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AN OVERVIEW OF SUNADA’S WORK

ATSUSHI KATSUDA AND POLLY WEE SY

1. Brief Profile of Professor Toshikazu Sunada

Professor Toshikazu Sunada was born in Tokyo, Japan, on September 7, 1948,
three years after the end of World War II. He dwelled and grew up in the suburb
of Tokyo until the age of twenty-five. Sunada described himself in his childhood as
an ordinary boy, somewhat introverted and showing no particular interest in any
subjects taught in primary and junior high schools. According to his reminiscence,
he sat absentmindedly all day long during class hours. He even confessed that
arithmetic was then his instinctive dislike.

His zest for mathematics arose when he was a high school student and had
a chance to read “History of Modern Mathematics” written by Takagi Teiji, a
Japanese luminary who established the class field theory, a culmination of algebraic
number theory. The book, including a vivid description of the lives of Gauss, Abel,
and Galois together with the development of the theory of elliptic functions, was
so fascinating that it led him to the ambition of becoming a mathematician. Since
he had thought of himself as a literature-oriented person at that time, this was a
major turning point in his life.

He thus decided to study mathematics and entered Tokyo Institute of Technology
(TIT), which had a department of mathematics of moderate size. However, soon
after his admission to the university (1968), his study was disrupted by student
riot, a movement sweeping over universities around the world. During this period,
classes were cancelled and the campus was locked out. Interested students of the
mathematics department voluntarily requested their teachers to organize seminars
outside the campus. The subjects they took up then were vector bundles and
complex multiplications; topics which were not covered in the regular lectures for
undergraduate courses. The enthusiasm for mathematics that the teachers demon-
strated as well as their selfless effort to impart knowledge even in this extraordinary
period has left a lasting impression on the mind of the young Sunada. This expe-
rience made him more ambitious to become a professional mathematician. When
Sunada was in his senior year, his supervisor was Prof. Koji Shiga, who conducted
one of the seminars mentioned above and is now Sunada’s lifelong friend.

After his undergraduate studies, he was admitted to the graduate school of the
University of Tokyo (UT) and soon began his research under the supervision of
Prof. Mikio Ise. The most decisive moment for his future career came when he
defended his master’s thesis which consists of three different subjects in front of an
examination committee. Since the time allocated for presentation to each student
was short, he had to choose one out of the three subjects. Prof. Kunihiko Kodaira,
a Fields Medal laureate, asked Sunada to explain in detail the other two subjects
as well, even though his time was already up. Moreover, Kodaira made valuable
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comments to each subject. This happening was a big boost to Sunada’s confidence
in pursuing his dream.

Just after receiving his master’s degree from UT in 1974, he was appointed as a
research associate at Nagoya University (NU) where he was to stay for the next 15
years. This stay has made his dream to become a mathematician comes true. In
1977, he received his doctorate degree by submitting a dissertation to UT.

In 1979-80, he was invited as a guest researcher at Bonn University. He says that
the two-years stay in Bonn was the most fruitful time in his life. During this period,
he made the aqcuaintance of many active young mathematicians, and published a
series of excellent papers ([S7], [S8], [S9], [S10]). And it was also during this period
that his geometric model of number theory was conceived (see Subsection 2.4).

After his return to NU, he was promoted to associate professor in 1982. In 1985,
he gave a beautiful construction of isospectral manifolds based on his geometric
model of number theory. For this important contribution, he was subsequently
awarded the Iyanaga Prize by the Mathematical Society of Japan in 1987.

Sunada became a full professor at NU in 1988. Three years after, he was ap-
pointed professor at UT (1991-1993) and thereafter, at Tohoku University (TU,
1993-2003) before he has finally settled down at Meiji University in 2003. Currently
he is also professor emeritus of TU, a position held since 2003, and is affiliated with
the newly-established Meiji Institute for Advanced Study of Mathematical Sciences
in Tokyo. It is a rare case in Japan that a full professor transfers frequently from
one university to another since there is almost no difference in the financial status.
The motivation for his frequent movement was to seek better research environment.
He frankly says “UT, one of the most prestigious universities in Japan, was worst
in my experience as far as the human relation is concerned”.

In the meanwhile, Sunada stayed for six months (1988) in Institut Hautes Études
Scientifiques (IHES) as a guest professor, for a few months in Isaac Newton Insti-
tute at Cambridge as an organizer of a special project (2007), and for seven months
in Max Planck Institute in Bonn (2008) as a visiting professor. In 2008, he held
an Andrejewski Lecturership at Humboldt University in Berlin under the auspices
of the Walter and Eva Andrejewski Foundation as a distinguished scholar. He
also stayed in Mathematical Sciences Research Institute (MSRI) in Berkeley, Johns
Hopkins University, Augsburg University, Institut Henri Poincaré (IHP), Tata In-
stitute of Fundamental Research, Institut Mittag-Leffler, the Academy of Science
in Beijing, National University of Singapore, and the University of the Philippines
for short periods. His first stay in the Philippines (1986), which was the most
exciting moment in all of his travels (where he has witnessed the peaceful People
Power Revolution in Manila), was the beginning of his active involvement in the
Southeast Asia regional mathematical activities.

Sunada gave an invited lecture at the International Congress of Mathematicians
(ICM) in Kyoto in 1990, at the Third Asian Mathematical Conference (AMC) in
Manila in 2000, and at the LMS South West and South Wales Regional Meeting in
Cardiff, UK in 2007, to name a few. He was invited to numerous other international
conferences and symposia as a keynote speaker.

His activities are not limited to teaching and research. He was chosen a member
of the Kyoto Prize Selection Committee for three terms (1989, 1994, 2002) in the
past 20 years. In 2008, he was appointed a panel member of the European Research
Council, an organization set up to promote outstanding, frontier research in all areas
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of science and humanities throughout Europe. His other services to the mathematics
community include his two-term board membership of the Mathematical Society
of Japan and the membership of the IMU-CDE committee where he served for
two consecutive terms. Moreover, he helped in the organization of several major
conferences, including the celebrated Taniguchi Symposia, held in Asia as a member
of steering, scientific or advisory committee.

Besides his many research publications, Sunada has written a number of math-
ematics books for the general public as well as textbooks for undergraduate and
graduate students (most of which are in Japanese) ([SB1] - [SB9]), and enlighten-
ing essays which appeared in Sugaku Seminar (Mathematics Seminar) and other
mathematical magazines. He has also been involved in the publication of several
series of mathematical books, journals, and proceedings as an editor. Sunada is
at present a member of the Editorial Board of a popular Japanese mathematical
magazine, Have Fun with Mathematics, published by Kame-Shobo.

Although Sunada usually portrays himself as a geometer, we realize from his
list of publications, that it is difficult to single out his specialization. In fact,
Sunada’s work covers complex analytic geometry, spectral geometry, dynamical
systems, probability, and graph theory, some of which we shall explain in detail in
the next section. Through his work, we would describe him as an extraordinary
and talented man with enormous insight and technical power who is constantly
generating new ideas and methods to form exciting and remarkable mathematical
results.

2. Sunada’s work

This section gives an overview of Sunada’s achievement up to the age of 60.
Because of the wide range of subjects Sunada has been involved in and his research’s
style of moving back and forth among subjects, this narration of Sunada’s work shall
be done in accordance with the subject matters and not in chronological order.

The organization of the subsections is as follows:

2.1. Complex analysis
2.2. Trace formulae
2.3. Density of states
2.4. Isospectral manifolds
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2.5. Twisted Laplacians
2.6. Ihara zeta functions
2.7. Quantum ergodicity
2.8. Discrete geometric analysis
2.9. Strongly isotropic crystals (a diamond twin)

2.1. Complex analysis. Under the guidance of his supervisor Professor Mikio Ise,
Sunada succeeded in completing a master’s thesis consisting of three different top-
ics; namely, “Holomorphic equivalence problem of bounded Reinhaldt domains”,
“Implicit function theorem for non-linear elliptic operators”, and “Random walks
on a Riemannian manifold”. The first one [S4] published in Mathematische An-
nalen in 1978 is considered his debut paper to the mathematical community. As
he recalled in recent times, this work has given him self-confidence of his ability
as a mathematician. In this paper, he generalized Thullen’s classical result [50]
asserting that a 2-dimensional bounded Reinhaldt domain 1 containing the origin is
biholomorphic to one of the following domains provided that the orbit of the origin
by the automophism group has positive dimension:

(1) {(z, w) ∈ C2; |z| < 1, |w| < 1} (polydisc);
(2) {(z, w) ∈ C2; |z|2 + |w|2 < 1} (unit ball);
(3) {(z, w) ∈ C2; |z|2 + |w|2/p < 1} (p > 0, ̸= 1) (Thullen domain).

Here, the orbit for the Thullen domain is {(z, 0); |z| < 1}. An interesting aspect
of the classification above is that even in the non-homogeneous case, the shape of
the domain is explicitly described.

The main theorems in [S4] are stated below.

Theorem 2.1. An n-dimensional bounded Reinhaldt domain D containing the ori-
gin is biholomorphic to the Reinhaldt domain D̃ in Cn1×· · ·×Cns×Cm1×· · ·×Cmt

which has the following characteristics:
(1) Let D̃0 be the orbit of the origin for the action of the identity component of the

automorphism group of D̃. Then D̃0 = {(z1, . . . , zs,w1, . . . ,wt); zi ∈ Cni , wj ∈
Cmj , |z1| < 1, . . . , |zs| < 1,w1 = · · · = wt = 0}.

(2) D̃1 = {(w1, . . . ,wt); (0, . . . ,0,w1, . . . ,wt) ∈ D̃} is a bounded Reinhaldt
domain.

(3) D̃ is described in terms of D̃0 and D̃1 as

D̃ =
{

(z1, . . . , zs,w1, . . . ,wt); (z1, . . . , zs) ∈ D̃0,(
w1

s∏
i=1

(
1 − |zi|2

)−p1i/2
, . . . ,wt

s∏
i=1

(
1 − |zi|2

)−pti/2
)
∈ D̃1

}
,

where pij are non-negative real numbers.

Theorem 2.2. Two n-dimensional bounded Reinhardt domains D1 and D2 are
mutually equivalent if and only if there exists a transformation ϕ : Cn −→ Cn

given by zi 7→ rizσ(i) (ri > 0 and σ being a permutation of the indices) such that
ϕ(D1) = D2.

Sunada’s idea in the proofs is to employ the torus action (z1, . . . , zn) 7→ (eiθ1z1,
. . . , eiθnzn) on a bounded Reinhaldt domain to obtain an analogue of the Cartan

1A Reinhaldt domain D is an open set in Cn invariant under the transformation (z1, . . . , zn) 7→
(eiθ1z1, . . . , eiθnzn) (θi ∈ R).
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decomposition g = k+p of the Lie algebra g of the automorphism group and a root
decomposition of the complexification gC of g, which allows him to determine the
structure of g. Note that gC is identified with a Lie algebra consisting of polynomial
vector fields on Cn. A key fact is that a system ξ of vector fields on a real subspace
of Cn which consists of the restriction of vector fields in p is integrable on an open
dense subset. Using this fact, he could characterize D by solving the system of
differential equations derived from ξ. Later on, his idea has been generalized by S.
Shimizu, A. Kodama, D. E. Barret, T. Barton, N. G. Kruzhilin, J. P. Vigué and
others for various classes of complex domains.

When Sunada was a research associate of NU (1974-1975) and UT (1975-1977),
he focused his study on the family of holomorphic maps of a Kähler manifold into
a compact quotient of a symmetric bounded domain ([S2], [S6]), which formed part
of his doctoral dissertation submitted to UT. At that time, he had been looking
for a suitable example related to the result in his MS thesis on non-linear elliptic
equations.

He came across a general result due to A. Douady [20] which says that the set
of holomorphic maps Hol(X,Y ) of a compact complex manifold X into another
complex manifold Y carries the structure of a complex space, and the evaluation
map ϕx : Hol(X, Y ) −→ Y defined by ϕx(f) = f(x) is an analytic map. What
Sunada conceived was that Hol(X, Y ) should inherit some structures from the target
manifold Y , if not always for every Y . For example, if Y is compact and Kobayashi
hyperbolic, then so is each component of Hol(X,Y )2. His question was: what about
the case that Y is a compact quotient of a symmetric domain ? His answer is
adequately provided in the following theorem.

Theorem 2.3. Let X be a compact Kähler manifold, and Y be a compact quotient
of a symmetric bounded domain Γ\D. We assume that Γ is torsion free. Then we
have

(1) Each connected component of Hol(X, Γ\D) is a compact quotient of a sym-
metric bounded domain;

(2) Let Γ1\D1 be a connected component of Hol(X, Γ\D). Then the evaluation
map ϕx is a totally geodesic immersion, and hence D1 is identified with a Hermit-
ian symmetric subspace of D (in other words, the lifting of ϕx is a holomorphic
embedding in the sense of Kuga-Satake [41]);

(3) If f ∈ Γ1\D1, then the group Γ1 is identified with the centralizer of the image
of the induced homomorphism f∗ : π1(X) −→ Γ;

(4) If f, g ∈ Hol(X, Γ\D) are homotopic, then f and g are contained in the same
component of Hol(X, Γ\D).

A real analogue was also established for the space Harm(M, N) of harmonic
maps of a compact Riemannian manifold M into a compact quotient N of a sym-
metric space of non-positive curvature ([S6]). This being the case, each component
of Harm(M,N) is also a compact quotient of a symmetric space of non-positive
curvature, and the evaluation map is totally geodesic. In his proof, he made use
of the classical result due to Eells and Sampson [21] and the fact that the energy

2This is easy to see if one uses Brody’s criterion on Kobayashi hyperbolicity “A compact

complex manifold Y is Kobayashi hyperbolic if and only if there is no non-constant holomorphic
map of C into Y ”.
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functional on the mapping space Map(M, N) is convex (see also R. Schoen and S.
T. Yau [43]).

Claims (3) and (4) in the theorem above tells, in particular, that, if the image
of f ∈ Hol(X, Γ\D) is “topologically big”, then f is rigid in the sense that, if
g ∈ Hol(X, Γ\D) is homotopic to f , then g = f .

In connection with this rigidity property, it is worthwhile to quote the following
result [S2] which is a generalization of de Franchis’ theorem on finiteness of non-
constant holomorphic maps of an algebraic curve into an algebraic curve with genus
greater than 1: Let ℓ(D) be the maximum value of dimension of proper boundary
components of D ([52]). Then there are only a finite number of holomorphic map-
pings of M into Γ\D, each of rank greater than ℓ(D). In particular, the set of
surjective holomorphic mappings is finite.

The de Franchis theorem has several generalizations. For instance, Kobayashi
and Ochiai [29] proved that there are only a finite number of dominant meromorphic
maps onto a complex space of general type. Moreover, in his collaborative work
[S11] with Junjiro Noguchi, a good friend of Sunada since their undergraduate years
in TIT, they established the following theorem, a more algebraic-geometric result.

Theorem 2.4. Let M be an algebraic variety and N be a smooth complete algebraic
variety. We denote by Ratµ(M, N) the family of rational maps f : M −→ N with
rank f ≥ µ. If the µ-th exterior power ∧µTN is negative, then Ratµ(M, N) is
finite.

We note that ∧µT (Γ\D) is negative if µ > ℓ(D). Hence this theorem is a
generalization of the result above.

After these work on complex analysis, Sunada’s interest has shifted to geometric
analysis, especially spectral geometry.

2.2. Trace formulae. Among Sunada’s scientific papers, there are four papers
whose titles include the term “trace formula” ([S7], [S10], [S12], [S33]). Two other
papers [S5] and [S17] are also closely related to trace formulae. His intention in
these papers was to use the trace formulae for the spectral study of Laplacians on
general Riemannian manifolds.

Needless to say, the “trace formula philosophy” has its origin in the famous
work by A. Selberg [42] who established a non-commutative version of the Poisson
summation formula

(2.1)
∑
m∈Z

f(m) =
∑
n∈Z

f̂(n),

where f is a rapidly decreasing function, and f̂(ξ) =
∫ ∞

−∞
f(x)e−2π

√−1xξdx. The

Selberg trace formula, which works effectively for a closed surface of constant nega-
tive curvature, gives rise to a precise relation between eigenvalues of the Laplacian
and closed geodesics. The Poisson summation formula also leads to a relation be-
tween eigenvalues and closed geodesics; that is, eigenvalues of −d2/dx2 and closed
geodesics x 7→ kx (k ∈ Z) on S1 = R/Z. This relation is more clearly understood
if we rewrite (2.1) as

(2.2)
∞∑

k=0

f̂c(
√

λk) =
∑
k∈Z

f(k),
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where

f̂c(s) =
∫ ∞

−∞
f(t) cos st dt,

and 0 = λ0 < λ1 ≤ λ2 ≤ . . . are eigenvalues of −d2/dx2; that is, λ2k−1 = λ2k =
4π2k2 (k ≥ 1). In the expression on the right-hand side of (2.2), the whole number
|k| (k ∈ Z) is thought of as representing the length of a closed geodesic in S1. If
one defines the distribution Θ ∈ D′(R) by

(2.3) 〈Θ, f〉 =
∞∑

k=0

f̂c(
√

λk),

then the formula above is written as

(2.4) Θ =
∑
k∈Z

δk (δk is the Dirac delta with support {k}),

which implies that the singular support of Θ coincides with the set of ± lengths of
closed geodesics in S1. This view was generalized by Chazarain [13] to a general
Riemannian manifold M , who showed that the singular support of the distribution
Θ defined in the same way as (2.3) is contained in the set

{±ℓ; ℓ is the length of a closed geodesic in M}.
Sunada’s view of the summation formula is a bit different, much akin to the

original trace formula, and is explained in the following way. The integers k in (2.4)
which are thought of as elements in the fundamental group π1(S1) = Z parameterize
the connected components of the mapping space Map(S1, S1), and hence the right-
hand side of (2.4) may be regarded as the sum of distributions over free homotopy
classes of closed paths in S1. In the case of a general M , the connected components
of Map(S1,M) are parameterized by conjugacy classes [σ] ∈ [π1(M)]. Thus it is
natural to expect that Θ is expressed as a sum of certain distributions Θ[σ] closely
related to homotopy class [σ] of closed paths. He proved that this is actually the
case, and presented his result below at the ICM Kyoto in 1990 ([S33]).

Theorem 2.5. (A generalized trace formula) Let ρ : π1(M) −→ U(N) be a unitary
representation, and λ0(ρ) ≤ λ1(ρ) ≤ · · · be the eigenvalues of the Laplacian ∆ρ

acting on sections of the flat vector bundle associated with ρ. Define Θ(ρ) ∈ D′(R)
by

〈Θ(ρ), f〉 =
∞∑

k=0

f̂c(
√

λk(ρ)).

Then with each conjugacy class [σ] ∈ [π1(M)], a distribution Θ[σ] ∈ D′(R) having
the following properties is associated.

(1) Θ(ρ) =
∑
[σ]

tr(σ)Θ[σ];

(2) supp Θ[σ] ⊂ {t ∈ R; |t| ≥ ℓ[σ]}, where ℓ[σ] is the length of the shortest closed
geodesics in M whose homotopy class is [σ];

(3) sing. supp Θ[σ] is contained in the set {±ℓ; ℓ is the length of a closed geodesic
in M whose homotopy class is [σ]};
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(4) Each Θ[σ] extends to a generalized function on a space of test functions
including the gaussian function

fτ (t) = (4πτ)−1/2 exp
(
− t2

4τ

)
(τ > 0).

Moreover, for such a test function f , the sum
∑

[σ]〈Θ[σ], f〉 converges absolutely
and equals 〈Θ, f〉.

The distribution Θ[σ] is explicitly defined as

(2.5) 〈Θ[σ], f〉 =
∫

Γσ\M̃

dx

∫
R

f(t)U(t, σx, x)dt,

where Γ = π1(M), Γσ is the centralizer of σ, π : M̃ −→ M is the universal covering
map over M , and U(t, x, y) is the kernel function of the operator cos(t

√
∆M̃ ), which

is the fundamental solution of the wave equation on M̃( ∂2

∂t2
+ ∆

)
u = 0, u(0, x) = δ(x), ut(0, x) = 0.

Claim (1) is proven in much the same manner as the classical trace formula.
Indeed, if we denote by UM (t, x, y) the kernel function of the operator cos t

√
∆ρ

on M , then
UM

(
t, π(x), π(y)

)
=

∑
σ∈Γ

ρ(σ)U(t, σx, y),

from which (1) follows immediately. The second claim (2) is a consequence of the
finite propagation property of the wave equation. As for (3), one just follows the
way in [13]. A technical difficulty caused by non-compactness of Γσ\M̃ can be
overcome again by using the finite propagation property.

If we take the gaussian function fτ as a test function, then we have, for the
trivial ρ,

〈Θ, fτ 〉 =
∫

M

kM (τ, x, x)dx =
∞∑

k=0

e−τλk ,

〈Θ[σ], fτ 〉 =
∫

Γσ\M̃

kM̃ (τ, σx, x)dx,(2.6)

where kM and kM̃ are the heat kernel on M and M̃ , respectively.
The “path space feature” of trace formulae becomes more apparent if we use the

modified Wiener measure µτ on the path space

Map(S1,M) =
∐

[σ]∈[Γ]

Map[σ](S
1, M),

which is characterized by∫
Map(S1,M)

f
(
c(t1), . . . , c(tN )

)
dµτ (c)

=
∫

M×···×M

kM (τ(t2 − t1), x1, x2) × · · · × kM (τ(tN − tN−1), xN−1, xN )

×kM (τ(1 + t1 − tN ), xN , x1)f(x1, . . . , xN ) dx1 · · · dxN ,

where f is an arbitrary continuous function on the N -tuple product M×· · ·×M , and
0 ≤ t1 < t2 < · · · < tN < 1 ([S12]). Indeed, one has µτ (Map(S1, M)) = 〈Θ, fτ 〉 and
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µτ (Map[σ](S1,M)) = 〈Θ[σ], fτ 〉, and hence the generalized trace formula applied to
the gaussian function reduces to the additivity of the Wiener measure.

Also, if one takes the functional Fτ on the path space defined by

Fτ (c) = exp
(
− τ

∫
S1

q
(
c(s)

)
ds

)
,

where q is a smooth function on M , then, in view of the Feynmann-Kac formula,
the summation formula

(2.7)
∫

Map(S1,M)

Fτdµτ =
∑
[σ]

∫
Map[σ](S

1,M)

Fτdµτ

is equivalent to the trace formula∫
M

h(t, x, x)dx =
∑
[σ]

∫
Γσ\M̃

h̃(t, σx̃, x̃)dx̃,

where h (resp. h̃) is the fundamental solution of the equation( ∂

∂t
+ ∆ + q

)
u = 0

on M (resp. on M̃). In general, one may not expect to have an exact shape of the

term
∫

Map[σ](S
1,M)

Fτ dµτ . However one may give an asymptotic expression instead

([S10]) provided that M is of non-positive curvature. More precisely, if, in addition,
the function x̃ → d(x̃, σx̃)2 is non-degenerate (this is the case for symmetric spaces),
then∫

Map[σ](S
1,M)

Fτ dµτ ∼ (4πτ)−dim M[σ]/2e−ℓ2[σ]/4τ (a0 + a1τ + +a2τ
2 + · · · )

as τ goes to zero. Here M[σ] denotes the set of closed geodesics in the homotopy
class [σ] (having the structure of a smooth connected manifold), and ℓ[σ] is the
length of c ∈ M[σ].

When M̃ is a symmetric space of non-positive curvature, so is M[σ] which is
mapped into M by a totally geodesic immersion, and π1(M[σ]) = Γσ as mentioned
in the previous subsection. By choosing a suitable fibration map : Γσ\M̃ −→ M[σ],
one can decompose the integration in (2.6) into integrations along the fiber and
integration over M[σ]. In a special case (for instance, M̃ is a hyperbolic space, and
q ≡ 0), one may establish an exact trace formula in this way (see McKean [35]).
The following example is due to Sunada [S5].

Example 2.1. Let M = Γ\Rn be a compact flat manifold. Then
∞∑

i=0

e−λi(ρ)τ =
∑

[σ]∈[Γ]

tr ρ(σ)α(σ)vol(M[σ])(4πτ)−dim M[σ]/2 exp(−ℓ2[σ]/4τ),

where, for σ : x 7→ Ax + b (A ∈ O(n)), we put

α(σ) =
∣∣ det

(
A − I|Image(A − I)

)∣∣−1
.

(Note that each M[σ] is also flat. Using this exact formula, one can prove that there
are only finitely many isometry classes of flat manifolds with a given spectrum. One
can also employ this formula to express the Ray-Singer zeta function in terms of
the Hurwits zeta function and to compute the Reidemeister-Franz torsion [S59].)
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Let us go back to the simplest case M = S1. We thus treat the eigenvalues {λk}
of Hill’s operator −d2/dx2 + q(x) (q(x + 1) = q(x)). The following proposition, a
special case of (2.7), yields a generalization of the Jacobi inversion formula.

Proposition 2.1. ([S7]) Let µ be the Wiener measure on the loop space Ω = {ω :
[0, 1] −→ R; ω(0) = ω(1) = 0}. Then we have

∞∑
k=0

e−τλk = (4πτ)−1/2
∞∑

n=−∞
e−n2/4τfn(q; τ),

where

fn(q; τ) =
∫

S1
dx

∫
Ω

exp
(
− τ

∫ 1

0

q
(
x + nt +

√
τω(t)

)
dt

)
dµ(ω).

Using this integral expression, one can easily carry out the asymptotic expansion

fn(q; τ) ∼ 1 + An
1 (q)τ + An

2 (q)τ2 + · · · (τ ↓ 0),

and see that the coefficients A0
i (q) are expressed as

A0
i (q) =

∫ 1

0

ai(q(x), q′(x), . . .)dx.

Here the ai’s are universal polynomials of q, q′, q′′, . . ., which give us the well-known
KdV-invariants (see McKean and Van Moerbeke [36]).

Sunada had interest in the coefficients An
i (q) for n ̸= 0 since they might give

new invariants. But he found out, after tedious computations, that each An
i (q) can

be expressed as a polynomial of the A0
i (q)’s.

It is interesting to point out that fn(q; τ) is related to the discriminant ∆(λ),
which is defined as the trace of the monodromy mapping ϕ(x) 7→ ϕ(x + 1) acting
on the solution space of the equation(

− d2

dx2
+ q(x) − λ

)
ϕ = 0.

Indeed, we have

Proposition 2.2. ([S7])∫ ∞

0

e−λτ (4πτ)−1/2e−n2/4τfn(q; τ)dτ

=
−∆′(−λ)√
∆(−λ)2 − 4

(∆(−λ) − √
∆(−λ)2 − 4
2

)|n|
.

Using this proposition, one can prove that, if q(x) is a finite band potential;
that is, if the equation ∆(λ)2 − 4 = 0 has only finitely many simple roots, then
(4πτ)−1/2f0(q; τ) is a hypergeometric function of Pochhammer’s type.

There is an abstract form of trace formulae which is regarded as a generalization
of the class formula for a finite group Γ

1 =
∑

[σ]∈[Γ]

|Γσ|−1.

A straightforward generalization is the following proposition, which turns out to
be useful in Sunada’s work on isospectral manifolds as will be seen in the next
subsection.
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Proposition 2.3. [S17] Let V be a Hilbert space on which a finite group Γ acts
unitarily, and V Γ be the subspace of V consisting of Γ-invariant vectors. If a non-
positive operator A : V −→ V of trace class is Γ-equivariant, then

(2.8) tr(A|V Γ) =
∑

[σ]∈[Γ]

|Γσ|−1tr(σA).

Even for a group Γ of infinite order, there are cases that (2.8) may still make
sense, at least in a formal sense. The trace formula for the covering set-up is
considered as such an example. To explain this, let π : X −→ M be a regular
covering map over a compact manifold M with covering transformation group Γ,
and let A0 be an integral operator on M with a lifting A on X. Then

(2.9) tr A0 =
∑

[σ]∈[Γ]

trΓσ (σA).

Here, in general, the Γ-trace trΓ(T ) for a Γ-equivariant integral operator T on

a manifold with a Γ-action is defined by
∫
F

t(x, x)dx, where F is a fundamental

domain for the Γ-action. If F is relatively compact, the Γ-trace is interpreted as a
von Neumann trace (see [1]). The trΓσ in (2.9) needs to be handled carefully since
a fundamental domain for Γσ-action is not relatively compact in general except for
σ = 1. In many practical cases, (2.9) is justified. For instance, the summation
formula 〈Θ, f〉 =

∑
σ〈Θ[σ], f〉 may be regarded as a disguised form of (2.9) for a

special A.

2.3. Density of states. While Sunada was studying trace formulae, he became
aware that a crude relation between an operator on a covering manifold and its base
manifold must be useful for a justification of the notion of “(integrated) density of
states”, which was first introduced by physicists in the quantum theory of solids.
To simplify physicist’s explanation, we consider the Schrödinger operator H with a
periodic potential on the Euclidean space. Restricting H to a bounded domain and
imposing a boundary condition, we count the number of eigenvalues not exceeding
λ. Then dividing this counting function by the volume of the domain, and blowing
up the domain to fill the whole space, one gets the integrated density of states ϕ(λ).
The spectrum of the Schrödinger operator on the whole space is then characterized
completely by ϕ(λ). An interesting feature is that one has the same ϕ(λ) whatever
one chooses as a boundary condition (Dirichlet, Neumann or periodic boundary
condition). The fact behind this feature is that the volume growth of boundaries
is much less than that of the domains (see M. Shubin [46]).

A question here is whether the notion of the integrated density of states makes
sense for a more general set-up. What Sunada considered is the case of a regular
covering manifold X over a compact manifold M , which allows one to define the
integrated density of states associated with a periodic boundary condition as fol-
lows: Suppose that the covering transformation group Γ has a family of normal
subgroups {Γi}∞i=1 of finite index such that Γi+1 ⊂ Γi and ∩∞

i=1Γi = {1}. We then
have a tower of finite-fold covering maps of closed manifolds · · · −→ Mi+1 −→
Γi\X = Mi −→ · · · −→ M1 −→ M . We take a Γ-invariant function q. Let ϕMi(λ)
denote the number of eigenvalues of HMi = ∆Mi + q on the closed manifold Mi not
exceeding λ.
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Theorem 2.6. ([S33]) Let

HX =
∫

λdE(λ)

be the spectral resolution of HX , and put

ϕΓ(λ) = trΓE(λ).

Then the measures (vol(Mi))−1dϕMi converge weakly to (vol(M))−1dϕΓ.

Thus the spectral distribution function trΓE(λ) is essentially identified with the
integrated density of states associated with the periodic boundary condition.

A new question arises. What happens when we replace the periodic boundary
condition by the Dirichlet boundary condition ? A partial answer was given in his
joint work [S38] with Toshiaki Adachi. To explain this, let {Di}∞i=1 be a family
of bounded connected open sets in X with piecewise smooth boundaries satisfying
Di ⊂ Di+1,

⋃∞
i=1 Di = X. Consider the Schrödinger operator HDi

= ∆Di
+ q on

each Di with the Dirichlet boundary condition. We denote by ϕDi
(λ) the number

of eigenvalues of HDi not exceeding λ.

Theorem 2.7. Define a “thick” boundary of a domain D by

∂hD = {x ∈ D; dist(x, ∂D) ≤ h}.
(1) The group Γ is amenable if and only if there exists a family {Di}∞i=1 of

bounded domains with piecewise smooth boundary satisfying the following property:

lim
i→∞

vol(∂hDi)/vol(Di) = 0

for every h > 0.
(2) If a family {Di}∞i=1 satisfies the property in (1), then (vol(Di))−1dϕDi con-

verges weakly to (vol(M))−1dϕΓ.

For the definition of amenability, refer to R. J. Zimmer [55]. One may see J.
Dodziuk and V. Mathai [19] for a recent development.

The notion of Γ-trace which was effectively used in the study of density of states
turns out to be also useful in the spectral study of covering manifolds. In his paper
[S33], Sunada took up this notion to determine a criterion for a periodic Schrödinger
operator on a manifold to have band structure. Here band structure means that
the spectrum is a union of mutually disjoint, possibly degenerate closed intervals,
such that any compact subset of R meets only finitely many. Subsequently he and
Jochen Brüning [S35] generalized the result to the case of periodic elliptic operators.

In order to explain the criterion, we shall employ C∗
red(Γ,K), the tensor product

of the reduced group C∗-algebra of a discrete group Γ with the algebra K of com-
pact operators on a separable Hilbert space of infinite dimension. The C∗-algebra
C∗

red(Γ,K) has a canonical von Neumann trace trΓ. We then define the Kadison
constant C(Γ) by

C(Γ) = inf{trΓP ;P is a non-zero projection in C∗
red(Γ,K)}.

By definition, Γ is said to have the Kadison property if C(Γ) > 0. Examples of such
Γ are abelian groups, free groups and surface groups (see [S32])3

We now let X be a Riemannian manifold of dimension n on which a discrete
group Γ acts isometrically, effectively, and properly discontinuously. We assume

3It is a conjecture proposed by Kadison that, if Γ is torsion free, then C(Γ) = 1.
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that the quotient space Γ\X (which may have singularities) is compact. Let E be
a Γ-equivariant hermitian vector bundle over X, and D : C∞(E) −→ C∞(E) a
formally self-adjoint elliptic operator which commutes with the Γ-action (in short,
such a D is called a Γ-periodic operator).

Theorem 2.8. [S35] (1) If Γ has the Kadison property, then the spectrum of any
Γ-periodic elliptic operator has band structure.

(2) Suppose that D is a Γ-periodic elliptic operator of order p, and is bounded
from below. Let N(λ) be the number of components of the spectrum of D which
intersect the interval (−∞, λ]. If Γ has the Kadison property, then

lim sup
λ→∞

N(λ)λ−n/p ≤ C(Γ)−1Γ(1 + n/p)
∫

Γ\X

A(x)dx,

where the function A(x) can be evaluated explicitly in terms of the principal symbol
σD(x, ξ) of D as given below.

A(x) = (2π)−n−1

∫
Rn

dξ

∫ ∞−iγ

−∞−iγ

tr
(
σD(x, ξ) + iτ

)−1
eiτdτ

(γ is an arbitrary real number).

In the definition of band structure, we do not exclude the possible existence
of eigenvalues. Indeed, one may construct a closed manifold with a free abelian
fundamental group such that the Laplacian on the universal covering manifold
possesses an eigenvalue ([S28]). On the other hand, the following theorem was
proven in [S30].

Theorem 2.9. Let X be the maximal abelian covering space over a closed Riemann-
ian manifold M . Suppose that M admits a non-trivial S1-action whose generating
vector field is parallel. Then the Schrödinger operator on X with a smooth periodic
potential has no eigenvalues.

The proof of this generalization of the classical result due to L. E. Thomas [49]
was carried out by using the idea of twisted operators (see Section 2.5).

2.4. Isospectral manifolds. When Sunada was a guest researcher of the SFB
(Sonderforchungsbereich) “Theoretische Mathematik” program in Bonn University
(1979-80), he revisited the problem of random walks on a Riemannian manifold, and
studied the spherical mean operator which is considered as the transition operator of
the random walk. He observed that, if the radius is small enough, then the spherical
mean operator is a Fourier integral operator of negative order so that it is a compact
operator in the L2 space ([S9]). Since then, the problem of random walks, not only
on a Riemannian manifold but also on a graph has been his steadfast interest.

Among his papers, the most cited one is “Riemannian coverings and isospectral
manifolds” [S17] which appeared in Annals of Mathematics in 1985. The motivation
behind this work came up also during his stay in Bonn. At that time, he wanted to
understand the class field theory because it has been his dream to prove something
related to this theory ever since he read Takagi’s book on algebraic number theory.
For this sake, he tried to find a geometric model of the class field theory. Thus
the path he took is the reverse of what Hilbert had taken up to speculate a correct
formulation of his “absolute” class field theory by looking at the theory of covering
surfaces. Sunada observed that closed geodesics under covering maps behave like
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prime ideals under field extensions, and could soon formulate the class field theory
in the Riemannian geometric setting4. He once said,”It is a simple toy model, but
I enjoy playing with it very much.”

Let us explain briefly his idea. A prime cycle is a 1-cycle represented by a prime
closed geodesic. Given a finite-fold Riemannian covering map π : M −→ M0, we
say that a prime cycle P in M lies above a prime cycle p in M0 if π(P) = pm(= mp)
with a positive integer m, and write P|p. The integer m is called the degree of P,
and written as deg P. If π is n-fold, then there are at most n prime cycles lying
above p, and

n =
∑
P|p

deg P.

This identity already gives rise to a flavor of algebraic number theory. This flavor
becomes much stronger when we consider a regular covering map. Indeed, for a
given p, the covering transformation group G acts transitively on the set {P; P|p},
and if deg P = f , then there exists a unique σ ∈ G such that c(t + f−1) = σc(t),
where c is a representative of P. The element σ depends only upon P. We write
(P|π) for σ and call it the Frobenius transformation associated with P. It is easily
checked that (P|π) is a generator of the stabilizer GP = {µ ∈ G; µP = P} so that
deg P coincides with the order of GP. We also find that (µP|π) = µ(P|π)µ−1.
Thus if π is an abelian covering map, i.e. G is abelian, then (P|π) depends only
upon p. We write (p|π) instead of (P|π).

Taking account of the Dedekind theorem, we define the counterpart of ideal group
simply as the free abelian group generated by prime cycles, which we denote by
IM . An element a in IM , therefore, takes the form

a = p1
a1 · · · pk

ak (ai ∈ Z),

which we call a geodesic cycle. A geodesic cycle a is said to be principal if the
homology class [a] is zero. We denote by I0

M the subgroup of IM consisting of
principal geodesic cycles. An analogue of ideal class group is the quotient group
CM = IM/I0

M . As a matter of fact, CM is nothing but the 1st integral homology
group H1(M,Z).

Now for a covering map π : M −→ M0 and for a prime cycle P in M with P|p,
define the norm Nπ(P) to be pdeg P, and extend it to the group homomorphism
IM −→ IM0 . In the geometric context, the fundamental theorem in class field
theory is stated as follows.

Proposition 2.4. [S62] (1) For an n-fold covering map π : M −→ M0, the index
[IM0 , I

0
M0

· Nπ(IM )] is not greater than n. The equality holds if and only if π is
abelian.

(2) (Artin’s reciprocity law) If π is abelian, then the correspondence p 7→ (p|π)
yields an isomorphism of the quotient group IM0/

(
I0
M0

· Nπ(IM )
)

onto G.
(3) For any subgroup H of finite index in IM0 containing I0

M0
, there exists an

abelian covering map π : M −→ M0 such that H = I0
M0

· Nπ(IM ).

In number theory, the quickest way to prove a similar inequality as in (1) is to
make use of some properties of the L-functions, and the proofs of (2) and (3) are
substantially sophisticated. In the geometric case, the proof makes use of elemen-
tary features of the Hurewicz homomorphism: π1(M0) −→ H1(M0,Z).

4This was discussed in the unpublished paper [S62].
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During his stay in Germany, Sunada happened to attend a conference (Arbeitsta-
gung) held in Bonn, thereby having a chance to listen to a talk by M. F. Vignéras, a
French mathematician. In that occasion, she explained her construction of isospec-
tral Riemann surfaces by means of the Selberg trace formula ([51]). Here we quote
the story disclosed by Sunada.

“Her method applies only to a very special class of manifolds; i.e., hyperbolic
surfaces and spaces. After some time, I came to think that there should be a
more general method which could apply to a broader class of manifolds. Actually
I observed that Vignéras’ construction somehow fits into my geometric model of
number theory. In my geometric context, what I would like to look for is a pair
of Riemannian manifolds with the same spectral zeta function. Soon I started to
seek a similar statement in number theory, and finally found a book which gave
me a satisfactory statement. It is the Proceedings edited by Cassel and Fröhlich
[12] with exercise problems in the appendix. One of the problems is asking for a
pair of number fields with the same Dedekind zeta function. This is it ! The nicest
thing is that the answer to this problem is expressed in terms of Galois groups of
field extensions. Since I already had a geometric model of number theory, it was
almost immediate to write down the desired statement in the geometric setting.
Of course, the proof in the geometric case should be different from that in number
theory. But it is so convincing that I never have doubt about the validity of my
statement. Actually a week later, I could give a proof.”

The statement in number theory is the following

Proposition 2.5. Let K be a finite Galois extension of Q with Galois group G =
G(K/Q), and let k1 and k2 be subfields of K corresponding to subgroups H1 and
H2, respectively. Then the following two conditions are equivalent:

(1) Each conjugacy class of elements in G meets H1 and H2 in the same number
of elements.

(2) The Dedekind zeta functions of k1 and k2 are the same.

It is known that many examples of the triplet (G,H1, H2) arise from simple
algebraic groups. If G is a reductive algebraic group and H1,H2 are nonconjugate
but associate parabolic subgroups, then (G,H1,H2) satisfies condition (1).

In Proposition 2.5, Sunada replaced the Dedekind zeta function by the spectral
zeta function

ζM (s) =
∞∑

k=1

λk
−s,

where 0 < λ1 ≤ λ2 ≤ · · · are non-zero eigenvalues of the Laplacian on a compact
Riemannian manifold M . He then proved the following by using Proposition 2.3.

Theorem 2.10. Let π : M −→ M0 be a regular Riemannian covering map with
covering transformation group G, and let π1 : M1 −→ M0 and π2 : M2 −→ M0 be
the covering maps corresponding to subgroups H1 and H2, respectively. If the triplet
(G,H1,H2) satisfies condition (1) in the proposition above, then the zeta functions
ζM1(s) and ζM2(s) are identical.

Since ζM1(s) = ζM2(s) if and only if M1 and M2 are isospectral, this result
gives a chance to construct many non-isometric isospectral manifolds. Actually, by
choosing a suitable (G,H1,H2) and M0, we may construct many isospectral pairs,
especially isospectral surfaces of constant negative curvature whose genus is much
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smaller than Vignéras’ example (see R. Brooks and R. Tse [7] for an example of
genus three).

We should note that Vignéras’ example also gave a negative answer to the
question posed by I. M. Gel’fand [22], who asked if the induced representation
of PSL2(R) on L2(Γ\PSL2(R)) determines a discrete subgroup Γ up to conju-
gation. Sunada’s idea also allows a simple construction of a counterexample (see
[S18]).

The excitement created by Sunada’s beautiful construction of isospectral mani-
folds is seen in several quotations given by mathematicians. As B. Cipra wrote, in
his review paper [14] on the famous problem “Can one hear the shape of a drum ?”
proposed by M. Kac, ”Sunada’s method gives rise to a veritable cottage industry of
examples.” In the preface of his book [11], Peter Buser wrote “Sunada’s construction
of isospectral manifolds was fascinating, and I got hooked on constructing examples
for quite a while. So time went on and the book kept growing.... The editor, for in-
stance, was interested, and so was my family.” Moreover, Robert Brooks, Sunada’s
late friend, wrote, towards the end of a historical remark on isospectral manifolds
in his expository article [8], “The situation changed dramatically in [S17]. Here
Sunada showed how the phenomenon of isospectral manifolds could be understood
in a systematic way.” See also H. Pesce’s article [39] which contains an excellent
survey of Sunada’s construction.

It should be pointed out that there are many examples of isospectral manifolds
which are not obtained by Sunada’s method (see D. Schueth [44] for example). See
R. Brooks [9] for a graph version of the isospectral problem.

As for Kac’s problem, C. Gordon, D. Webb and S. Wolpert [23] gave a coun-
terexample (thus one can not hear the shape of a drum in general) by using the
transplantation technique developed by Buser [10] and P. Bérard [4] which is closely
related to Sunada’s method.

Sunada was once (around 1988) asked by his colleague what a geometric analogue
of the Riemann Hypothesis is. His answer was: λ1(M) ≥ λ0(M̃) ([S33])5. Here
λ1(M) is the first positive eigenvalue of the Laplacian on a compact manifold, and
λ0(M̃) is the bottom of the spectrum of the Laplacian on the universal covering
manifold M̃ . He admits that this was merely a joke. But it turns out that this
joke has led him to a serious business to know more about the spectra of covering
manifolds.

2.5. Twisted Laplacians. It is quite natural for Sunada to proceed to the study
of a geometric analogue of the analytic number theory. He wanted to establish
an analogue of the Dirichlet theorem for arithmetic progression which asserts that,
given positive integers a, d which are supposed to be coprime, there are infinitely
many primes in the series a, a + d, a + 2d, . . .. More precisely, one has

|{prime p ≤ x; p = a + kd for some k}| ∼ ϕ(d)−1 x

log x
(x ↑ ∞),

where ϕ(d) is the Euler function. Remember that the proof relies on the properties
of the L-function

L(s, χ) =
∏
p

(1 − χ(p)p−s)−1,

5Actually, for a closed surface, this condition is equivalent to that the Selberg zeta function
satisfies the Riemann Hypothesis.
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where χ is a character of the multiplicative group (Z/dZ)×, which is the Galois
group of the cyclotomic field Q(e2π

√−1/d).
A geometric analogue of the prime number theorem has been known as the as-

ymptotic formula for counting function of prime closed geodesics in a closed surface
M of constant negative curvature. Let π(x) be the number of prime cycles p in M
with ℓ(p) ≤ x. Then

π(x) ∼ ex

x
(x ↑ ∞).

This is proven in a similar way as the usual proof of the prime number theorem by
using the Selberg zeta function.

Taking account of our convention to regard H1(M,Z) as the (absolute) ideal class
group, Sunada thinks that a geometric analogue of the Dirichlet theorem should be
an asymptotic formula for the counting function of prime cycles in a fixed homology
class:

π(x, α) =
∣∣{p; [p] = α, ℓ(p) ≤ x}∣∣,

where α ∈ H1(M,Z) and [p] stands for the homology class of p. There is, however,
a big discrepancy between the number theory and its geometric model. That is, the
ideal class group H1(M,Z) is of infinite order, and so the conventional proof does
not work6. But one may still show the following theorem, which was independently
proven by Phillips and Sarnak [40].

Theorem 2.11. ([S24]) Let M be a closed surface of constant negative curvature
with genus g. Then

π(x, α) ∼ (g − 1)g ex

xg+1
(x ↑ ∞).

The key to its proof lies in the following properties of the geometric L-function

L(s, χ) =
∏
p

(1 − χ(p)e−sℓ(p))−1,

where χ is a unitary character of H1(M,R).

(1) L(s, χ) is analytically continued to the whole complex plane as a meromorphic
function.

(2) If χ is not a trivial character 1, then L(s, χ) is holomorphic in Re s ≥ 1.
(3) L(s,1) has a simple unique pole at s = 1 in Re s ≥ 1.
(4) L(s, χ) has no zeros in Re s ≥ 1.
(5) The poles of L(s, χ) in Re s > 0 are

s =
1
2
±

√
1
4
− λi(χ) (i = 0, 1, 2, . . .),

where λ0(χ) ≤ λ1(χ) ≤ · · · are eigenvalues of the Laplacian (twisted Laplacian) ∆χ

acting on sections of the flat line bundle associated with χ.

These properties are also derived from those of the Selberg zeta function.
Crucial in the discussion is the fact that λ(1) = 0 is simple, and that λ(χ) = 0

if and only if χ = 1. Thus λ0(χ) is simple and depends smoothly on χ whenever
χ is in a small neighborhood of 1. A perturbation technique allows us to compute
the Hessian of λ0(χ) at χ = 1 as

6A straightforward analogue of Tchebotarev’s density theorem, a generalization of the Dirichlet
theorem to arbitrary finite Galois extensions, can be proven without any difficulty ([S62]).
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(2.10) (Hessλ0)(ω, ω) =
8π2

vol(M)

∫
M

∥ω∥2,

where ω is a harmonic 1-form on M . Put J(M) = H1(M,R)/H1(M,Z) which is
identified with the group of unitary characters and equipped with the flat metric
induced from L2-norm on the space of harmonic 1-forms. Consider

Fα(s) = −
∫

J(M)

χ(−α)
(
− d

ds

)g L′(s, χ)
L(s, χ)

dχ,

where dχ is the normalized Haar measure. On the one hand, we have, in view of
orthogonal relations of characters,

Fα(s) =
∑
k=1

k[p]=α

∑
p

kgℓ(p)g+1e−kℓ(p).

On the other hand, if we put

f0(χ) =
1
2
(
1 +

√
1 − 4λ0(χ)

)
,

then we find

(2.11) Fα(s) = −
∫

V

χ(−α)
(
− d

ds

)g(
− 1

s − f0(χ)

)
dχ + h(s),

where V is a small neighborhood of 1, and h(s) is holomorphic in Re s ≥ 1.
Applying the Morse Lemma to the function f0, and estimating the integral in
(2.11), we conclude that there is a locally integrable function h(t) with∣∣∣Fα(s) − (g − 1)g

s − 1

∣∣∣ ≤ h(t) (s = 1 + ϵ +
√−1t)

for a small positive ϵ. Finally applying a version of Ikehara’s Tauberian theorem,
we obtain Theorem 2.11.

Sunada says that the key idea of the proof came up when he was discussing the
problem with Atsushi Katsuda inside a bullet train (Shinkansen) on their way to
the Taniguchi Symposium held at Katata in 1985. Just as Sunada explained what
he had wanted for the function Fα, Katsuda said ”It seems OK if the Hessian of
λ0(χ) at χ = 1 is positive definite.” This is actually the end of the proof !

After completing the paper [S24], Sunada and Katsuda extended the above result
to the case of a manifold with variable negative curvature. They knew that, for this
sake, it was indispensable to go over to the theory of dynamical systems. In fact,
a prime closed geodesic is identified with a closed (periodic) orbit of the geodesic
flow. Therefore it is natural to consider the counting problem of closed orbits of a
general dynamical system. The most appropriate set-up is the dynamical systems
of Anosov type. Indeed, a dynamical analogue of the prime number theorem has
been known in such a set-up (W. Parry and M. Pollicott [38]).

The precise set-up is described as follows. Let {ϕt} be a smooth, transitive,
weakly mixing Anosov flow on a compact manifold X. Given a homology class
α ∈ H1(X,Z), we consider the counting function π(x, α) defined in the same way
as before where, in this turn, ℓ(p) is the period of a closed orbit p. We denote
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by h the topological entropy and by m the (unique) invariant measure on X with
maximal entropy. Define the winding cycle Φ, a linear functional on H1(X,R), by

Φ([ω]) =
∫

X

〈Z, ω〉dm,

where ω is a closed 1-form, and Z is the vector field generating {ϕt}. We also intro-
duce the covariance form δ, a positive semi-definite quadratic form on H1(X,R),
by setting

δ([ω], [ω]) = lim
t→∞

∫
X

dm(x)
( ∫ t

0

〈Z, ω〉ϕτ (x)dτ − tΦ([ω])
)2

.

It is checked that, if Φ vanishes (this is the case for geodesic flows), then δ is positive
definite so that it induces a flat metric on J(X) = H1(X,R)/H1(X,Z). We denote
by vol

(
J(X)

)
the volume with respect to this metric.

The following is the main theorem that Sunada and Katsuda proved after an
exchange of a bunch of letters between IHES and Okayama University (e-mail was
not yet available at that time).

Theorem 2.12. [S27] If Φ vanishes, then

π(x, α) ∼ (2π)−b/2vol
(
J(X)

)−1
h−1 ehx

x(b/2)+1
(b = rank H1(X,Z)).

The idea of the proof is almost the same as the case of surfaces of constant
negative curvature except for the use of twisted Laplacians. They made use of a
twisted version of what is called the Ruelle operator instead of twisted Laplacians,
which is defined in terms of symbolic dynamics. Refinements and generalizations
have been developed by M. Pollicott, R. Sharp, N. Anantharaman and Motoko
Kotani. (see [45] and [30] for instance).

In connection with the existence problem of closed geodesics in a homology class,
it is worthwhile to point out that, if there is no closed geodesics homologous to
zero in an n-dimensional compact Riemannian manifold M , then M has the same
homotopy type as the torus Tn.

Another effective use of the twisted Laplacians ∆χ was made in the work [S47],
in which the long time behavior of the heat kernel was studied. It is known that
the heat kernel k(t, x, y) on a general Riemannian manifold X has the following
short time asymptotics

k(t, x, y) ∼ (4πt)−m/2 exp
(−d(x, y)2

4t

)
× (a0(x, y) + a1(x, y)t + a2(x, y)t2 + . . . ) (t ↓ 0),

where m = dimX and d(x, y) denotes the Riemannian distance between x and y
(here d(x, y) is supposed to be small enough). On the one hand, the coefficients
ai(x, y) have “local” nature in the sense that they are described by quantities defined
only on a neighborhood of the shortest geodesic joining x and y. On the other hand,
the behavior of k(t, x, y) as t goes to infinity have to be controlled by the global
properties of the manifold. Sunada observed that this is the case for abelian covering
manifolds over compact manifolds, and gave an explicit asymptotic formula in the
joint work [S42] with Motoko Kotani.

Let π : X −→ M be a regular covering map whose covering transformation
group Γ is free abelian, associated with which we have a surjective homomorphism
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of H1(M,Z) onto Γ and its extension to a surjective linear map of H1(M,R) =
H1(M,Z) ⊗R onto Γ ⊗ R. We introduce an inner product on H1(M,R) by iden-
tifying it with the space of harmonic 1-forms on M . The dual inner product is
equipped on H1(M,R) = Hom(H1(M,R),R). As the inner product on Γ⊗R, we
take up the quotient inner product derived from the inner product on H1(M,R).

To describe long time asymptotic behavior of the heat kernel on X, we need a
distance function different from the Riemannian one. For this sake, define the map
Φ̃Γ : X → Γ ⊗ R by using the paring of Γ ⊗ R and Hom(Γ,R) as

〈Φ̃Γ(x), ω〉 =
∫ x

x0

ω̃,

where ω ∈ Hom(Γ,R) ⊂ H1(M,R), and ω̃ denotes its lift to X. It should be
pointed out that the integral in the right-hand side does not depend on the choice
of a path joining x0 and x. We then put dΓ(x, y) = ∥Φ̃Γ(y) − Φ̃Γ(x)∥, where ∥ · ∥
denotes the Euclidean norm on Γ ⊗ R associated with the inner product defined
above.

Consider the flat torus Γ ⊗ R/Γ ⊗ Z with the flat metric induced from the
inner product above. Since Φ̃Γ(σx) = Φ̃Γ(x) + σ ⊗ 1 for σ ∈ Γ, we obtain a map
ΦΓ : M → Γ ⊗R/Γ ⊗ Z whose lift to X is Φ̃Γ. We call the flat torus Γ ⊗R/Γ ⊗ Z
the Γ-Albanese torus and denote it by AlbΓ. We also call ΦΓ the Γ-Albanese map.
The map ΦΓ is harmonic.

Let r = rank(Γ) (> 0) and

C(X) = vol(M)r/2−1vol(AlbΓ).

The following theorem tells that a homogenization takes place not only for the
heat kernel but also for the space itself as time t goes to infinity.

Theorem 2.13. [S47](Local Central Limit Theorem)

lim
t↑∞

(
(4πt)r/2k(t, x, y) − C(X) exp

(−vol(M)
4t

dΓ(x, y)2
))

= 0,

uniformly for all x, y ∈ X.

This also tells that, if B(t) is the Brownian motion on X, then the process
δΦ̃Γ

(
B(δ−1vol(M)t)

)
goes, in distribution, to the Brownian motion on the Eu-

clidean space Γ ⊗ R as δ goes to zero (see [33] for a probabilistic interpretation).
It is worthwhile to mention that the stochastic process Φ̃Γ

(
B(t)

)
on Γ ⊗ R is a

martingale since Φ̃Γ is a harmonic map.
One may establish an asymptotic expansion of k(t, x, y) as a byproduct.

Theorem 2.14. [S47]

k(t, x, y) ∼ (4πt)−r/2C(X)(1 + c1(x, y)t−1 + c2(x, y)t−2 + . . . ) (t ↑ ∞),

cl(x, y) ∼ 1
l!

(−vol(M)
4

)l
dΓ(x, y)2l (d(x, y) ↑ ∞).

The explicit forms of the coefficients ci(x, y) in Theorem 2.14 are complicated
in general. But one may still give the exact shape of c1(x, y) as follows: Let
ω1, . . . , ωr be an orthonormal basis of the space Hom(Γ,R)(⊂ H1(M.R)) and let
G : C∞(M) → C∞(M) be the Green operator.
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Theorem 2.15. [S47]

c1(x, y) = −vol(M)
4

dΓ(x, y)2 − vol(M)
2

(G(
r∑

i=1

|ωi|2)(π(x)) + G(
r∑

i=1

|ωi|2)(π(y)))

+
vol(M)

4

(∫
M

G(
r∑

i=1

|ωi|2)
r∑

i=1

|ωi|2 + 2
r∑

i,j=1

∫
M

G(〈ωi, ωj〉)〈ωi, ωj〉
)
.

This theorem is seemingly technical. However its discrete analogue turns out to
be useful in Sunada’s study of geometric crystallography as seen in Subsection 2.8.

For the proof of these theorems, the perturbation theory is again employed. Let
Lχ be the flat line bundle associated with χ. One may take an orthonormal basis
{sχ,k}∞k=0 of L2(Lχ) such that

(1) ∆χsχ,k = λk(χ)sχ,k,
(2) sχ,k is bounded and integrable with respect to χ,
(3) sχ,0 is smooth in χ around χ = 1 and s1,0 ≡ vol(M)−1/2.

The core of the proof is in the fact that the heat kernel k(t, x, y) on X is expressed
as

k(t, x, y) =
∞∑

k=0

∫
Γ̂

exp(−λk(χ)t)s̃χ,k(x)s̃χ,k(y)dχ,

where s̃χ,k is the lift of sχ,k, and dχ is the normalized Haar measure of Γ̂. A careful
analysis of this integral expression yields the theorems above (for Theorem 2.15,
one needs to know the coefficients in the Taylor expansion of λ0(χ) at χ = 1 up to
the 4th order).

The idea of twisted Laplacians has been developed further by Sunada for the
spectral study of general covering manifolds. The starting point of his study was
to understand a “mechanism” of the following result by R. Brooks [6]: Let M̃ be
the universal covering manifold of a compact Riemannian manifold M . The bottom
of the spectrum λ0(M̃) of the Laplacian ∆M̃ on M̃ is zero if and only if π1(M) is
amenable. Brooks’ idea is to employ the theory of integral currents and Fφlner’s
theorem on amenability.

The observation Sunada made is that ∆M̃ is unitarily equivalent to the twisted
Laplacian associated with the regular representation of π1(M). To explain this in
a more general set-up, we consider a regular covering map π : X −→ M over a
compact Riemannian manifold M with covering transformation group G. Given
a unitary representation ρ : G −→ U(H) on a Hilbert space H, we set ℓ2(ρ) =
{f ;X −→ H; f(σx) = ρ(σ)f(x),

∫
M

∥f∥2 < ∞}, which has a natural Hilbert
space structure. The twisted Laplacian ∆ρ is defined to be the restriction to ℓ2(ρ)
of the Laplacian acting on H-valued functions on X. Actually ∆ρ is the Laplacian
acting on sections of the flat vector bundle (possibly of infinite rank) associated
with ρ. One can establish the following estimates for the bottom of the spectrum
λ0(ρ) = inf σ(∆ρ) from below and above.

Theorem 2.16. ([S25])

(2.12) c1δ(ρ,1)2 ≤ λ0(ρ) ≤ c2δ(ρ,1)2.

Here c1, c2 are positive constants independent of ρ
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The quantity δ(ρ,1) is the Kazhdan distance between ρ and the trivial repre-
sentation 1 defined by δ(ρ,1) = inf{supg∈A ∥ρ(g)v − v∥; v ∈ H, ∥v∥ = 1}, where
A is a finite set of generators of G. The inequalities in (2.12), in particular, say
that λ0(ρ) = 0 if and only if δ(ρ,1) = 0. Applying this to the regular represen-
tation7 ρH : G −→ U

(
ℓ2(H\G)

)
associated with a subgroup H of G, we conclude

that λ0(∆H\X) = 0 if and only if δ(ρH ,1) = 0 since ∆ρH
is unitarily equivalent to

the discrete Laplacian ∆H\X on the quotient manifold H\X8. In particular, since
δ(ρG,1) = 0 if and only if G is amenable9, we find that λ0(∆X) = 0 if and only if
G is amenable.

Sunada says that he came up with the estimates (2.12) as a natural generalization

of (2.10). Indeed, the integral
∫

M

∥ω∥2 on the right-hand side of (2.10) gives rise

to the distance between χ and the trivial character.
In connection with Theorem 2.16, Sunada also established a relationship between

spectra and the notion of weak containment. As a corollary, he proved that, if
π : X −→ M is an amenable covering map, then σ(∆M ) ⊂ σ(∆X).

A discrete version of Theorem 2.16 was given in [S31]. The estimate from below
in this case is related to a construction of expanders, a model of efficient communi-
cation networks (see [S57]).

Sunada was greatly impressed by the beautiful relation between spectra and
group structure obtained by Robert Brooks in the paper mentioned above. He
remembers that Brooks was the first to read through his preprint on isospectral
manifolds. Sunada and Brooks had mutually influenced one another in many occa-
sions thereafter, until Brooks passed away in 2002.

As for the development of the spectral study of covering spaces towards a different
direction, one may refer to the paper by P. Kuchment and and Y. Pinchover [32].

The idea of “twisting” was used by M. A. Shubin and Sunada [S55] in their
rigorous derivation of the classical T 3-law for specific heat of crystals, a typical
thermodynamical quantity in solid state physics, which dates back to Einstein’s
pioneering work in 1907 and its subsequent refinement by Debye in 1912.

2.6. Ihara Zeta functions. In the mid-80s, Sunada started to study the zeta
function associated with a cocompact torsion-free discrete subgroup of PSL2(Qp),
which was originally introduced by Y. Ihara [28] in 1966 as an analogue of the
Selberg zeta function. In the background of Ihara zeta functions, there is a con-
sensus that the p-adic version of the real hyperbolic plane GL2(R)/(R× × O(2))
is GL2(Qp)/(Q×

p × GL2(Zp))10. The latter space is, as a special case of Bruhat-
Tits buildings, regarded as the set of vertices in the regular tree of degree p + 1,
and hence its compact quotient yields a finite regular graph. Thus it is natural to
interpret the Ihara zeta functions in terms of finite regular graphs.

According to Sunada, his idea in this study is simple. He says that he just
mimicked the geometric interpretation of Selberg zeta functions in terms of closed

7ρH is the induced representation IndG
H(1) of the trivial representation.

8This implies that, if ρH1 and ρH2 are equivalent for two subgroups H1, H2, then ∆H1\X and

∆H2\X are unitary equivalent. This gives another proof of Theorem 2.10.
9This is equivalent to that G has an invariant mean.
10GL2(Zp) and O(2) are maximal compact subgroups of GL2(Qp) and GL2(R), respectively.
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geodesics. Since he already had a geometric model of number theory, it was a sort
of exercise for him to carry out the idea.

Let P be the set of all prime cycles in a finite regular graph X of degree q + 1.
Here a prime cycle is an equivalence class of a closed path without backtracking
(we call closed geodesic for simplicity) which is not a power of another one. Two
closed paths are said to be equivalent if one is obtained by a cyclic permutation
of edges in another. In 1985, Sunada [S22], following the suggestion stated in the
preface of J.-P. Serre [47], expressed the Ihara zeta function as the Euler product

Z(u) =
∏
p∈P

(1 − u|p|)−1,

and gave a graph theoretic proof for the following determinant expression in terms
of the adjacency operator A

Z(u) = (1 − u2)(1−q)N/2 det
(
I − uA + qu2I

)−1
,

where N is the number of vertices. From this identity, it follows that the Ihara zeta
function of a regular graph X satisfies the Riemann Hypothesis if and only if every
eigenvalue µ of A satisfies |µ| ≤ 2

√
q except for µ = ±(q + 1). Graphs satisfying

the Riemann Hypothesis was later called Ramanujan graphs by A. Lubotzky, R.
Phillips and P. Sarnak [34].

Sunada’s observation was immediately generalized by K. Hashimoto and A. Hori
to the case of semi-regular graphs which correspond to p-adic semi-simple groups
of rank one. H. Bass [3] noticed that “regularity” of graphs is not necessary for a
determinant expression. Sunada in the collaborative work with Kotani [S48] used
the idea of discrete geodesic flows to give another proof of Bass’ result. Actually,
they interpreted the Ihara zeta function as the dynamical zeta function associated
with a symbolic dynamical system. An instructive proof together with a general-
ization to weighted graphs can be found in M. D. Horton, H. M. Stark and A. A.
Terras [27]. See also [37].

There have been various attempts to introduce Ihara zeta functions for infinite
graphs. See for instance D. Guido, T. Isola, and M. L. Lapidus [26], R. I. Grigorchuk
and A. Zuk [24].

2.7. Quantum ergodicity. Mathematics is developed through interactions and
communications among mathematicians. Sunada’s work on quantum ergodicity is
one of such examples. Around 1990, he read an article [53] of Steven Zelditch who
has been an appreciative reader of Sunada’s work. The subject of that paper is on
asymptotic behavior of eigenfunctions of Laplacians.

Before explaining Zelditch’s result and its generalization, let us recall an elemen-
tary fact ([S39]). Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · be eigenvalues of ∆ on a compact
Riemannian manifold M , and let {ϕk}∞k=0 be an orthonormal basis of eigenfunctions
with ∆ϕk = λkϕ. We then have the asymptotic formula

∞∑
k=0

e−λkt

∫
M

f(x)|ϕk(x)|2dx =
∫

M

f(x)k(t, x, x)dx

∼ (4πt)−n/2

∫
M

f(x)dx (n = dim M)
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as t ↓ 0. Applying the Hardy-Littlewood Tauberian theorem, we obtain

lim
λ→∞

φ(λ)−1
∑

λk≤λ

∫
M

f(x)|ϕk(x)|2dx = vol(M)−1

∫
M

f(x)dx,

where φ(λ) = |{k; λk ≤ λ}|. This identity holds without any condition on M . The
following tells that a dynamical property of the geodesic flow allows us to obtain a
refined limit formula.

Proposition 2.6. (Quantum ergodicity [53], [15]) If the geodesic flow is ergodic,
then there exists a subsequence {λkj

} of {λk} of full density such that for every
f ∈ C∞(M),

lim
j→∞

∫
M

f(x)|ϕkj (x)|2dx = vol(M)−1

∫
M

f(x)dx.

The meaning of “full density” is that

lim
λ→∞

|{kj ; λkj
≤ λ}|

|{k; λk ≤ λ}| = 1.

Ergodicity in classical mechanical system means that the time average of an
observable is equal to the space average. In his attempt to give a more natural
flavor of ergodicity to the limit theorem above, Sunada introduces the concept of
quantum ergodicity at infinite energy level.

To explain this in full generality, Sunada considers a positive self-adjoint elliptic
pseudo-differential operator Ĥ of order one with eigenvalues 0 ≤ e1 ≤ e2 ≤ · · · .
Put H = σ(Ĥ), the principal symbol of Ĥ, and denote by ϕt the Hamiltonian flow
on T ∗M\0 generated by the Hamiltonian H. A quantum observable is defined to
be a pseudo-differential operator A of order zero. The time evolution of A is given
by Ut

∗AUt where Ut = exp t
√−1Ĥ

To follow the definition of classical ergodicity, we define the time average up to
time t by

1
t

∫ t

0

Us
∗AUsds,

which converges weakly to A =
∑

e

PeAPe. Here e runs over the spectrum of Ĥ,

and Pe is the orthogonal projection onto the eigenspace Ve = {ϕ; Ĥϕ = eϕ}. We
also define the space average by

〈A〉 = lim
e↑∞

N(e)−1
∑

k
ek≤e

〈Aϕk, ϕk〉

where N(e) = |{k; ek ≤ e}| and {ϕk} is a complete orthonormal basis of eigenfunc-
tions of Ĥ with Ĥϕk = ekϕk. It is worthwhile to note that 〈A〉 is also expressed
as

〈A〉 = lim
e→∞

∫
S(V≤e)

〈Aϕ,ϕ〉dS(ϕ),

where dS is the normalized uniform measure on the unit sphere S(V≤e) of the space
V≤e =

∑
λ≤e Vλ.
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Now the quantum dynamical system {Ut} is said to be quantum ergodic (at
infinite energy level) if, for every observable A, the space average 〈A∗

A〉 exists, and

〈A∗
A〉 = |〈A〉|2.

This is an analogue of the criterion for the classical ergodicity which can be stated
as “〈|f |2〉 = |〈f〉|2 for every classical observable f”, where f is the time average,
and 〈f〉 is the space average.

Sunada [S43] proved the followings.

Theorem 2.17. The flow ϕt restricted to the hypersurface Σ1 = H−1(1) is ergodic
if and only if {Ut} is quantum ergodic, and

lim
t→∞〈At

∗At〉 = 〈A∗
A〉.

Theorem 2.18. (1) Quantum ergodicity is equivalent to the following near-diagonal
asymptotic.

lim
e→∞N(e)−1

∑
i,j

ei=ej≤e

∣∣〈Aϕi, ϕj〉
∣∣2 =

∣∣∣ ∫
Σ1

σ(A)dω1

∣∣∣2.
where ω1 is the normalized Liouville measure on Σ1.

(2) The condition limt→∞〈At
∗At〉 = 〈A∗

A〉 is equivalent to the following off-
diagonal asymptotic.

lim
δ↓0

lim sup
e↑∞

∑
i

ei≤e

∑
j

0<|ei−ej |≤δ

∣∣〈Aϕi, ϕj〉
∣∣2 = 0.

One can prove that if {Ut} is quantum ergodic (hence if ϕt is ergodic), then there
exists a subsequence {kj} of full density such that, for every pseudo-differential
operator A of order zero, the sequence 〈Aϕkj , ϕkj 〉 =

∫
M

Aϕkj ϕkj
∗ converges to∫

Σ1
σ(A)dω1, where ϕ∗ is the complex conjugate of ϕ.

Note that, for Ĥ = ∆1/2, we have H(x, ξ) = ∥ξ∥ so that, in this case, Σ1 is the
tangent unit sphere bundle, and ϕt is the geodesic flow.

The notion of quantum ergodicity at finite energy level was formulated by Tat-
suya Tate [48]. See also S. Zelditch [54] for an abstract set-up.

Sunada’s work of quantum ergodicity looks isolated from others. One can see,
however, that he always demonstrates high capabilities common to all his work to
push to the completion the original concepts.

2.8. Discrete geometric analysis. Sunada says that there are several sources
available for him to start with the study of discrete geometric analysis, a field
dealing with analysis on graphs by using geometric ideas. One is, as a matter of
course, Ihara zeta functions, where adjacency operators play a role of Laplacians.
Another is the symbolic dynamics used in the study of unstable dynamical systems
in which Ruelle operator on oriented graphs is an indispensable tool. There is one
more source, a bit quirky one. He wrote a book (in Japanese) on the elementary
aspects of area and volume including Dehn’s theorem on scissors congruence of
tetrahedra ([S53]). While he was writing the part on the area theory, this question
came to his mind: when a rectangle K is divided into finitely many squares, is the
ratio of two sides rational ? Sunada asked Prof. Koji Shiga, his supervisor when
he was in TIT, whether the answer is known. Shiga immediately told him that
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the problem was already solved by M. Dehn in 1902 affirmatively ([18]). Sunada
tried in vain to understand the proof, and so he tried to find his own proof. After
some trials, he found out that he could reduce the problem to a discrete version of
Poisson’s equation ∆f = g ([SB6]). This was not surprising to him since, as he was
also told by Shiga, Dehn’s theorem can be shown by an idea of electric circuits ([5]).
Note that the fundamental laws of electric circuits are also described in terms of
a discrete analogue of “the method of orthogonal projections” as H. Weyl already
observed in 1920s (see [S57]).

A much serious reason came up when he learned of a strange phenomenon for
the spectra of discrete magnetic Schrödinger operators defined on Z2:

(Hα1,α2ϕ)(m,n) =
1
4
[e

√−1α1nϕ(m + 1, n) + e−
√−1α1nϕ(m − 1, n)

+e
√−1α2mϕ(m,n + 1) + e−

√−1α2mϕ(m,n − 1)],

(α1, α2 ∈ R). The operator Hα1,α2 : ℓ2(Z2) −→ ℓ2(Z2) is bounded and self-adjoint.
The operator I −Hα1,α2 is regarded as a discretization of the following Schrödinger
operator with the uniform magnetic field B = (α2 − α1)dx ∧ dy

−( ∂

∂x
+
√−1α1y

)2 − ( ∂

∂y
+

√−1α2x
)2

,

whose spectrum consists only of eigenvalues of infinite multiplicity provided that
θ = α2 − α1 is not zero; say

{2|θ|(k +
1
2
)
; k = 0, 1, 2, . . .}.

On the other hand, the spectrum σ(Hα1,α2), a closed subset of [−1, 1], is quite
sensitive to the parameter θ = α2 − α1, which physicists call the magnetic flux. If
θ/2π is rational, then σ(Hα1,α2) has band structure, while if θ/2π is a Liouville
number, then σ(Hα1,α2) is a Cantor set.

Having this example in mind11, Sunada formulates a discrete analogue of general
Schrödinger operators with periodic magnetic fields ([S40]) and defines the notion
of magnetic flux. For this end, he starts with a realization Φ of a graph X in
a Riemannian manifold M (thus Φ is a piecewise smooth map of X into M). We
denote by V the set of vertices, and by E the set of all oriented edges of X. Both X
and M are supposed to have a free Γ-action, and Φ is supposed to be Γ-equivariant.
A magnetic field on M is a closed 2-form B. We assume that B is Γ-invariant,
and that B has a global vector potential (1-form) A so that B = dA (A is not
necessarily Γ-invariant). We also assume H1(M,R) = {0}. Define function fA on
E by

fA(e) = exp
(√−1

∫
e

Φ∗A
)
,

which is a U(1)-valued 1-cochain on X. Using the assumptions on B and M , we
find a function ϕσ on M for each σ ∈ Γ such that dϕσ = σ∗A − A. If we define
sσ : X −→ U(1) by sσ(x) = exp(−√−1ϕσ(Φ(x))), then

fA(σe) = fA(e)
sσ(o(e))
sσ(t(e))

,

11Sunada’s interest in geometry and analysis of magnetic fields is already seen in [S37] and
[S61].
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where o(e) (resp. t(e)) denotes the origin (resp. terminus) of e. This implies
that the cohomology class [fA] ∈ H1(X,U(1)) is Γ-invariant. We then define the
operator HfA

: ℓ2(X) −→ ℓ2(X) by

(HfA
ϕ)(x) =

1
deg x

∑
e∈Ex

fA(e)ϕ(t(e)),

where Ex = {e ∈ E; o(e) = x} and deg x = |Ex|. The space ℓ2(X) is the
Hilbert space consisting of functions ϕ on V such that

∑
x∈V |ϕ(x)|2deg x < ∞.

The operator I − HfA
is considered a discretization of the magnetic Schrödinger

operator ∇∗
A∇A, where ∇A = d − √−1A. (see [31]). One may easily check that

HfA
coincides with Hα1,α2 for the square lattice X = Z2 realized in M = R2, and

for the vector potential A = α1ydx + α2xdy (B = dA = (α2 − α1)dx ∧ dy).
Taking account of the discussion above, Sunada introduces an abstract set-up.

On the one hand, he begins with a regular covering graph X = (V, E) over a finite
graph X0 with covering transformation group Γ, and a 1-cochain f ∈ C1(X, U(1))
on X whose cohomology class [f ] ∈ H1(X, U(1)) is Γ-invariant. On the other hand,
he considers a random walk on X with a Γ-invariant transition probability p : E −→
R; namely p(σe) = p(e), p(e) ≥ 0,

∑
e∈Ex

p(e) = 1. Then he defines the operator
Hf : ℓ2(X) −→ ℓ2(X) by (Hfϕ)(x) =

∑
e∈Ex

p(e)f(e)ϕ(t(e)). If the random walk
is symmetric (reversible) in the sense that there is a Γ-invariant positive-valued
function m on V with p(e)m(o(e)) = p(e)m(t(e)) (e being the inverse edge of e),
then Hf is bounded self-adjoint operator acting in the Hilbert space ℓ2(X) = {ϕ :
V −→ C;

∑
x∈V |ϕ(x)|2m(x) < ∞}. He calls Hf a magnetic transition operator.

The notion of magnetic flux is introduced in this set-up as follows. From the
assumption that [f ] is Γ-invariant, it follows that there exists a U(1)-valued function
sσ on V such that f(σe) = f(e)sσ(t(e))sσ(o(e))−1. Put

Θf (σ, γ) =
sσ(γx)sγ(x)

sσγ(x)
.

It is observed that the right-hand side does not depend on x and Θf (σ, γ) is a group
2-cocycle of Γ with coefficients in U(1); that is,

Θf (σ1, σ2σ3)Θf (σ2, σ3) = Θf (σ1, σ2)Θf (σ1σ2, σ3).

Thus we obtain [Θf ] ∈ H2(Γ, U(1)). This is what Sunada calls the magnetic flux
class.

The following is a partial generalization of what we have mentioned for Hα1,α2 .

Theorem 2.19. [S40] If Γ is abelian and [Θf ] ∈ H2(Γ,Q/Z), then the spectrum
of Hf has band structure.

The magnetic flux class [Θf ] depends only on [f ] so that we have a homomor-
phism Θ : H1(X, U(1))Γ −→ H2(Γ, U(1)). In connection with this, we have the
following exact sequence

1 → H1(Γ, U(1))→H1(X0, U(1)) π∗
→ H1(X,U(1))Γ Θ→ H2(Γ, U(1)) → 1,

where H1(Γ, U(1))→H1(X0, U(1)) is the homomorphism induced from the sur-
jective homomorphism µ : π1(X0) −→ Γ associated with the covering map π :
X −→ X0. If X is the maximal abelian covering graph of X0, we observe that
H1(Γ, U(1))→H1(X0, U(1)) is an isomorphism so that H1(X, U(1))Γ Θ→ H2(Γ, U(1))
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is also an isomorphism. Therefore the magnetic flux class [Θf ] determines the uni-
tary equivalence class of Hf . This is not the case in general (an analogue of the
Aharonov-Bohm effect).

The study of magnetic transition operators stimulated Sunada’s interest in the
theory of random walks itself. His interest was multiplied when he was asked by a
Japanese probabilist about a geometric meaning of the constant which appears in
the local limit formula for classical lattices in plane, based on a few explicit values
computed in an ad hoc manner (see the table below). The local limit formula for
the simple random walk on a lattice X claims that there exists a positive constant
C(X) such that12

lim
n→∞(4πn)p(n, x, y)(deg y)−1 = C(X),

where p(n, x, y) is the n-step transition probability13. The constant C(X), which,
by definition, depends only on the graph structure of X, is surely an interesting
quantity in its own right.

X hexagonal triangular quadrilateral kagome

C(X) 2
√

3
√

3
3

2
2
√

3
3

The paper [S44] written jointly with Kotani and Tomoyuki Shirai gave an answer
to the question. They treated the local limit formula for a symmetric random walk
on abelian covering graphs X over finite graphs (which they call crystal lattices),
and gave an expression of C(X) in terms of a discrete analogue of Albanese tori
(see Theorem 2.22 below for another expression and [S45], [S60]).

In the article [S47] which we have mentioned in Subsection 2.5, Sunada and
Kotani established more precise asymptotics for p(n, x, y); namely, a local central
limit theorem and an asymptotic expansion. Actually the idea for the heat kernel
can be applied without almost any change to the discrete case. To state the asymp-
totics, what we need is a discrete version of harmonic theory described below14.

For simplicity, let us restrict ourselves to the case of simple random walks on
crystal lattices; that is, the case that p(e) = (deg o(e))−1. Let X be an abelian
covering graph over a finite graph X0 whose covering transformation group is Γ.
We assume that Γ is free abelian. As in the case of manifolds, we have a surjective
linear map of H1(X0,R) onto Γ⊗R and its transpose Hom(Γ,R) −→ H1(X0,R).
Recall that the first cohomology group H1(X0,R) is defined as C1(X0,R)/Image d,
where d : C0(X0,R) −→ C1(X0,R) is the coboundary map of the cochain groups
of X0 as a CW-complex.

12For simplicity, X is assumed to be non-bipartite from now on. In bipartite case, a minor

modification of statement is required.
13If we consider a d-dimensional lattice, we should replace 4πn by (4πn)d/2 in the limit formula.
14A partial generalization to “nilpotent crystal lattice” was established by Satoshi Ishiwata.
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Define the inner products on C0(X0,R) and C1(X0,R) respectively by

〈f1, f2〉 =
∑

x∈X0

f1(x)f2(x)deg x,(2.13)

〈ω1, ω2〉 =
1
2

∑
e∈E0

ω1(e)ω2(e),(2.14)

and let d∗ : C1(X0,R) −→ C0(X0,R) be the adjoint operator of the coboundary
operator d with respect to these inner products. Put

H1(X0) = {ω ∈ C1(X0,R); d∗ω = −(deg x)−1
∑

e∈(E0)x

ω(e) = 0}.

This is a discrete analogue of the space of “harmonic 1-forms” on X0. We now iden-
tify H1(X0,R) with H1(X0) via the canonical isomorphism H1(X0) onto H1(X0,R)
(the discrete Hodge-Kodaira theorem). Through this identification, we obtain an
inner product on H1(X0,R) and an inner product g0 on Γ ⊗ R.

Next define Φ : X −→ Γ ⊗ R by

〈Φ(x), ω〉 =
n∑

i=1

ω̃(ei), (ω ∈ Hom(Γ,R) ⊂ H1(X0,R)),

where c = (e1, . . . , en) is a path in X joining a reference point x0 and x, and ω̃ is the
pull-back of ω to X. We readily check that the piecewise linear map Φ interpolated
by line segments is a periodic realization of X in the sense that Φ(σx) = Φ(x) + σ.
We call Φ : X −→ (Γ ⊗ R, g0) the standard realization of X.

Now the materials are ready to state the asymptotics for p(n, x, y). Indeed,
instead of the Laplacian, we only have to treat the discrete Laplacian defined by
I −H1 (remember that H1 is just the ordinary transition operator for the random
walk). But we are not going to repeat almost the same statements here. Instead we
state a consequence of the results and a peculiar feature of the standard realization
Φ.

Theorem 2.20. [S50] Let ∥ · ∥ be the norm associated with the inner product g0.
Then

∥Φ(x) − Φ(y)∥2 = lim
n→∞ 2n

{p(n, x, x)
p(n, y, x)

+
p(n, y, y)
p(n, x, y)

− 2
}

.

This theorem, shown by means of the graph versions of Theorem 2.14 and 2.15,
says that the left-hand side does not depend on the choice of the “periodic lattice”
Γ since the right-hand side depends only on the graph structure. Furthermore,
we may conclude that the standard realization Φ has maximal symmetry in the
following sense.

Theorem 2.21. [S50] Let Aut(X) be the automorphism group of the crystal lattice
X as an abstract graph, and let Mg0 be the group of congruent transformations of
(Γ ⊗ R, g0). Then there exists a homomorphism ρ : Aut(X) −→ Mg0 such that
Φ(gx) = ρ(g)Φ(x) for g ∈ Aut(X).

In [S56], Sunada observed that there is a remarkable relation between the con-
stant C(X) appearing in the local limit formula and a certain energy of crystals
which characterizes the standard realization by a minimal principle.

We think of a crystal (a periodically realized crystal lattice) in Rd as a system
of harmonic oscillators, that is, each edge represents a harmonic oscillator whose
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energy is the square of its length. We shall define the energy of a crystal “per a unit
cell” in the following way. Given a bounded domain D in Rd, denote by E(D) the
sum of the energy of harmonic oscillators whose endpoints are in D, and normalize
it in such a way as

E0(D) =
E(D)

deg(D)1−2/dvol(D)2/d
,

where deg(D) is the sum of degree (valency) of vertices in D. Take an increasing
sequence of bounded domains {Di}∞i=1 with ∪∞

i=1Di = Rd (for example, a family of
concentric balls). The energy of the crystal (per a unit cell) is defined as the limit

Ener = lim
i→∞

E0(Di).

Indeed the limit exists under a mild condition on {Di}∞i=1, and Ener does not
depend on choices of {Di}∞i=1. We write Ener(Φ) for the energy when the crystal is
given by a periodic realization Φ. It is easy to observe that Ener(T ◦Φ) = Ener(Φ)
for every homothetic transformation T .

Theorem 2.22. [S60] For every periodic realization Φ of X in Rd, we have15

Ener(Φ) ≥ dC(X)−2/d.

The equality holds if and only if Φ is standard.

The proof of this remarkable inequality, available at present, is not carried out
by finding a direct link between the two quantities, but is based upon a canonical
expression of the standard realization, an analogue of Albanese maps in algebraic
geometry ([S50], [S60]).

Example 2.2. Figure 1 exhibits three kinds of periodic realizations of the hexagonal
lattice (the maximal abelian covering graph over the graph with two vertices joined
by three parallel edges). The figure (honeycomb) on the right side is its standard
realization.

Figure 1. Various periodic realizations of the hexagonal lattice

We also observe that the standard realizations of the triangular lattice and the
quadrilateral lattice are the regular triangular lattice and the regular square lattice,
respectively.

15This inequality is for non-bipartite crystal lattices. In bipartite case, the right-hand side
should be replaced by d(C(X)/2)−2/d.
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These examples tell that “a random walker on a crystal lattice X can detect the
most natural way for X to sit in space”.

The notions of Γ-Albanese tori and Γ-Albanese maps are defined in the same
manner as the continuous case. For the maximal abelian covering graphs, the Γ-
Albanese maps are closely related to the Abel-Jacobi maps introduced by R. Bacher,
P. De La Harpe, and T. Nagnibeda [2] (see [S60]).

The paper [S54] jointly written with Kotani handled large deviations of random
walks on crystal lattices which exhibit another aspect of asymptotics. The theory
of large deviations, in general, concerns the asymptotic behavior of remote tails of
sequences of probability distributions. For the simple random walk16 the problem
is to find an asymptotic behavior of the transition probability p(n, x, y) while y is
kept near the boundary ∂Bn(x) = {y ∈ V ; d(x, y) = n}, where d(x, y) is the graph
distance between x and y. Note that Bn(x) = {y ∈ V ; d(x, y) ≤ n} is the reachable
region of the random walker starting from x.

What they did first was to look at the shape of Bn(x) in space when n goes
to infinity. More precisely, by fixing a periodic realization Φ : X −→ Γ ⊗ R with
Φ(x) = 0, and considering the scaling-limit figure

D = lim
n→∞

1
n

Φ
(
Bn(x)

)
,

they observed that this coincides with the unit ball for the norm on Γ⊗R defined
by

∥ξ∥1 = inf{∥x∥1 | x ∈ H1(X0,R), µR(x) = ξ},
where ∥x∥1 denotes the ℓ1-norm of x as a 1-chain of the finite graph X0. To be
exact, the norm ∥ · ∥1 on C1(X0,R) is defined by

∥∥∥∑
e∈Eo aee

∥∥∥
1

=
∑

e∈Eo |ae|
(Eo ⊂ E is an orientation, i.e., Eo ∩ Eo = ∅ and Eo ∪ Eo = E). Thus it is
concluded that D is a convex polyhedron. The detailed combinatorial structure of
the convex polyhedron D in the case of the maximal abelian covering graph was
discussed in their paper.

The metric space Γ ⊗ R with the distance d∞(ξ1, ξ2) = ∥ξ1 − ξ2∥1 turns out to
coincide with the Gromov-Hausdorff limit of (X, n−1d) as n goes to infinity (M.
Gromov [25]).

Now what about the large deviation asymptotic of p(n, x, y) ? Their answer is
the following. There exists a convex function H on Γ⊗R (possibly assuming +∞)
such that, for ξ in the interior of D, and {yn}∞n=1 in V such that {Φ(yn) − nξ} is
bounded, we have

lim
n→∞

1
n

log p(n, x, yn) = −H(ξ),

and D = {ξ; H(ξ) < ∞}. The convex function H is explicitly described in terms
of the maximal positive eigenvalues µ0(ω) of the twisted transition operators17 Lω

defined by Lωf(x) =
∑

e∈E0x
p(e)eω(e)f

(
t(e)

)
(ω ∈ C1(X0,R)). More precisely, if

we think of µ0 as a function on H1(X0,R) using the fact that Lω+df = e−fLωef

16With a suitable modification, one may handle general symmetric and non-symmetric random
walks.

17Actually, Lω is linearly equivalent to the twisted operator associated with a real character
of H1(X0,Z).
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(f ∈ C0(X0,R)), then

H(ξ) = sup
x∈Hom(Γ,R)

[
(ξ,x) − log µ0(x)

]
(recall that Hom(Γ,R), the dual of Γ⊗R, is regarded as a subspace of H1(X0,R)).

See [S57] for an overview of discrete geometric analysis including Sunada’s own
work, which is based on his lectures given at Gregynog Hall, University of Wales
in 2007, as an activity of the Project “Analysis on graphs and its applications” in
the Isaac Newton Institute.

2.9. Strongly isotropic crystals (a diamond twin). A mathematician who
declares himself to be a geometer surely would like to follow the tradition of ancient
Greek mathematics; namely, the wish to classify beautiful figures as the Greek
mathematicians did for regular polyhedra. This has been Sunada’s desire since he
was studying the standard realizations of crystal lattices.

The crystal he first looked at is the diamond crystal since the diamond as a real
crystal is not only beautiful, but also has many interesting physical properties. He
had thought that there should be some peculiar feature in its microscopic structure,
and eventually found out that it possesses the following three properties:

(1) The diamond crystal has maximal symmetry in the sense that every au-
tomorphism of the diamond lattice as an abstract graph extends to a congruent
transformation.

(2) It is vertex-transitive in the sense that the automorphism group acts transi-
tively on the set of vertices.

(3) It has the strong isotropic property in the sense that every permutation of
the edges with the same endpoint extends to an automorphism (thus extends to a
congruent transformation which leaves the crystal invariant).

Sunada’s desire was to list all crystals having these properties. His answer is
stated in the following theorem.

Theorem 2.23. [S56] A crystal having the properties (1), (2), (3) must be either the
diamond crystal or the standard realization of the maximal abelian covering graph
over the complete graph K4.

It is worthy to note that the diamond crystal is the standard realization of the
maximal abelian covering graph over the graph with two vertices joined by 4 parallel
edges, and thus (1) is a consequence of Theorem 2.21. The crystal mentioned in
the above theorem, entitled to be called a diamond twin as a hypothetical crystal,
is what Sunada called the K4 crystal18. At the time when he was writing the paper
[S56], he did not know that it has been known in crystallography. Actually, there
is an interesting history about (re)discovery of this crystal.

It is believed that the crystallographer who discovered this crystal structure
for the first time is Laves (1923). In 1954, A. F. Wells mentioned the structure
and called it “Net 1f” in his article “The geometrical basis of crystal chemistry”
appeared in Acta Crystallography. It is not definite whether he knew of Laves’
work. In his book entitled “Three Dimensional Nets and Polyhedra” published in
1977, Wells renamed it “(10,3)-a”. H. S. M. Coxeter [17] called it “Laves’ graph of
girth ten”. M. O’Keeffe and his colleagues discussed this structure in some details

18The K4 crystal has chirality.
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and renamed it “srs” due to its chemical relevance in Acta Cryst. A59 (2003), 22.
Ludwig Danzer discovered the structure once again around 1994. John H. Conway
calls this crystal the “triamond” (see the book [16] published recently).

Figure 2. K4 crystal (the image created by Hisashi Naito)

The remarkable feature of the K4 crystal19 has recently attracted the attention
of researchers in the material science who are now evaluating its various physical
properties by first principles calculations ([S58], [S63]). For instance, their calcula-
tions show that, as an sp2 carbon crystal20, the K4 crystal has a meta-stable state,
and therefore suggest that there is possible pressure which may induce structural
phase transition from graphite to K4. It is also observed that valence electrons are
mainly localized along the bonding, which gives rise to the metallic property of this
carbon crystal.

> > > > > > > > > > > > > > > > > > >>

From our description of Sunada’s work, one can get some picture of how new
concepts and ideas were formulated and how elegant techniques of proofs were
generated, which therefore allows one to have a sense of the depth and beauty of
his findings. More importantly, we notice that, though the topics Sunada has been
concerned with are diverse, one can still find a consistent story in his study. His
new awareness of mathematical issues has always been emerging from his previous
work. This is one main reason why Sunada’s work is considered highly original.

To this day, it is indeed more than a dream comes true for Sunada. For, his
numerous contributions have had and will continue to make a significant impact on
discrete geometric analysis, spectral geometry, dynamical systems, probability, and
others in mathematics.

19Sunada’s observation was reviewed by three magazines; namely, Nature Materials, Science,

and Scientific American.
20The diamond is an sp3 carbon crystal.
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Once again, we congratulate Professor Sunada on his 60th birthday. May he
have many more good years to come.

Acknowledgement The authors are indebted to Professor Toshikazu Sunada for
providing them with a memorandum on his own work, and for answering many
questions they raised during the preparation of this article.
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Department of Mathematics, Okayama University, Okayama, Japan

Institute of Mathematics, University of the Philippines, Diliman, Philippines


