
MIMS Technical Report No.00019 (200904131)

QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS

SHIRO GOTO, SATORU KIMURA, TRAN THI PHUONG, AND HOANG LE TRUONG

Abstract. Goto numbers g(Q) = max{q ∈ Z | Q : mq is integral overQ} for certain
parameter ideals Q in a Noetherian local ring (A,m) with Gorenstein associated graded
ring G(m) =

⊕
n≥0 mn/mn+1 are explored. As an application, the structure of quasi-

socle ideals I = Q : mq (q ≥ 1) in a one-dimensional local complete intersection and
the question of when the graded rings G(I) =

⊕
n≥0 In/In+1 are Cohen-Macaulay

are studied in the case where the ideals I are integral over Q.
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1. Introduction and the main results

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let

Q be a parameter ideal in A and let q > 0 be an integer. We put I = Q : mq and

refer to those ideals as quasi-socle ideals in A. In this paper we are interested in the

following question about quasi-socle ideals I, which are also the main subject of the

researches [GMT, GKM, GKMP].

Question 1.1.

(1) Find the conditions under which I ⊆ Q, where Q stands for the integral closure of

Q.

(2) When I ⊆ Q, estimate or describe the reduction number

rQ(I) = min {n ∈ Z | In+1 = QIn}
Key words and phrases: Quasi-socle ideal, Cohen-Macaulay ring, associated graded ring, Rees alge-

bra, Fiber cone, integral closure, multiplicity, Goto number.
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of I with respect to Q in terms of some invariants of Q or A.

(3) Clarify what kind of ring-theoretic properties of the graded rings

R(I) =
⊕
n≥0

In, G(I) =
⊕
n≥0

In/In+1, and F(I) =
⊕
n≥0

In/mIn

associated to the ideal I enjoy.

The present research is a continuation of [GMT, GKM, GKMP] and aims mainly at

the analysis of the case where A is a complete intersection with dim A = 1. Following

W. Heinzer and I. Swanson [HS], for each parameter ideal Q in a Noetherian local ring

(A, m) we define

g(Q) = max{q ∈ Z | Q : mq ⊆ Q}

and call it the Goto number of Q. In the present paper we are also interested in

computing Goto numbers g(Q) of parameter ideals. In [HS] one finds, among many

interesting results, that if the base local ring (A, m) has dimension one, then there exists

an integer k ≫ 0 such that the Goto number g(Q) is constant for every parameter ideal

Q contained in mk. We will show that this is no more true, unless dim A = 1, explicitly

computing Goto numbers g(Q) for certain parameter ideals Q in a Noetherian local

ring (A, m) with Gorenstein associated graded ring G(m) =
⊕

n≥0 mn/mn+1. However,

before entering details, let us briefly explain the reasons why we are interested in Goto

numbers and quasi-socle ideals as well.

The study of socle ideals Q : m dates back to the research of L. Burch [B], where

she explored certain socle ideals of finite projective dimension and gave a beautiful

characterization of regular local rings (cf. [GH, Theorem 1.1]). More recently, A. Corso

and C. Polini [CP1, CP2] studied, with interaction to the linkage theory of ideals,

the socle ideals I = Q : m of parameter ideals Q in a Cohen-Macaulay local ring

(A, m) and showed that I2 = QI, once A is not a regular local ring. Consequently the

associated graded ring G(I) =
⊕

n≥0 In/In+1 and the fiber cone F(I) =
⊕

n≥0 In/mIn

are Cohen-Macaulay and so is the ring R(I) =
⊕

n≥0 In, if dim A ≥ 2. The first author

and H. Sakurai [GSa1, GSa2, GSa3] explored also the case where the base ring is not

necessarily Cohen-Macaulay but Buchsbaum, and showed that the equality I2 = QI

(here I = Q : m) holds true for numerous parameter ideals Q in a given Buchsbaum
2



local ring (A, m), whence G(I) is a Buchsbaum ring, provided that dim A ≥ 2 or that

dim A = 1 but the multiplicity e(A) of A is not less than 2. Thus socle ideals Q : m

still enjoy very good properties even in the case where the base local rings are not

Cohen-Macaulay.

However a more important fact is the following. If J is an equimultiple Cohen-

Macaulay ideal of reduction number one in a Cohen-Macaulay local ring, the associated

graded ring G(J) =
⊕

n≥0 Jn/Jn+1 of J is a Cohen-Macaulay ring and, so is the Rees

algebra R(J) =
⊕

n≥0 Jn of J , provided htA J ≥ 2. One knows the number and

degrees of defining equations of R(J) also, which makes the process of desingularization

of Spec A along the subscheme V(J) fairly explicit to understand. This observation

motivated the ingenious research of C. Polini and B. Ulrich [PU], where they posed,

among many important results, the following conjecture.

Conjecture 1.2 ([PU]). Let (A, m) be a Cohen-Macaulay local ring with dim A ≥ 2.

Assume that dim A ≥ 3 when A is regular. Let q ≥ 2 be an integer and let Q be a

parameter ideal in A such that Q ⊆ mq. Then

Q : mq ⊆ mq.

This conjecture was settled by H.-J. Wang [Wan], whose theorem says:

Theorem 1.3 ([Wan]). Let (A, m) be a Cohen-Macaulay local ring with d = dim A ≥ 2.

Let q ≥ 1 be an integer and Q a parameter ideal in A. Assume that Q ⊆ mq and put

I = Q : mq. Then

I ⊆ mq, mqI = mqQ, and I2 = QI,

provided that A is not regular if d ≥ 2 and that q ≥ 2 if d ≥ 3.

The research of the first author, N. Matsuoka, and R. Takahashi [GMT] reported a

different approach to the Polini-Ulrich conjecture. They proved the following.

Theorem 1.4 ([GMT]). Let (A, m) be a Gorenstein local ring with d = dim A > 0

and e(A) ≥ 3, where e(A) denotes the multiplicity of A. Let Q be a parameter ideal

in A and put I = Q : m2. Then m2I = m2Q, I3 = QI2, and G(I) =
⊕

n≥0 In/In+1

is a Cohen-Macaulay ring, so that R(I) =
⊕

n≥0 In is also a Cohen-Macaulay ring,

provided d ≥ 3.
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The researches [Wan] and [GMT] are performed independently and their methods

of proof are totally different from each other’s. The technique of [GMT] can not go

beyond the restrictions that A is a Gorenstein ring, q = 2, and e(A) ≥ 3. However,

despite these restrictions, the result [GMT, Theorem 1.1] holds true even in the case

where dim A = 1, while Wang’s result says nothing about the case where dimA = 1. As

is suggested in [GMT], the one-dimensional case is substantially different from higher-

dimensional cases and more complicated to control. This observation has led S. Goto,

S. Kimura, N. Matsuoka, and T. T. Phuong to the researches [GKM] (resp. [GKMP]),

where they have explored quasi-socle ideals in Gorenstein numerical semigroup rings

over fields (resp. the case where G(m) =
⊕

n≥0 mn/mn+1 is a Gorenstein ring and

Q = (xa1
1 , xa2

2 , · · · , xad
d ) (ai ≥ 1) are diagonal parameter ideals in A, that is x1, x2, · · · , xd

is a system of parameters in A which generates a reduction of the maximal ideal m). The

present research is a continuation of [GMT, GKM, GKMP] and the main purpose is to

go beyond the restriction in [GKMP] that the parameter ideals Q = (xa1
1 , xa2

2 , · · · , xad
d )

are diagonal and the assumption in [GKM] that the parameter ideals are monomial.

To state the main results of the present paper, let us fix some notation. Let A denote

a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let {ai}1≤i≤d be

positive integers and let {xi}1≤i≤d be elements of A with xi ∈ mai for each 1 ≤ i ≤ d

such that the initial forms {xi mod mai+1}1≤i≤d constitute a homogeneous system of

parameters in G(m). Hence mℓ =
∑d

i=1 xim
ℓ−ai for ℓ ≫ 0, so that Q = (x1, x2, · · · , xd)

is a parameter ideal in A. Let q ∈ Z, I = Q : mq,

ρ = a(G(m/Q)) = a(G(m)) +
d∑

i=1

ai, and ℓ = ρ + 1 − q,

where a(∗) denote the a-invariants of graded rings ([GW, (3.1.4)]). We put

ℓ1 = inf{n ∈ Z | mn ⊆ I} and ℓ2 = sup{n ∈ Z | I ⊆ Q + mn}.

With this notation our main result is sated as follows.

Theorem 1.5. Suppose that G(m) =
⊕

n≥0 mn/mn+1 is a Cohen-Macaulay ring and

consider the following four conditions:

(1) ℓ1 ≥ ai for all 1 ≤ i ≤ d.

(2) I ⊆ Q.
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(3) mqI = mqQ.

(4) ℓ2 ≥ ai for all 1 ≤ i ≤ d.

Then one has the implications (4) ⇒ (3) ⇒ (2) ⇒ (1). If G(m) is a Gorenstein ring,

then one has the equality I = Q + mℓ, so that ℓ1 ≤ ℓ ≤ ℓ2, whence conditions (1), (2),

(3), and (4) are equivalent to the following:

(5) ℓ ≥ ai for all 1 ≤ i ≤ d.

Consequently, the Goto number g(Q) of Q is given by the formula

g(Q) =

[
a(G(m)) +

d∑
i=1

ai + 1

]
− max{ai | 1 ≤ i ≤ d},

provided G(m) is a Gorenstein ring; in particular g(Q) = a(G(m)) + 1, if d = 1.

Let R = k[R1] be a homogeneous ring over a filed k with d = dim R > 0. We choose

a homogeneous system f1, f2, · · · , fd of parameters of R and put q = (f1, f2, · · · , fd).

Let M = R+. Then, applying Theorem 1.5 to the local ring A = RM , we readily get

the following, where g(q) = max{n ∈ Z | q : Mn is integral over q}.

Corollary 1.6. Suppose that R is a Gorenstein ring. Then

g(q) =

[
a(R) +

d∑
i=1

deg fi + 1

]
− max{deg fi | 1 ≤ i ≤ d}.

Hence g(q) = a(R) + 1, if d = 1.

Corollary 1.7. With the same notation as is in Theorem 1.5 let d = 1 and put a = a1.

Assume that G(m) is a reduced ring. Then the following conditions are equivalent to

each other.

(1) I ⊆ Q.

(2) mqI = mqQ.

(3) I ⊆ ma.

(4) ℓ2 ≥ a.

Later we will give some applications of these results. So, we are now in a position

to explain how this paper is organized. Theorem 1.5 will be proven in Section 2. Once

we have proven Theorem 1.5, exactly the same technique as is developed by [GKMP]
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works to get a complete answer to Question 1.1 in the case where G(m) is a Gorenstein

ring and Q is a parameter ideal given in Theorem 1.5, which we shall briefly discuss in

Section 2.

Sections 3 and 4 are devoted to the analysis of quasi-socle ideals in the ring A of

the form A = B/yB, where y is subsystem of parameters in a Cohen-Macaulay local

ring (B, n) of dimension 2. Here we notice that this class of local rings contains all

the local complete intersections of dimension one. In Section 3 (resp. Section 4) we

focus our attention on the case where B is not a regular local ring (resp. B is a

regular local ring), and our results are summarized into Theorems 3.1 and 4.1. The

proofs given in Sections 3 and 4 are based on the beautiful method developed by Wang

[Wan] in higher dimensional cases and similar to each other, but the techniques are

substantially different, depending on the assumptions that B is a regular local ring or

not. In Sections 3 and 4 we shall give a careful description of the reason why such a

difference should occur. In the final Section 5 we explore, in order to see how effectively

our theorems work in the analysis of concrete examples, the numerical semigroup rings

A = k[[t6n+5, t6n+8, t9n+12]] (⊆ k[[t]]), where n ≥ 0 are integers and k[[t]] is the formal

power series ring over a field k. Here we note

A ∼= k[[X, Y, Z]]/(Y 3 − Z2, X3n+4 − Y 3n+1Z) and

G(m) ∼= k[X, Y, Z]/(Y 3n+4, Y 3n+1Z, Z2),

where k[[X, Y, Z]] denotes the formal powers series ring over the field k. Hence A is a

local complete intersection with dim A = 1, whose associated graded ring G(m) is not

a Gorenstein ring but Cohen-Macaulay.

In what follows, unless otherwise specified, let (A, m) be Noetherian local ring with

d = dim A > 0. We denote by e(A) = e0
m(A) the multiplicity of A with respect to the

maximal ideal m. Let J ⊆ K (( A) be ideals in A. We denote by J the integral closure

of J . When K ⊆ J , let

rJ(K) = min {n ∈ Z | Kn+1 = JKn}

denote the reduction number of K with respect to J . For each finitely generated A-

module M let µA(M) and ℓA(M) be the number of elements in a minimal system of
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generators for M and the length of M , respectively. We denote by v(A) = ℓA(m/m2)

the embedding dimension of A.

2. The case where G(m) is a Gorenstein ring

The purpose of this section is to prove Theorem 1.5. Let A be a Noetherian local

ring with the maximal ideal m and d = dim A > 0. Let {ai}1≤i≤d be positive integers

and let {xi}1≤i≤d be elements of A such that xi ∈ mai for each 1 ≤ i ≤ d. Assume that

the initial forms {xi mod mai+1}1≤i≤d constitute a homogeneous system of parameters

in G(m). Let q ∈ Z and Q = (x1, x2, · · · , xd). We put I = Q : mq.

Let us begin with the following.

Proposition 2.1. Let ℓ3 ∈ Z and suppose that mℓ3 ⊆ Q. Then ℓ3 ≥ ai for all 1 ≤ i ≤ d.

Proof. Assume that mℓ3 ⊆ Q with ℓ3 ∈ Z. Then ℓ3 > 0. We want to show ℓ3 ≥
max{ai | 1 ≤ i ≤ d}. Assume the contrary and let x be an arbitrary element of m and

put y = xℓ3 . Then since y is integral over Q, we have an equation

yn + c1y
n−1 + · · · + cn = 0

with n > 0 and ci ∈ Qi for all 1 ≤ i ≤ n. We put a = max{ai | 1 ≤ i ≤ d} (hence

ℓ3 < a) and let a = au with 1 ≤ u ≤ d. Let B = A/(xi | 1 ≤ i ≤ d, i ̸= u) and n = mB.

Let ∗ denote the image in B. Then

yn + c1y
n−1 + · · · + cn = 0

in B. Therefore, because iℓ3 < ia and ci ∈ QiB = xi
uB ⊆ nia, we get ci ∈ niℓ3+1 for

all 1 ≤ i ≤ n. Consequently, ci yn−i ∈ niℓ3+1n(n−i)ℓ3 = nnℓ3+1, so that we have yn =

xnℓ3 ∈ nnℓ3+1. Hence, for every z ∈ n, the initial form z mod n2 of z is nilpotent in the

associated graded ring G(n) =
⊕

n≥0 nn/nn+1, which is impossible, because dim G(n) =

dim B = 1. Thus ℓ3 ≥ ai for all 1 ≤ i ≤ d. �

We put ρ = a(G(m/Q)) = a(G(m)) +
∑d

i=1 ai (cf. [GW, (3.1.6)]) and ℓ = ρ + 1 − q.

Let ℓ1 = inf{n ∈ Z | mn ⊆ I} and ℓ2 = sup{n ∈ Z | I ⊆ Q + mn}.
We are in a position to prove Theorem 1.5.
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Proof of Theorem 1.5. (4) ⇒ (3) We may assume ℓ2 < ∞. Then, since I ⊆ Q + mℓ2 ,

we have mqI ⊆ mqQ + mq+ℓ2 , whence mqI = mqQ + [Q ∩ mq+ℓ2 ]. Notice that

Q ∩ mq+ℓ2 =
d∑

i=1

xim
q+ℓ2−ai ,

because the initial forms {xi mod mai+1}1≤i≤d constitute a homogeneous system of

parameters in the Cohen-Macaulay ring G(m), and we have mq+ℓ2−ai ⊆ mq, since ℓ2 ≥ ai

for all 1 ≤ i ≤ d. Thus mqI = mqQ.

(3) ⇒ (2) See [NR, Section 7, Theorem 2].

(2) ⇒ (1) This follows from Proposition 2.1.

We now assume that G(m) is a Gorenstein ring. Then I = Q + mℓ by [Wat] (see

[O, Theorem 1.6] also), whence ℓ1 ≤ ℓ ≤ ℓ2, so that the implication (1) ⇒ (4) follows.

Therefore, I ⊆ Q if and only if ℓ = ρ + 1 − q ≥ ai for all 1 ≤ i ≤ d, or equivalently

q ≤

[
a(G(m)) +

d∑
i=1

ai + 1

]
− max{ai | 1 ≤ i ≤ d}.

Thus g(Q) =
[
a(G(m)) +

∑d
i=1 ai + 1

]
− max{ai | 1 ≤ i ≤ d}, so that

g(Q) = a(G(m)) + 1,

if d = 1. �

Remark 2.2 (cf. Example 5.3). Unless G(m) is a Gorenstein ring, the implication

(1) ⇒ (4) in Theorem 1.5 does not hold true in general, even though A is a com-

plete intersection and G(m) is a Cohen-Macaulay ring. For example, let V = k[[t]]

be the formal power series ring over a field k and look at the numerical semigroup

ring A = k[[t5, t8, t12]] ⊆ V . Then A ∼= k[[X,Y, Z]]/(Y 3 − Z2, X4 − Y Z), while

G(m) ∼= k[X, Y, Z]/(Y 4, Y Z, Z2), whence G(m) is a Cohen-Macaulay ring but not a

Gorenstein ring. Let Q = (t20) in A and let I = Q : m3; hence a1 = 4 and q = 3. Then

I = (t20, t22, t23, t26, t29) ⊆ m3 and I3 = QI2, so that I ⊆ Q, while I2 = QI + (t44) ⊆ Q

but t44 ̸∈ QI, since t24 ̸∈ I. Thus I2 = Q∩I2 ̸= QI, so that rQ(I) = 2 and the ring G(I)

is not Cohen-Macaulay. It is direct to check that m4 ⊆ I, m3 ̸⊆ I, and I ̸⊆ Q+m4 = m4

since t22 ∈ I but t22 ̸∈ m4. Thus ℓ1 = 4 and ℓ2 = 3.
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Proof of Corollary 1.7. Since Q ⊆ ma, we readily get the equivalence (3) ⇔ (4). We

also have ma = ma, because the ring G(m) is reduced. Hence Q ⊆ ma. Therefore

I ⊆ ma, if I ⊆ Q. Thus all conditions (1), (2), (3), and (4) are, by Theorem 1.5,

equivalent to each other. �

Thanks to Theorem 1.5, similarly as in [GKMP] we have the following complete

answer to Question 1.1 for the parameter ideals Q = (x1, x2, · · · , xd). We later need it

in the present paper. Let us note a brief proof.

Theorem 2.3. With the same notation as is in Theorem1.5 assume that G(m) is a

Gorenstein ring. Suppose that ℓ ≥ ai for all 1 ≤ i ≤ d. Then the following assertions

hold true.

(1) G(I) is a Cohen-Macaulay ring, rQ(I) = ⌈ q
ℓ
⌉, and a(G(I)) = ⌈ q

ℓ
⌉ − d, where

⌈ q
ℓ
⌉ = min{n ∈ Z | q

ℓ
≤ n}.

(2) F(I) is a Cohen-Macaulay ring.

(3) R(I) is a Cohen-Macaulay ring if and only if q ≤ (d − 1)ℓ.

(4) Suppose that q > 0. Then G(I) is a Gorenstein ring if and only if ℓ | q.

(5) Suppose that q > 0. Then R(I) is a Gorenstein ring if and only if q = (d− 2)ℓ.

To prove Proposition 2.3 we need the following. We skip the proof, since one can

prove it exactly in the same way as is given in [GKMP, Lemma 2.2].

Lemma 2.4 (cf. [GKMP, Lemma 2.2]). With the same notation as is in Theorem1.5

assume that G(m) is a Gorenstein ring. If ℓ ≥ ai for all 1 ≤ i ≤ d, then

Q ∩ m(n+1)ℓ+m ⊆ mmQIn

for all integers m,n ≥ 0.

Proof of Theorem 2.3. (1) Let n ≥ 0 be an integer. Then, since I = Q + mℓ, we get

In+1 = QIn + m(n+1)ℓ, so that

Q ∩ In+1 = QIn + [Q ∩ m(n+1)ℓ] ⊆ QIn,

because Q ∩ m(n+1)ℓ ⊆ QIn by Lemma 2.4. Therefore Q ∩ In+1 = QIn for all n ≥ 0, so

that G(I) is a Cohen-Macaulay ring and rQ(I) = min{n ∈ Z | In+1 ⊆ Q}. Let n ∈ Z
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and suppose that In+1 ⊆ Q. Then m(n+1)ℓ ⊆ Q, whence (n + 1)ℓ ≥ ρ + 1 (recall that

ρ = a(G(m/Q)). Therefore

n + 1 ≥ ρ + 1

ℓ
=

q + ℓ

ℓ
=

q

ℓ
+ 1,

so that n ≥ q
ℓ
. Conversely, if n ≥ q

ℓ
, then (n + 1)ℓ ≥ ( q

ℓ
+ 1)ℓ = q + ℓ = ρ + 1, whence

m(n+1)ℓ ⊆ Q, so that In+1 ⊆ Q. Thus rQ(I) = ⌈ q
ℓ
⌉.

Let Yi’s be the initial forms of xi’s with respect to I. Then Y1, Y2, · · · , Yd is a ho-

mogeneous system of parameters of G(I), whence it constitutes a regular sequence in

G(I). Therefore

G(I) ∼= G(I)/(Y1, Y2, · · · , Yd)

as graded A-algebras ([VV]), where I = I/Q. Hence a(G(I)) = a(G(I)) + d (cf. [GW,

(3.1.6)]). Thus a(G(I)) = ⌈ q
ℓ
⌉ − d, since a(G(I)) = rQ(I) = ⌈ q

ℓ
⌉ .

(2) By Lemma 2.4

Q ∩ mIn+1 = Q ∩ [mQIn + m(n+1)ℓ+1]

= mQIn + [Q ∩ m(n+1)ℓ+1]

⊆ mQIn.

Hence Q∩mIn+1 = mQIn for all n ≥ 0. Thus F(I) is a Cohen-Macaulay ring (cf. e.g.,

[CGPU, CZ]; recall that G(I) is a Cohen-Macaulay ring).

(3) The Rees algebra R(I) of I is a Cohen-Macaulay ring if and only if G(I) is a

Cohen-Macaulay ring and a(G(I)) < 0 ([GSh, Remark (3.10)], [TI]). By assertion (1)

the latter condition is equivalent to saying that ⌈ q
ℓ
⌉ < d, or equivalently q ≤ (d − 1)ℓ.

(4) Notice that G(I) is a Gorenstein ring if and only if so is the graded ring

G(I) = G(I)/(Y1, Y2, · · · , Yd).

Let r = rQ(I) (= ⌈ q
ℓ
⌉). Then G(I) is a Gorenstein ring if and only if (0) : I

i
= I

r+1−i

for all i ∈ Z (cf. [O, Theorem 1.6]). Therefore, if G(I) is a Gorenstein ring, we have

(0) : I = I
r

= mrℓ, where m = m/Q. On the other hand, since I = mℓ and q = ρ+1−ℓ,

we get

(0) : I = (0) : mℓ = mq
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by [Wat] (see [O, Theorem 1.6] also). Hence q = rℓ, because mrℓ = mq ̸= (0) and q > 0.

Thus ℓ | q and r = q
ℓ
. Conversely, suppose that ℓ | q; hence r = q

ℓ
. Let i ∈ Z. Then

since I = mℓ, we get I
r+1−i

= m(r+1−i)ℓ, while

(0) : I
i
= (0) : miℓ = mρ+1−iℓ

by [O, Theorem 1.6]. Hence (0) : I
i
= I

r+1−i
for all i ∈ Z, because

(r + 1 − i)ℓ = q + ℓ − iℓ = ρ + 1 − iℓ.

Thus G(I) is a Gorenstein ring, whence so is G(I).

(5) The Rees algebra R(I) of I is a Gorenstein ring if and only if G(I) is a Gorenstein

ring and a(G(I)) = −2, provided d ≥ 2 ([I, Corollary (3.7)]). Suppose that R(I) is

a Gorenstein ring. Then d ≥ 2 by assertion (2) (recall that q > 0). Since a(G(I)) =

rQ(I) − d = −2, thanks to assertions (1) and (4), we have q
ℓ

= rQ(I) = d − 2, whence

q = (d − 2)ℓ. Conversely, suppose that q = (d − 2)ℓ. Then d ≥ 3, since q > 0. By

assertions (1) and (4), G(I) is a Gorenstein ring with rQ(I) = q
ℓ

= d − 2, whence

a(G(I)) = (d − 2) − d = −2. Thus R(I) is a Gorenstein ring. �

We now discuss Goto numbers. For each Noetherian local ring A let

G(A) = {g(Q) | Q is a parameter ideal in A}.

We explore the value minG(A) in the setting of Theorem 1.5 with dim A = 1. For the

purpose the following result is fundamental.

Theorem 2.5 ([HS, Theorem 3.1]). Let (A, m) be a Noetherian local ring of dimension

one. Then there exists an integer k ≫ 0 such that g(Q) = minG(A) for every parameter

ideal Q of A contained in mk.

Thanks to Theorem 1.5 and Theorem 2.5, we then have the following.

Corollary 2.6. Let (A, m) be a Noetherian local ring with dim A = 1. Then minG(A) =

a(G(m)) + 1, if G(m) is a Gorenstein ring.

We close this section with the following.

Proposition 2.7. Let (A, m) be a Cohen-Macaulay local ring with dim A = 1. Then

v(A) ≤ 2 if and only if minG(A) = e(A) − 1.
11



Proof. Suppose that v(A) ≤ 2. Then G(m) is a Gorenstein ring with a(G(m)) =

e(A) − 2. Hence minG(A) = a(G(m)) + 1 = e(A) − 1 by Corollary 2.6. Conversely,

assume that minG(A) = e(A) − 1. To prove the assertion, enlarging the field A/m if

necessary, we may assume that the field A/m is infinite (use Theorem 2.5). Let x ∈ m

and assume that Q = (x) is a reduction of m. We put e = e(A) and q = g(Q). Then

q ≥ e − 1. Let B = A/Q and n = m/Q. Then Q : mq ⊆ Q ( A. Hence nq ̸= (0), so

that ni ̸= ni+1 for any 0 ≤ i ≤ q. Consequently, because q + 1 ≥ e and

e = ℓA(A/Q) =
∑
i≥0

ℓA(ni/ni+1) ≥
q∑

i=0

ℓA(ni/ni+1) ≥ q + 1,

we get nq+1 = (0) and ℓA(ni/ni+1) = 1 for all 0 ≤ i ≤ q. Hence ℓA(n/n2) ≤ 1, so that

v(A) ≤ 2. �

3. The case where A = B/yB and B is not a regular local ring

Let us now explore quasi-socle ideals in the ring A of the form A = B/yB, where

(B, n) is a Cohen-Macaulay local ring of dimension 2 and y is a subsystem of parameters

in B. Recall that this class of local rings contains all the local complete intersections

of dimension one.

In this section we assume that B is not a regular local ring and our goal is the

following.

Theorem 3.1. Let (B, n) be a Cohen-Macaulay local ring of dimension 2 and assume

that B is not a regular local ring. Let n, q be integers such that n ≥ q > 0. Let y ∈ nn

and assume that y is regular in B. We put A = B/yB and m = n/yB. Let Q be a

parameter ideal in A and put I = Q : mq. Then the following assertions hold true,

where m = n − q.

(1) mqI = mqQ, I ⊆ Q, and Q ∩ I2 = QI. Hence g(Q) ≥ n.

(2) I2 = QI, if one of the following conditions is satisfied.

(i) m ≥ q − 1;

(ii) m < q − 1 and Q ⊆ mq−m;

(iii) m > 0 and Q ⊆ mq−1.
12



(3) Suppose that B is a Gorenstein ring. Then I3 = QI2 and G(I) is a Cohen-

Macaulay ring, if one of the following conditions is satisfied.

(i) m < q − 1 and Q ⊆ mq−(m+1);

(ii) Q ⊆ mq−1.

We begin with the following.

Lemma 3.2. Let (B, n) be a Cohen-Macaulay local ring of dimension 2 and assume

that B is not a regular local ring. Let q, ℓ, and m be integers such that q ≥ ℓ > 0 and

m ≥ 0. Let x ∈ nℓ and yi ∈ n (1 ≤ i ≤ q + m) and assume that for all 1 ≤ i ≤ q + m,

the sequence x, yi is B-regular. Then we have

(x,

q+m∏
i=1

yi) : nq ⊆ (x) + nℓ+m.

Proof. Let α ∈ (x,
∏q+m

i=1 yi) : nq and write α·
∏q

i=1 yi = ux + v·
∏q+m

i=1 yi with u, v ∈ B.

Then, since

(α − v·
q+m∏

i=q+1

yi)·
q∏

i=1

yi ∈ (x)

and since x,
∏q

i=1 yi is a B-regular sequence, we get α− v·
∏q+m

i=q+1 yi ∈ (x). Let us write

α = wx + v·
q+m∏

i=q+1

yi

with w ∈ B. We want to show v ∈ nℓ. Let z ∈ nℓ and write

αz·
q−ℓ∏
i=1

yi = u′x + v′·
q+m∏
i=1

yi

with u′, v′ ∈ B. Then, since

αz·
q−ℓ∏
i=1

yi = wxz·
q−ℓ∏
i=1

yi + vz·
q−ℓ∏
i=1

yi·
q+m∏

i=q+1

yi,

we have

(vz − v′·
q∏

i=q−ℓ+1

yi)·
q−ℓ∏
i=1

yi·
q+m∏

i=q+1

yi ∈ (x).

Therefore, since the sequence x,
∏q−ℓ

i=1 yi·
∏q+m

i=q+1 yi is B-regular, we see vz ∈
(x,

∏q
i=q−ℓ+1 yi), so that v ∈ (x,

∏q
i=q−ℓ+1 yi) : nℓ, because z is an arbitrary element

in nℓ. We now notice that q = (x,
∏q

i=q−ℓ+1 yi) is a parameter ideal in B such that
13



q ⊆ nℓ. Then, since B is not a regular local ring, we have q : nℓ ⊆ nℓ, thanks to [Wan,

Theorem 1.1]. Thus v ∈ nℓ, whence α ∈ (x) + nℓ+m. �

Proposition 3.3. Let (B, n) be a Cohen-Macaulay local ring of dimension 2 and assume

that B is not a regular local ring. Let q, ℓ, and m be integers such that q ≥ ℓ > 0 and

m ≥ 0. Let x, y ∈ B be a system of parameters of B and assume that x ∈ nℓ and

y ∈ nq+m. Then

(1) (x, y) : nq ⊆ (x) + nℓ+m.

(2) nq· [(x, y) : nq] ⊆ nqx + (y).

Proof. (1) We notice that the ideal nk is, for each integer k > 0, generated by the set

Fk = {
k∏

i=1

zi | zi ∈ n and x, zi is a system of parameters of B for all 1 ≤ i ≤ k}.

Let α ∈ (x, y) : nq. Let z ∈ Fq+m and z′ ∈ Fq and write

zα = ux + vy,

z′α = u′x + v′y

with u, v, u′, v′ ∈ B. Then z′zα = z′ux + z′vy = zu′x + zv′y, whence y(z′v − zv′) ∈ (x),

so that z′v ∈ (x, z), because the sequence x, y is B-regular. Since z′ is an arbitrary

element of Fk which generates the ideal nq, we have

v ∈ (x, z) : nq ⊆ (x) + nℓ+m

by Lemma 3.2. Hence zα = ux + vy ∈ (x) + nℓ+my, so that

α ∈ [(x) + nℓ+my] : nq+m,

because z is an arbitrary element of Fq+m. Since y ∈ nq+m, we then have

yα = ρx + τy

with ρ ∈ B and τ ∈ nℓ+m. Therefore α − τ ∈ (x), so that α ∈ (x) + nℓ+m. Thus

(x, y) : nq ⊆ (x) + nℓ+m.

(2) The ideal nq is generated by the set

F = {z ∈ nq | y, z is a system of parameters in B}.
14



Let α ∈ (x, y) : nq and z, z′ ∈ F . We write zα = ux + vy and z′α = u′x + v′y with

u, v, u′, v′ ∈ B. We want to show ux ∈ nqx. Since z′zα = z′ux + z′vy = zu′x + zv′y,

we have x(z′u − zu′) ∈ (y), whence z′u ∈ (z, y). Therefore u ∈ (z, y) : nq, whence

u ∈ (z) + nq+m, because (z, y) : nq ⊆ (z) + nq+m by assertion (1) (take x = z, and

ℓ = q). Thus ux ∈ (zx) + nq+mx ⊆ nqx, whence nq· [(x, y) : nq] ⊆ nqx + (y). �

We need also the following result to prove Theorem 3.1.

Proposition 3.4. Let (A, m) be a Gorenstein local ring with d = dim A > 0. Let Q be

a parameter ideal in A and q > 0 an integer. We put I = Q : mq. Then I3 = QI2 and

G(I) is a Cohen-Macaulay ring, if I ⊆ Q + mq−1 and mqI = mqQ.

Proof. We have mqI i = mqQi and Qi ∩ I i+1 = QiI for all i ≥ 1 (cf. [GMT, Corollary

2.3]). Therefore, since Q ∩ I2 = QI, we may assume that I2 ̸⊆ Q. Notice that

mI2 = mI·I ⊆ (Q + mq)·I ⊆ Q and we have I2 ⊆ Q : m. Hence Q : m = Q + I2,

because A is a Gorenstein ring. We similarly have mI3 ⊆ mI·I2 ⊆ (mQ + mq)·I2 =

mI2·Q + mqI2 ⊆ Q2, so that I3 ⊆ Q2 : m = Q·[Q : m] = Q2 + QI2. Therefore

I3 = [Q2 + QI2] ∩ I3 = [Q2 ∩ I3] + QI2 = Q2I + QI2 = QI2. Hence I3 = QI2, which

implies, because Q ∩ I2 = QI, that G(I) is a Cohen-Macaulay ring. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let Q = (x) with x ∈ n, where x denotes the image of x in A.

We put J = (x, y) : nq; hence I = JA. We have by Proposition 3.3 that J ⊆ (x)+nm+1

and nqJ ⊆ nqx + (y) (take ℓ = 1). Hence mqI = mqQ, so that I ⊆ Q (cf. [NR]).

Let α ∈ Q ∩ I2 and write α = xβ with β ∈ A. Then, for all γ ∈ mq, we have

αγ = x·βγ ∈ mqI2 ⊆ Q2 = (x2), so that βγ ∈ (x) = Q. Therefore β ∈ Q : mq = I,

whence α = xβ ∈ QI. Thus Q ∩ I2 = QI, which proves assertion (1).

If m ≥ q − 1, we have J ⊆ (x) + nm+1 ⊆ (x) + nq, whence I ⊆ Q + mq. Therefore

I2 ⊆ Q, so that I2 = QI by assertion (1). Suppose that m < q − 1 and Q ⊆ mq−m. We

choose the element x so that x ∈ nq−m. Then, taking ℓ = q − m, by Proposition 3.3

(1) we get J = (x, y) : nq ⊆ (x) + nq. Hence I ⊆ Q + mq. Thus I2 = QI. Suppose now

that m > 0 and Q ⊆ mq−1. To show I2 = QI, we may assume by condition (ii) that
15



m < q − 1. Then Q ⊆ mq−m, since Q ⊆ mq−1 and m > 0. Hence I2 = QI. This proves

assertion (2).

Let us consider assertion (3). Suppose that B is a Gorenstein ring and assume

that condition (i) is satisfied. We choose the element x so that x ∈ nq−(m+1). Then

J = (x, y) : nq ⊆ (x) + nq−1 (take ℓ = q − (m + 1)), whence I ⊆ Q + mq−1, so

that the result follows from Proposition 3.4. Assume that condition (ii) is satisfied.

By assertion (2) we may assume that m < q − 1. Then, since mq−1 ⊆ mq−(m+1), we

have Q ⊆ mq−(m+1), so that condition (i) is satisfied, whence the result follows. This

completes the proof of Theorem 3.1. �

4. The case where A = B/yB and B is a regular local ring

Similarly as in Section 3, we explore quasi-socle ideals in the ring A of the form

A = B/yB, where (B, n) is a regular local ring of dimension 2 and y is a subsystem of

parameters in B; hence v(A) ≤ 2 and minG(A) = e(A) − 1 (Proposition 2.7).

Our goal of this time is the following.

Theorem 4.1. Let (B, n) be a regular local ring of dimension 2. Let n, q be integers

such that n > q > 0 and put m = n − q. Let 0 ̸= y ∈ nn and put A = B/yB and

m = n/yB. Let Q be a parameter ideal in A and put I = Q : mq. Then the following

assertions hold true.

(1) mqI = mqQ, I ⊆ Q, and Q ∩ I2 = QI.

(2) I2 = QI, if one of the following conditions is satisfied.

(i) m ≥ q;

(ii) m < q and Q ⊆ mq−(m−1).

(3) I3 = QI2 and the ring G(I) is Cohen-Macaulay, if one of the following condi-

tions is satisfied.

(i) m < q and Q ⊆ mq−m;

(ii) Q ⊆ mq−1.

Our proof of Theorem 4.1 is, this time, based on the following.
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Proposition 4.2. Let (B, n) be a regular local ring of dimension 2 and let x, y be a

system of parameters of B. Let q, ℓ > 0 and m ≥ 0 be integers such that q + 1 ≥ ℓ and

assume that x ∈ nℓ and y ∈ nq+m. Then the following assertions hold true.

(1) (x, y) : nq ⊆ (x) + nℓ+m−1.

(2) Suppose that m > 0. Then nq· [(x, y) : nq] ⊆ nqx + (y).

Proof. (1) Enlarging the field B/n if necessary, we may assume that the field B/n is

infinite. Let G(n) =
⊕

n≥0 nn/nn+1 denote the associated graded ring of B. Then G(n)

is the polynomial ring with two indeterminates over B/n. For each element 0 ̸= f ∈ B

let on(f) = max{n ∈ Z | y ∈ nn} and let f ∗ = f mod non(f)+1 be the initial form of f ;

hence f ∗ is G(n)-regular. For each integer k > 0, the ideal nk is generated by the set

Fk = {z ∈ nk | z ∈ nk\nk+1 and x∗, z∗ is a homogeneous system of parameters in G(n)}.

Now let α ∈ (x, y) : nq, z ∈ Fq+m, and z′ ∈ Fq. Then zα = ux+ vy and z′α = u′x+ v′y.

for some u, v, u′, v′ ∈ B. Hence, because the sequence x, y is B-regular, comparing

two expressions of z′zα, we get z′v ∈ (x, z), whence v ∈ (x, z) : nq. Recall now that

(x, z) : nq = (x, z) + nℓ′ with

ℓ′ = [a(G(n/(x, z))) + 1] − q

= [a(G(n)/(x∗, z∗)) + 1] − q

= [a(G(n)) + on(x) + on(z)) + 1] − q

≥ [(−2) + ℓ + (q + m) + 1] − q = ℓ + m − 1

(cf. [Wat]; see [O, Theorem 1.6] also), where a(∗) denotes the a-invariant of the corre-

sponding graded ring ([GW, (3.1.4)]). Therefore

zα = ux + vy ∈ (x) + (zy) + nℓ′y ⊆ (x) + nℓ+m−1y,

because ℓ′ ≥ ℓ+m−1 and z ∈ nq+m with q ≥ ℓ−1. Hence α ∈ [(x)+nℓ+m−1y] : nq+m, so

that αy ∈ (x)+nℓ+m−1y, whence α ∈ (x)+nℓ+m−1, since the sequence x, y is B-regular.

Thus (x, y) : nq ⊆ (x) + nℓ+m−1.

(2) The ideal nq is generated by the set F = {z ∈ nq | y, z is a B-regular sequence}.
Let α ∈ (x, y) : nq and z, z′ ∈ F . Then zα = ux + vy and z′α = u′x + v′y for some
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u, v, u′, v′ ∈ B. We want to show that zα ∈ nqx + (y). Because the sequence y, x is B-

regular, comparing two expressions of z′zα, we get z′u ∈ (z, y), whence u ∈ (z, y) : nq.

Notice now that (z, y) : nq ⊆ (z) + nq+m−1 by assertion (1) (take x = z and q = ℓ).

Then

zα = ux + vy ∈ (zx) + nq+m−1x + (y) ⊆ nqx + (y),

since m > 0, whence we have nq· [(x, y) : nq] ⊆ nqx + (y). �

Our proof of Theorem 4.1 is now similar to that of Theorem 3.1. We briefly note it.

Proof of Theorem 4.1. Let Q = (x) with x ∈ n, where x denotes the image of x in A.

Let J = (x, y) : nq. Then by Proposition 4.2 that J ⊆ (x) + nm and nqJ ⊆ nqx + (y)

(take ℓ = 1). Hence mqI = mqQ, so that I ⊆ Q. We have Q ∩ I2 = QI exactly for the

same reason as is in Proof of Theorem 3.1.

To see assertion (2), suppose that m ≥ q. Then J ⊆ (x) + nq, whence I ⊆ Q + mq.

Therefore I2 ⊆ Q, so that I2 = QI by assertion (1). Suppose that m < q − 1 and

Q ⊆ mq−m+1. We choose the element x so that x ∈ nq−m+1. Then, taking ℓ = q−m+1,

by Proposition 4.2 (1) we get J = (x, y) : nq ⊆ (x) + nq. Hence I ⊆ Q + mq, so that

I2 ⊆ Q, whence I2 = QI.

Suppose that condition (i) in assertion (3) is satisfied. We choose the element x so

that x ∈ nq−m. Then J = (x, y) : nq ⊆ (x)+nq−1 (take ℓ = q−m), whence I ⊆ Q+mq−1,

so that the result follows from Proposition 3.4. Suppose that condition (ii) in assertion

(3) is satisfied but m < q. Then Q ⊆ mq−m, since Q ⊆ mq−1 and m > 0. Hence the

result follows. �

Let us give a consequence of Theorem 4.1.

Corollary 4.3. Let (A, m) be a Cohen-Macaulay local ring with dim A = 1 and v(A) =

2. Let q > 0 be an integer such that e(A) > q > 0 and put m = e(A) − q. Then if

m ≥ q − 2, for every parameter ideal Q in A the following assertions hold true, where

I = Q : mq.

(1) mqI = mqQ and rQ(I) ≤ 3.

(2) q = 3 and Q is a reduction of m, if rQ(I) = 3.

(3) G(I) is a Cohen-Macaulay ring.
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Proof. Let e = e(A). Passing to the m-adic completion of A, we may assume that

A = B/yB, where (B, n) is a regular local ring of dimension 2 and 0 ̸= y ∈ ne. Hence

mqI = mqQ by Theorem 4.1 (1). We must show that rQ(I) ≤ 3 and G(I) is a Cohen-

Macaulay ring. Thanks to Theorem 4.1 (2), we may assume m < q and Q ̸⊆ mq−m.

Hence m = q−2 or m = q−1. Let Q = (x) with x ∈ n, where ∗ denotes the image in A.

Then q−m ̸= 1 since x ̸∈ nq−m, whence m = q−2, that is e = 2q−2. Let n = (x, z) with

z ∈ B and let D = B/xB. Then D is a DVR. Let us write yD = zℓD with ℓ ≥ e > q and

we have (x, y) : nq = (x)+nℓ−q. If ℓ > e, then I = Q+mℓ−q ⊆ Q+me+1−q = Q+mq−1,

so that I2 = QI by Proposition 3.4. Assume that ℓ = e. Then x∗, y∗ is a homogeneous

system of parameters in G(n) with deg x∗ = 1 and deg y∗ = e, so that Q is a reduction

of m and I = Q + mℓ′ by [Wat], where

ℓ′ = a(G(m/Q)) + 1 − q

= [a(G(n)/(x∗, y∗)) + 1] − q

= [(−2) + (1 + e)] + 1 − q

= e − q

= m.

Therefore rQ(I) = ⌈ q
m
⌉ = ⌈ q

q−2
⌉, thanks to Theorem 2.3 (1). Hence, if rQ(I) ≥ 4, then

q
q−2

> 3, so that q < 3. This is impossible, since m = q − 2 > 0. Thus rQ(I) ≤ 3. We

similarly have q = 3, if rQ(I) = 3. �

Let 4 ≤ a < b be integers such that GCD(a, b) = 1 and let

H = ⟨a, b⟩ := {aα + bβ | 0 ≤ α, β ∈ Z}

be the numerical semigroup generated by a, b. Let A = k[[ta, tb]] (⊆ k[[t]]) be the

numerical semigroup ring of H and m = (ta, tb) the maximal ideal in A, where k[[t]] is

the formal power series ring over a field k. Then

A ∼= k[[X,Y ]]/(Xb − Y a),

where B = k[[X, Y ]] denotes the formal power series ring. Hence, applying Corollaries

2.7 and 4.3, we get the following.

Corollary 4.4. The following assertions hold true.
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(1) minG(A) = a − 1 ≥ 3.

(2) Let Q be a parameter ideal in A and put I = Q : m3. Then I4 = QI3 and G(I)

is a Cohen-Macaulay ring.

5. Examples and remarks

Let n ≥ 0 be an integer and put a = 6n + 5, b = 6n + 8, and c = 9n + 12. Then

0 < a < b < c and GCD(a, b, c) = 1. Let A = k[[ta, tb, tc]] ⊆ k[[t]], where k[[t]] denotes

the formal power series ring over a field k. Then

A ∼= k[[X, Y, Z]]/(Y 3 − Z2, X3n+4 − Y 3n+1Z),

where k[[X, Y, Z]] denotes the formal powers series ring. Let m be the maximal ideal

in A. Then

G(m) ∼= k[X, Y, Z]/(Y 3n+4, Y 3n+1Z, Z2).

Hence A is a complete intersection with dim A = 1, whose associated graded ring G(m)

is not a Gorenstein ring but Cohen-Macaulay. We put

B = k[[X, Y, Z]]/(Y 3 − Z2)

and let y denote the image of X3n+4−Y 3n+1Z in B. Let n = (X, Y, Z)B be the maximal

ideal in B. Then B is not a regular local ring and A = B/yB. We have y ∈ n3n+2 and

y is a subsystem of parameters of B. Therefore by Theorem 3.1 (1), (2), and (3) we

have the following.

Example 5.1. Let 0 < q ≤ 3n + 2 be an integer and put m = (3n + 2) − q. Let Q be

a parameter ideal in A and put I = Q : mq. Then the following assertions hold true.

(1) mqI = mqQ, I ⊆ Q, and Q ∩ I2 = QI. Hence g(Q) ≥ 3n + 2.

(2) I2 = QI, if one of the following conditions is satisfied.

(i) m ≥ q − 1;

(ii) m < q − 1 and Q ⊆ mq−m;

(iii) m > 0 and Q ⊆ mq−1.

(3) I3 = QI2 and the ring G(I) is Cohen-Macaulay, if one of the following conditions

is satisfied.

(i) m < q − 1 and Q ⊆ mq−(m+1);
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(ii) Q ⊆ mq−1.

Remark 5.2. In Example 5.1 (3) the equality I2 = QI does not necessarily hold true.

For example, let n = 0; hence A = k[[t5, t8, t12]]. Let Q = (t5) in A and I = Q : m2.

Then I = (t5, t12, t16) ⊆ Q and rQ(I) = 2.

The assumption y ∈ nq in Theorem 3.1 is crucial in order to control quasi-socle ideals

I = Q : mq.

Example 5.3. In Example 5.1 take n = 0 and look at the local ring A = k[[t5, t8, t12]].

Hence

A ∼= k[[X, Y, Z]]/(Y 3 − Z2, X4 − Y Z).

Let 0 < s ∈ ⟨5, 8, 12⟩ := {5α+8β+12γ | 0 ≤ α, β, γ ∈ Z} and Q = (ts) in A, monomial

parameters. Let us consider the quasi-socle ideal I = Q : m3. Then we always have

I ⊆ Q, but G(I) is Cohen-Macaulay (resp. the equality m3I = m3Q holds true) if and

only if s ∈ {5, 10, 12, 15, 17} (resp. s ∈ {5, 12, 17}), or equivalently Q ∩ I2 = QI. Thus

the Cohen-Macaulayness in G(I) is rather wild, as we summarize in the following table.

s I m3I = m3Q G(I) is CM rQ(I)
5 m = (t5, t8, t12) Yes Yes 3
8 (t8, t10, t17) No No 3
10 (t10, t12, t13, t16) No Yes 2
12 (t12, t15, t18, t21) Yes Yes 1
13 (t13, t15, t16, t22) No No 2
15 (t15, t17, t18, t21, t24) No Yes 2
16 (t16, t18, t22, t25) No No 2
17 (t17, t20, t23, t24, t26) Yes Yes 1
18 (t18, t20, t21, t24, t27) No No 2

≥ 20 (ts, ts+2, ts+3, ts+6, ts+9) No No 2

Remark 5.4. To see that the results of Theorem 4.1 are sharp, the reader may consult

[GKM, GKMP] for examples of monomial parameter ideals Q = (ts) (0 < s ∈ H) in

numerical semigroup rings A = k[[H]]. See [GKMP, Proposition 10] for the case where

H = ⟨a, b⟩ with GCD(a, b) = 1. Here let us pick up the simplest ones.
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(1) The equality I2 = QI does not necessarily hold true. Let A = k[[t3, t4]], Q =

(t3), and I = Q : m2. Then I = m ⊆ Q and rQ(I) = 2.

(2) The reduction number rQ(I) could be not less than 3. Let A = k[[t4, t5]], Q =

(t4), and I = Q : m3. Then I = m ⊆ Q and rQ(I) = 3.

(3) The ring G(I) is not necessarily Cohen-Macaulay. Let A = k[[t5, t6]], Q = (t11),

and I = Q : m4. Then I = (t11, t12, t15) ⊆ Q and rQ(I) = 3. However, since

t36 ∈ Q ∩ I3 but t36 ̸∈ QI2, we have Q ∩ I3 ̸= QI2, so that G(I) is not a

Cohen-Macaulay ring.

Acknowledgements

The authors are most grateful to Prof. Irena Swanson for her excellent lectures at

the seminar of Meiji University and the 30-th Conference on Commutative Algebra in

Japan held at Saga. The present research is deep in debt from her inspiring suggestions

and discussions.

References

[B] L. Burch, On ideals of finite homological dimension in local rings, Proc. Camb. Phil. Soc., 64
(1968), 941–948.

[CP1] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra, 178 (1995),
224–238.

[CP2] A. Corso and C. Polini, Reduction number of links of irreducible varieties, J. Pure Appl.
Algebra, 121 (1997), 29–43.

[CGPU] A. Corso, L. Ghezzhi, C. Polini, and B. Ulrich, Cohen-Macaulayness of special fiber rings,
Comm. Algebra, 31 (2003), no. 8, 3713–3734.

[CZ] T. Cortadellas and S. Zarzuela, On the Cohen-Macaulay property of the fiber cone of ideals
with reduction number at most one, Commutative algebra, algebraic geometry, and compu-
tational methods (Hanoi, 1996), 215–222, Springer, Singapore, 1999.

[GH] S. Goto and F. Hayasaka Finite homological dimension and primes associated to integrally
closed ideals, Proc. Amer. Math. Soc., 130 (2002), 3159–3164.

[GKM] S. Goto, S. Kimura, and N. Matsuoka, Quasi-socle ideals in Gorenstein numerical semigroup
rings, J. Algebra, 320 (2008) 276–293

[GKMP] S. Goto, S. Kimura, and N. Matsuoka, T. T. Phuong, Quasi-socle ideals in local rings with
Gorenstein tangent cones, J. Commutative Algebra, (to appear).

[GMT] S. Goto, N. Matsuoka, and Ryo Takahashi, Quasi-socle ideals in a Gorenstein local ring, J.
Pure App. Algebra, 212, (2008) 969–980.

[GSa1] S. Goto and H. Sakurai, The equality I2 = QI in Buchsbaum rings, Rend. Sem. Mat. Univ.
Padova, 110 (2003), 25–56.

[GSa2] S. Goto and H. Sakurai, The reduction exponent of socle ideals associated to parameter ideals
in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan, 56 (2004), 1157–1168.

[GSa3] S. Goto and H. Sakurai, When does the equality I2 = QI hold true in Buchsbaum rings?,
Commutative Algebra, 115–139, Lect. Notes Pure Appl. Math., 244, 2006.

22



[GSh] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative
Algebra (Fairfax, Va., 1979), 201–231, Lecture Notes in Pure and Appl. Math., 68, Dekker,
New York, 1982.

[GW] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30(1978), 179–213.
[HS] W. Heinzer, I. Swanson, The Goto numbers of parameter ideals, J. Algebra 321 (2009) 152–

166.
[I] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102

(1986), 135–154.
[NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50

(1954), 145–158.
[O] A. Ooishi, On the Gorenstein property of the associated graded ring and the Rees algebra of

an ideal, J. Algebra, 115 (1993), 397–414.
[PU] C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann., 310 (1998), 631–651.
[TI] N. V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra, 17

(1989), 2893–2922.
[VV] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya. Math. J., 72 (1978),

93–101.
[Wan] H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z., 256 (2007), 749–756.
[Wat] J. Watanabe, The Dilworth number of Artin Gorenstein rings, Adv. in Math., 76 (1989),

194–199.

Department of Mathematics, School of Science and Technology, Meiji University,
1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: goto@math.meiji.ac.jp

Department of Mathematics, School of Science and Technology, Meiji University,
1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: skimura@math.meiji.ac.jp

Department of Information Technology and Applied Mathematics, Ton Duc Thang
University, 98 Ngo Tat To Street, Ward 19, Binh Thanh District, Ho Chi Minh City,
Vietnam

E-mail address: sugarphuong@gmail.com

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang
Quoc Viet Road, 10307 Hanoi, Vietnam

E-mail address: hltruong@math.ac.vn

23


