + a)’t) = (4nt) /2 Z exp (2mv—1na — n*/4t),

nez nez
which is useful in later discussion.

Let A:T' — O(n) is the representation defined by taking the rotation part of
each element in I'. The p-th exterior product of the cotangent bundle, APT*M, is
the flat bundle associated with the representation

APA: T — O(APR™),

so that the tensor product F, ® APT*M is the flat bundle associated with the
representation p @ APA. Applying the proposition above, we get

tr( 7tAp)
= > trp(y) - tr( AP A®7))vol(My))a(y) (dmt) ~4m Mei/2 exp(— (2 /4t).
I

For brevity, we set

Dy(t) = Y (=1)Pptr(e™"2h)

p=0
= Z tr p(y (Z(fl)pp tr( AP A(’y)))vol(MM)a(’y)
[v]€lr] p=0

x (4art) = Mt /2 expy (—¢ ]/4t).
To transform D, still further, we divide the case into two parts.
(i) n = 2k. This being the case, the eigenvalues of A(y) are eV =101 ¢V =10k
Since det(I —zA) =} ) " _o(=1)PzPtr(APA), we have

n

D (=1)Pp tr( AP A(y) = di

T le=1
p=0 *

4
dx

det (I — zA(v))

k k
2 —2zcos; +1) = k2" [ [(1 — cos6;).
. 1:[((E xcosb; +1) };[1( cos 6;)

(ii) n = 2k+1. In this case, the eigenvalues of A(y) are 1,e+V =101 V=10
In the same way as (i), we find

n

Z( 1)Pp tr( AP A(9) ——QkH (1 —cos¥;)

p=0
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We should note that, for any v € T', the kernel of A(vy) — I is a non-zero vector
subspace, and hence, in the case n = 2k, there exists some ¢ with 0; € 2xZ. This
implies D, =0, and Z, = 0.

From now on, we shall confine ourselves to the case n = 2k + 1. Note that
Hf;l (1—cos#;) # 0if and only if dim Ker(A(y)—I) = 1, or equivalently dim M,; =
1. On the other hand, we have

Consequently we have

Proposition 2.2.

D,(t) = — Z tr p(w)vol(MM)(471'15)_1/2 exp (— K[Qﬂ /4t),
(]

where [7y] runs over all conjugacy classes with dim M, = 1.

Corollary 2.1. If dim M, > 2 for every [v], then

Zn:(—l)pp dim HP(M,E,) = 0.

p=0
3. PRIMITIVE GEODESICS

We will call a homotopy class [7] isolated if dim M),; = 1. Intuitively speaking,
this is equivalent to that there is no way to deform ¢ € M, as geodesics except for
changing the parameter of c.

Lemma 3.1. If [y] is isolated, then the ratio £}, /vol(M,)) is a positive integer.

Proof. Define the map @ : S' — M|} by &(s) = ¢, where ¢,(t) = ¢(s +t). If
we equip S! with the metric induced from ¢ : S' — M, then @ is a local isometry.
Since vol(S') = £, and £},;/vol(M},)) equals the degree of the covering map @,
we are done.

A class [7] is said to be primitive if [y] is isolated and £}, /vol(M|,;) = 1. The
geometric meaning of this concept is the following: A closed geodesic is said to be
prime if it is not an m-fold cover of another geodesic with m > 1. Here we define
the m-~fold cover ¢™ of ¢ by ¢™(t) = ¢(mt). A class [v] is primitive if and only if [7]
is isolated and a geodesic ¢ € M|, is prime. One may also give a group theoretic
meaning. A class [7y] is isolated if and only if I'y is isomorphic to Z. An isolated
[v] is primitive if and only if -y generates I's.

Lemma 3.2. (1) If [y] is primitive, then so is [y~1].
(2) For any isolated class [Y], there exist a unique primitive class [p] and a
positive integer m such that [y] = [p™].

Since (1) is obvious, we shall prove (2). Let ¢ € M[,). There exist a unique prime
closed geodesic ¢; and m > 1 with ¢ = ¢{*. Suppose ¢; € M) (and hence [y] =
[v™]). The class [v] is isolated because 1 = dim M|,; > dim M,; > 1. Here we have
used the fact that the map M},) — M[,m] = M|, given by ¢ — ¢ is an immersion.

Next suppose that there is another primitive class [1/] with [(/)™] = [4],m’ > 1.
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Take ¢’ € M. Then one can find some s € R with ¢/(m't) = c¢(s+1),t € R, which
implies that m = m’ and ¢/(¢) = ¢1(t + ms), so that '] = [v].

In view of the lemma above, one can find a set of primitive classes {[ta]}aca

such that any isolated class [y] can be written uniquely as [y] = [p7'] for some
a € A and some m € Z. Noting that vol(M[,m)) = £, we have
(8) Dyt = —(rt) 23] S b () exp (— K2R, /4,

a€EAhEZ

where, in the inner sum >, h runs over all integers with isolated [u”]. From now
on, we write £, for £}, ;. In order to describe such integers h, we let {1, exp ( +

21/ =1ba1/aa1), - - - exp (£ 2mv/—1bak/aak)} be the eigenvalues of A(pq), where

Qaj, baj (7 = 1,...,k) are positive integers with (@qaj,ba;) = 1 (co-prime). Since
dim Ker (A(ua) —I) =1, we have as; > 1. Note that [p”] is isolated if and only
if ao; is not a divisor of h for any j =1,...,k. Therefore the “Inclusion-Exclusion

Principle” leads us to

(4) >t p(ul) exp (— h*€%/4t)

heZ
k
= ) trp(ph)exp (—h2E/4t) = > > tr p(phtem)exp (— h*al,, 07 /4t)
h€EZ m=1h€EZ

hlaam, ,@am
+ Z Ztr p(ua[a v 2]exp(—hz[aamuCL()MWQ]in/élzf) —
1<m1<ma<k h€Z

where the symbol [p.q.r. - - -] means the least common multiple of numbers p.q.r. .. ..
We now let {exp2mv/—1041,...,exp27v/—10,n} be the eigenvalues of p(uq)-
Substituting these values for tr p(u”), we obtain

N k
D) = -3 amy

acA j=1u=0 1<mi<---<my <k
. Z exp (20V—=10uh[aam, , - - -, Gam,) — B [@amys - - -, Gam, | 02 /4L).
hez
Here, for u = 0, we understand [aamys - - -, Gam, | to be 1. This is the stage to use

the summation formula (2) to get

N k
(5) Dyt) = =D > Y (-1 > [Gamys - s Gam, ]

acA j=1u=0 1<mi<---<m, <k
2
9 (h —Oulaamy - - ,aamu]) t
. E exp | —4m 575 .
heZ [aamlv cee 7aamu] ﬁa

Proposition 3.1. There exist only finite many primitive classes.

Proof. In (5), we let p be the trivial representation 1. It should be noted
that the series in the right hand side of (5) converges absolutely and each term is
dominated by a positive Kqjem,...m,, Which does not depend on ¢ > 0 and satisfies
> Kajem,m, < 00. Therefore, we may first take the limit (¢ T co) of each term in
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the series, and find

k
Jim Di(t) = =33 (=D 3 damieeesdam, ]

a€Au=0 1<mi<---<my<k
On the other hand, we have

n n

lim Dy (1) = > (~1)Pp dim Ker A, = (~1)Pp dim H?(M,R).
p=0 p=0
We set, for a sequence of positive integers a, ..., ar with a; > 1,
k
[[a1,...,ak]] :Z(—l)“ Z [
u=0 1<mi <. <my <k

Since, as shown below,

k
(6) Hala cee ,ak]] > H (1 - aiil) (Z 27’6)’
i=1
and
lim D(t) = =) [laa1,.--,0ak]], (aa; > 1),

t—oo
acA

m

the set A is necessarily finite.
We shall prove (6) by induction on k. In the same time, we prove

(7) [[61a1,...,0kak]] > [[a1,- -, ak]]

for positive integers 61, ...,0;. For k = 1, we have [[a1]] =1 — a1 7! and [[f1a4]] =
1 —(61a1)™' > 1 —a17! = [[a1]]. Suppose that our claim holds up to k — 1. An
easy computation leads us to

_ 1 rrla1, a9 (a1, a]
8) o,y aud] = lfaz, - aul) = - Il s ]
Hence, noting a; = (1, 4] (a1, a;), and using the induction hypothesis, we get
a
k
lat,- o]l > (1= o Ylfaa,. .- a]) = [[(1 - asY).
i=1

We shall show (7). For this, it is enough to check [[fa1, as, ..., ax]] > [[a1, ..., ak]].
Using again (8), we obtain

([0ay, az, ..., ax]] - [[a1, ..., ax]] = ;1{[[[“10;1“2],...,[“1(;1‘““}”
(A )
> ;1(1_0*1)[[[“&’?2],..., [“16;1“’“]“ >0,

where we have used that

[ahai]/wahai} _ (fay,a;)
ay fa;  (a1,a)

is a positive integer.
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Corollary 3.1.

n

> (~1)Pp dim H?(M, E,)

p=0
N k
= Z ZZ(*UU Z [aam1v~-~vaamu,rl<0aj[aam1w~'aaamu,]>a
acA j=1u=0 1<mi<---<m, <k

where the symbol (-) denotes the characteristic function of Z in R; that is, {a) =1
if a € Z, otherwise (a) = 0. In particular

n

Z(—l)pp dim HP?(M,R) = — Z[[aal, o aqk]] <0.
p=0 a€cA

4. ZETA FUNCTIONS AND TORSIONS

We are now in a position to calculate the Ray-Singer zeta function

Z,(s) =T(s)~* /OOO t1(D,(t) — Jim. D,(t))dt.

In virtue of the identity

N k
Z,(s) = _ZZZ(_U@ ST ltames e Gam )P T (Ca)/27)

1<m<---<my<k

=0
-2
X Z'(h — Oajlaam,, - ,aamz]) °
where h runs over integers with i # 04;[@am,, - - -, Gam,]. Therefore in terms of the
Hurwitz zeta function ((s, 6), we have
Theorem 4.1.

Zy(s) = =D 3 3 (-1 ST [damise s Gam, 2 (la/2m) "

a€A j=1u=0 1<my < <my <k
1 { Baslams - Gam, [)2((25)
(1= Baslaamss - Gam, D)) % (C025, (Baglaamss -+ Gam, 1)
+¢(25,1 = ((Baslaam,s -+ aam,]))) }

where ((a)) = a — [a].

The expression of Z,(s) above allows us to compute the Reidemeister-Franz
torsion. Since

((s,0) = (% —(9) + log (1:/(%)94_
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around s = 0, we have

N k
Z0) = =23 > > (-1 > [Gamys- - Gam, ]

a€A j=1u=0 1<mi<---<m,<k
lo
x{ — (Oajlaamys - - Gam,]) log ([aom1 e aamu]%)
1
(1= Basltamys- -+ am,])) 108 (5T ({{bajlaamss - aam,])))
XD (1= {(Basltamss - aam,))) ) |
which, in view of the identity T'(z)T'(1 — z) = , leads us to

sinmwx

1
Theorem 4.2. The torsion T,(M) = exp (fZ;,(O)) equals

2

N k
acAj=1u=01<mi<---<m,<k
Lo\ (ED"Oajlaamy s amy])/[@amy s s@amy,]
([aaml Yoo 7aamu]%>

(_1)u 1_<€a"[aam >~-7aamu]> /[acwn 7'-~;a(wnu]
% (2810 7({Bus 00+ aam.]))) (1= Oustoem, ) fzans .
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