MIMS Technical Report No.00019 (200904131)

QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS

SHIRO GOTO, SATORU KIMURA, TRAN THI PHUONG, AND HOANG LE TRUONG

ABSTRACT. Goto numbers $g(Q) = \max\{q \in \mathbb{Z} \mid Q : \mathfrak{m}^q \text{ is integral over } Q\}$ for certain parameter ideals Q in a Noetherian local ring (A, \mathfrak{m}) with Gorenstein associated graded ring $G(\mathfrak{m}) = \bigoplus_{n \geq 0} \mathfrak{m}^n / \mathfrak{m}^{n+1}$ are explored. As an application, the structure of quasisocle ideals $I = Q : \mathfrak{m}^q \ (q \geq 1)$ in a one-dimensional local complete intersection and the question of when the graded rings $G(I) = \bigoplus_{n \geq 0} I^n / I^{n+1}$ are Cohen-Macaulay are studied in the case where the ideals I are integral over Q.

Contents

1.	Introduction and the main results	1
2.	The case where $G(\mathfrak{m})$ is a Gorenstein ring	7
3.	The case where $A = B/yB$ and B is not a regular local ring	12
4.	The case where $A = B/yB$ and B is a regular local ring	16
5.	Examples and remarks	20
Rei	ferences	22

1. INTRODUCTION AND THE MAIN RESULTS

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let Q be a parameter ideal in A and let q > 0 be an integer. We put $I = Q : \mathfrak{m}^q$ and refer to those ideals as quasi-socle ideals in A. In this paper we are interested in the following question about quasi-socle ideals I, which are also the main subject of the researches [GMT, GKM, GKMP].

Question 1.1.

(1) Find the conditions under which $I \subseteq \overline{Q}$, where \overline{Q} stands for the integral closure of Q.

(2) When $I \subseteq \overline{Q}$, estimate or describe the reduction number

$$\mathbf{r}_Q(I) = \min \{ n \in \mathbb{Z} \mid I^{n+1} = QI^n \}$$

Key words and phrases: Quasi-socle ideal, Cohen-Macaulay ring, associated graded ring, Rees algebra, Fiber cone, integral closure, multiplicity, Goto number.

²⁰⁰⁰ Mathematics Subject Classification: 13H10, 13A30, 13B22, 13H15.

of I with respect to Q in terms of some invariants of Q or A.

(3) Clarify what kind of ring-theoretic properties of the graded rings

$$\mathcal{R}(I) = \bigoplus_{n \ge 0} I^n, \ \mathcal{G}(I) = \bigoplus_{n \ge 0} I^n / I^{n+1}, \ \text{and} \ \mathcal{F}(I) = \bigoplus_{n \ge 0} I^n / \mathfrak{m} I^n$$

associated to the ideal I enjoy.

The present research is a continuation of [GMT, GKM, GKMP] and aims mainly at the analysis of the case where A is a complete intersection with dim A = 1. Following W. Heinzer and I. Swanson [HS], for each parameter ideal Q in a Noetherian local ring (A, \mathfrak{m}) we define

$$g(Q) = \max\{q \in \mathbb{Z} \mid Q : \mathfrak{m}^q \subseteq \overline{Q}\}$$

and call it the Goto number of Q. In the present paper we are also interested in computing Goto numbers g(Q) of parameter ideals. In [HS] one finds, among many interesting results, that if the base local ring (A, \mathfrak{m}) has dimension one, then there exists an integer $k \gg 0$ such that the Goto number g(Q) is constant for every parameter ideal Q contained in \mathfrak{m}^k . We will show that this is no more true, unless dim A = 1, explicitly computing Goto numbers g(Q) for certain parameter ideals Q in a Noetherian local ring (A, \mathfrak{m}) with Gorenstein associated graded ring $G(\mathfrak{m}) = \bigoplus_{n\geq 0} \mathfrak{m}^n/\mathfrak{m}^{n+1}$. However, before entering details, let us briefly explain the reasons why we are interested in Goto numbers and quasi-socle ideals as well.

The study of *socle* ideals $Q : \mathfrak{m}$ dates back to the research of L. Burch [B], where she explored certain socle ideals of finite projective dimension and gave a beautiful characterization of regular local rings (cf. [GH, Theorem 1.1]). More recently, A. Corso and C. Polini [CP1, CP2] studied, with interaction to the linkage theory of ideals, the socle ideals $I = Q : \mathfrak{m}$ of parameter ideals Q in a Cohen-Macaulay local ring (A, \mathfrak{m}) and showed that $I^2 = QI$, once A is *not* a regular local ring. Consequently the associated graded ring $G(I) = \bigoplus_{n\geq 0} I^n/I^{n+1}$ and the fiber cone $F(I) = \bigoplus_{n\geq 0} I^n/\mathfrak{m}I^n$ are Cohen-Macaulay and so is the ring $\mathcal{R}(I) = \bigoplus_{n\geq 0} I^n$, if dim $A \geq 2$. The first author and H. Sakurai [GSa1, GSa2, GSa3] explored also the case where the base ring is not necessarily Cohen-Macaulay but Buchsbaum, and showed that the equality $I^2 = QI$ (here $I = Q : \mathfrak{m}$) holds true for numerous parameter ideals Q in a given Buchsbaum local ring (A, \mathfrak{m}) , whence G(I) is a Buchsbaum ring, provided that dim $A \ge 2$ or that dim A = 1 but the multiplicity e(A) of A is not less than 2. Thus socle ideals $Q : \mathfrak{m}$ still enjoy very good properties even in the case where the base local rings are *not* Cohen-Macaulay.

However a more important fact is the following. If J is an equimultiple Cohen-Macaulay ideal of reduction number one in a Cohen-Macaulay local ring, the associated graded ring $G(J) = \bigoplus_{n\geq 0} J^n/J^{n+1}$ of J is a Cohen-Macaulay ring and, so is the Rees algebra $\mathcal{R}(J) = \bigoplus_{n\geq 0} J^n$ of J, provided $ht_A J \geq 2$. One knows the number and degrees of defining equations of $\mathcal{R}(J)$ also, which makes the process of desingularization of Spec A along the subscheme V(J) fairly explicit to understand. This observation motivated the ingenious research of C. Polini and B. Ulrich [PU], where they posed, among many important results, the following conjecture.

Conjecture 1.2 ([PU]). Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with dim $A \ge 2$. Assume that dim $A \ge 3$ when A is regular. Let $q \ge 2$ be an integer and let Q be a parameter ideal in A such that $Q \subseteq \mathfrak{m}^q$. Then

$$Q:\mathfrak{m}^q\subseteq\mathfrak{m}^q$$

This conjecture was settled by H.-J. Wang [Wan], whose theorem says:

Theorem 1.3 ([Wan]). Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $d = \dim A \ge 2$. Let $q \ge 1$ be an integer and Q a parameter ideal in A. Assume that $Q \subseteq \mathfrak{m}^q$ and put $I = Q : \mathfrak{m}^q$. Then

 $I \subseteq \mathfrak{m}^q, \quad \mathfrak{m}^q I = \mathfrak{m}^q Q, \quad \text{and} \quad I^2 = QI,$

provided that A is not regular if $d \ge 2$ and that $q \ge 2$ if $d \ge 3$.

The research of the first author, N. Matsuoka, and R. Takahashi [GMT] reported a different approach to the Polini-Ulrich conjecture. They proved the following.

Theorem 1.4 ([GMT]). Let (A, \mathfrak{m}) be a Gorenstein local ring with $d = \dim A > 0$ and $e(A) \geq 3$, where e(A) denotes the multiplicity of A. Let Q be a parameter ideal in A and put $I = Q : \mathfrak{m}^2$. Then $\mathfrak{m}^2 I = \mathfrak{m}^2 Q$, $I^3 = QI^2$, and $G(I) = \bigoplus_{n\geq 0} I^n/I^{n+1}$ is a Cohen-Macaulay ring, so that $\mathcal{R}(I) = \bigoplus_{n\geq 0} I^n$ is also a Cohen-Macaulay ring, provided $d \geq 3$. The researches [Wan] and [GMT] are performed independently and their methods of proof are totally different from each other's. The technique of [GMT] can not go beyond the restrictions that A is a Gorenstein ring, q = 2, and $e(A) \ge 3$. However, despite these restrictions, the result [GMT, Theorem 1.1] holds true even in the case where dim A = 1, while Wang's result says nothing about the case where dim A = 1. As is suggested in [GMT], the one-dimensional case is substantially different from higherdimensional cases and more complicated to control. This observation has led S. Goto, S. Kimura, N. Matsuoka, and T. T. Phuong to the researches [GKM] (resp. [GKMP]), where they have explored quasi-socle ideals in Gorenstein numerical semigroup rings over fields (resp. the case where $G(\mathfrak{m}) = \bigoplus_{n\ge 0} \mathfrak{m}^n/\mathfrak{m}^{n+1}$ is a Gorenstein ring and $Q = (x_1^{a_1}, x_2^{a_2}, \cdots, x_d^{a_d})$ ($a_i \ge 1$) are diagonal parameter ideals in A, that is x_1, x_2, \cdots, x_d is a system of parameters in A which generates a reduction of the maximal ideal \mathfrak{m}). The present research is a continuation of [GMT, GKM, GKMP] and the main purpose is to go beyond the restriction in [GKMP] that the parameter ideals are *monomial*.

To state the main results of the present paper, let us fix some notation. Let A denote a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let $\{a_i\}_{1 \le i \le d}$ be positive integers and let $\{x_i\}_{1 \le i \le d}$ be elements of A with $x_i \in \mathfrak{m}^{a_i}$ for each $1 \le i \le d$ such that the initial forms $\{x_i \mod \mathfrak{m}^{a_i+1}\}_{1 \le i \le d}$ constitute a homogeneous system of parameters in $G(\mathfrak{m})$. Hence $\mathfrak{m}^{\ell} = \sum_{i=1}^{d} x_i \mathfrak{m}^{\ell-a_i}$ for $\ell \gg 0$, so that $Q = (x_1, x_2, \cdots, x_d)$ is a parameter ideal in A. Let $q \in \mathbb{Z}$, $I = Q : \mathfrak{m}^q$,

$$\rho = \operatorname{a}(\operatorname{G}(\mathfrak{m}/Q)) = \operatorname{a}(\operatorname{G}(\mathfrak{m})) + \sum_{i=1}^{d} a_i, \text{ and } \ell = \rho + 1 - q_i$$

where a(*) denote the *a*-invariants of graded rings ([GW, (3.1.4)]). We put

$$\ell_1 = \inf\{n \in \mathbb{Z} \mid \mathfrak{m}^n \subseteq I\}$$
 and $\ell_2 = \sup\{n \in \mathbb{Z} \mid I \subseteq Q + \mathfrak{m}^n\}$

With this notation our main result is sated as follows.

Theorem 1.5. Suppose that $G(\mathfrak{m}) = \bigoplus_{n\geq 0} \mathfrak{m}^n/\mathfrak{m}^{n+1}$ is a Cohen-Macaulay ring and consider the following four conditions:

- (1) $\ell_1 \ge a_i \text{ for all } 1 \le i \le d.$
- (2) $I \subseteq \overline{Q}$.

- (3) $\mathfrak{m}^q I = \mathfrak{m}^q Q.$
- (4) $\ell_2 \ge a_i \text{ for all } 1 \le i \le d.$

Then one has the implications $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$. If $G(\mathfrak{m})$ is a Gorenstein ring, then one has the equality $I = Q + \mathfrak{m}^{\ell}$, so that $\ell_1 \leq \ell \leq \ell_2$, whence conditions (1), (2), (3), and (4) are equivalent to the following:

(5) $\ell \ge a_i \text{ for all } 1 \le i \le d.$

Consequently, the Goto number g(Q) of Q is given by the formula

$$g(Q) = \left[a(G(\mathfrak{m})) + \sum_{i=1}^{d} a_i + 1\right] - \max\{a_i \mid 1 \le i \le d\},\$$

provided $G(\mathfrak{m})$ is a Gorenstein ring; in particular $g(Q) = a(G(\mathfrak{m})) + 1$, if d = 1.

Let $R = k[R_1]$ be a homogeneous ring over a filed k with $d = \dim R > 0$. We choose a homogeneous system f_1, f_2, \dots, f_d of parameters of R and put $\mathbf{q} = (f_1, f_2, \dots, f_d)$. Let $M = R_+$. Then, applying Theorem 1.5 to the local ring $A = R_M$, we readily get the following, where $g(\mathbf{q}) = \max\{n \in \mathbb{Z} \mid \mathbf{q} : M^n \text{ is integral over } \mathbf{q}\}.$

Corollary 1.6. Suppose that R is a Gorenstein ring. Then

$$g(\mathbf{q}) = \left[a(R) + \sum_{i=1}^{d} \deg f_i + 1\right] - \max\{\deg f_i \mid 1 \le i \le d\}.$$
$$a(R) + 1, \text{ if } d = 1.$$

Hence $g(\mathbf{q}) = a(R) + 1$, if d = 1.

Corollary 1.7. With the same notation as is in Theorem 1.5 let d = 1 and put $a = a_1$. Assume that $G(\mathfrak{m})$ is a reduced ring. Then the following conditions are equivalent to each other.

(1) $I \subseteq \overline{Q}$. (2) $\mathfrak{m}^q I = \mathfrak{m}^q Q$. (3) $I \subseteq \mathfrak{m}^a$. (4) $\ell_2 \ge a$.

Later we will give some applications of these results. So, we are now in a position to explain how this paper is organized. Theorem 1.5 will be proven in Section 2. Once we have proven Theorem 1.5, exactly the same technique as is developed by [GKMP] works to get a complete answer to Question 1.1 in the case where $G(\mathfrak{m})$ is a Gorenstein ring and Q is a parameter ideal given in Theorem 1.5, which we shall briefly discuss in Section 2.

Sections 3 and 4 are devoted to the analysis of quasi-socle ideals in the ring A of the form A = B/yB, where y is subsystem of parameters in a Cohen-Macaulay local ring (B, \mathbf{n}) of dimension 2. Here we notice that this class of local rings contains all the local complete intersections of dimension one. In Section 3 (resp. Section 4) we focus our attention on the case where B is not a regular local ring (resp. B is a regular local ring), and our results are summarized into Theorems 3.1 and 4.1. The proofs given in Sections 3 and 4 are based on the beautiful method developed by Wang [Wan] in higher dimensional cases and similar to each other, but the techniques are substantially different, depending on the assumptions that B is a regular local ring or not. In Sections 3 and 4 we shall give a careful description of the reason why such a difference should occur. In the final Section 5 we explore, in order to see how effectively our theorems work in the analysis of concrete examples, the numerical semigroup rings $A = k[[t^{6n+5}, t^{6n+8}, t^{9n+12}]] (\subseteq k[[t]])$, where $n \ge 0$ are integers and k[[t]] is the formal power series ring over a field k. Here we note

$$A \cong k[[X, Y, Z]]/(Y^3 - Z^2, X^{3n+4} - Y^{3n+1}Z) \text{ and}$$
$$G(\mathfrak{m}) \cong k[X, Y, Z]/(Y^{3n+4}, Y^{3n+1}Z, Z^2),$$

where k[[X, Y, Z]] denotes the formal powers series ring over the field k. Hence A is a local complete intersection with dim A = 1, whose associated graded ring $G(\mathfrak{m})$ is not a Gorenstein ring but Cohen-Macaulay.

In what follows, unless otherwise specified, let (A, \mathfrak{m}) be Noetherian local ring with $d = \dim A > 0$. We denote by $e(A) = e^0_{\mathfrak{m}}(A)$ the multiplicity of A with respect to the maximal ideal \mathfrak{m} . Let $J \subseteq K$ ($\subsetneq A$) be ideals in A. We denote by \overline{J} the integral closure of J. When $K \subseteq \overline{J}$, let

$$\mathbf{r}_J(K) = \min \{ n \in \mathbb{Z} \mid K^{n+1} = JK^n \}$$

denote the reduction number of K with respect to J. For each finitely generated Amodule M let $\mu_A(M)$ and $\ell_A(M)$ be the number of elements in a minimal system of generators for M and the length of M, respectively. We denote by $v(A) = \ell_A(\mathfrak{m}/\mathfrak{m}^2)$ the embedding dimension of A.

2. The case where $G(\mathfrak{m})$ is a Gorenstein ring

The purpose of this section is to prove Theorem 1.5. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let $\{a_i\}_{1 \le i \le d}$ be positive integers and let $\{x_i\}_{1 \le i \le d}$ be elements of A such that $x_i \in \mathfrak{m}^{a_i}$ for each $1 \le i \le d$. Assume that the initial forms $\{x_i \mod \mathfrak{m}^{a_i+1}\}_{1 \le i \le d}$ constitute a homogeneous system of parameters in $G(\mathfrak{m})$. Let $q \in \mathbb{Z}$ and $Q = (x_1, x_2, \cdots, x_d)$. We put $I = Q : \mathfrak{m}^q$.

Let us begin with the following.

Proposition 2.1. Let $\ell_3 \in \mathbb{Z}$ and suppose that $\mathfrak{m}^{\ell_3} \subseteq \overline{Q}$. Then $\ell_3 \geq a_i$ for all $1 \leq i \leq d$.

Proof. Assume that $\mathfrak{m}^{\ell_3} \subseteq \overline{Q}$ with $\ell_3 \in \mathbb{Z}$. Then $\ell_3 > 0$. We want to show $\ell_3 \geq \max\{a_i \mid 1 \leq i \leq d\}$. Assume the contrary and let x be an arbitrary element of \mathfrak{m} and put $y = x^{\ell_3}$. Then since y is integral over Q, we have an equation

$$y^n + c_1 y^{n-1} + \dots + c_n = 0$$

with n > 0 and $c_i \in Q^i$ for all $1 \le i \le n$. We put $a = \max\{a_i \mid 1 \le i \le d\}$ (hence $\ell_3 < a$) and let $a = a_u$ with $1 \le u \le d$. Let $B = A/(x_i \mid 1 \le i \le d, i \ne u)$ and $\mathfrak{n} = \mathfrak{m}B$. Let $\overline{*}$ denote the image in B. Then

$$\overline{y}^n + \overline{c_1 y}^{n-1} + \dots + \overline{c_n} = 0$$

in *B*. Therefore, because $i\ell_3 < ia$ and $\overline{c_i} \in Q^i B = \overline{x_u^i} B \subseteq \mathfrak{n}^{ia}$, we get $\overline{c_i} \in \mathfrak{n}^{i\ell_3+1}$ for all $1 \leq i \leq n$. Consequently, $\overline{c_i} \ \overline{y}^{n-i} \in \mathfrak{n}^{i\ell_3+1}\mathfrak{n}^{(n-i)\ell_3} = \mathfrak{n}^{n\ell_3+1}$, so that we have $\overline{y}^n = \overline{x^{n\ell_3}} \in \mathfrak{n}^{n\ell_3+1}$. Hence, for every $z \in \mathfrak{n}$, the initial form $z \mod \mathfrak{n}^2$ of z is nilpotent in the associated graded ring $G(\mathfrak{n}) = \bigoplus_{n\geq 0} \mathfrak{n}^n/\mathfrak{n}^{n+1}$, which is impossible, because dim $G(\mathfrak{n}) =$ dim B = 1. Thus $\ell_3 \geq a_i$ for all $1 \leq i \leq d$.

We put $\rho = \operatorname{a}(\operatorname{G}(\mathfrak{m}/Q)) = \operatorname{a}(\operatorname{G}(\mathfrak{m})) + \sum_{i=1}^{d} a_i$ (cf. [GW, (3.1.6)]) and $\ell = \rho + 1 - q$. Let $\ell_1 = \inf\{n \in \mathbb{Z} \mid \mathfrak{m}^n \subseteq I\}$ and $\ell_2 = \sup\{n \in \mathbb{Z} \mid I \subseteq Q + \mathfrak{m}^n\}.$

We are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. (4) \Rightarrow (3) We may assume $\ell_2 < \infty$. Then, since $I \subseteq Q + \mathfrak{m}^{\ell_2}$, we have $\mathfrak{m}^q I \subseteq \mathfrak{m}^q Q + \mathfrak{m}^{q+\ell_2}$, whence $\mathfrak{m}^q I = \mathfrak{m}^q Q + [Q \cap \mathfrak{m}^{q+\ell_2}]$. Notice that

$$Q \cap \mathfrak{m}^{q+\ell_2} = \sum_{i=1}^d x_i \mathfrak{m}^{q+\ell_2-a_i},$$

because the initial forms $\{x_i \mod \mathfrak{m}^{a_i+1}\}_{1 \leq i \leq d}$ constitute a homogeneous system of parameters in the Cohen-Macaulay ring $G(\mathfrak{m})$, and we have $\mathfrak{m}^{q+\ell_2-a_i} \subseteq \mathfrak{m}^q$, since $\ell_2 \geq a_i$ for all $1 \leq i \leq d$. Thus $\mathfrak{m}^q I = \mathfrak{m}^q Q$.

 $(3) \Rightarrow (2)$ See [NR, Section 7, Theorem 2].

 $(2) \Rightarrow (1)$ This follows from Proposition 2.1.

We now assume that $G(\mathfrak{m})$ is a Gorenstein ring. Then $I = Q + \mathfrak{m}^{\ell}$ by [Wat] (see [O, Theorem 1.6] also), whence $\ell_1 \leq \ell \leq \ell_2$, so that the implication (1) \Rightarrow (4) follows. Therefore, $I \subseteq \overline{Q}$ if and only if $\ell = \rho + 1 - q \geq a_i$ for all $1 \leq i \leq d$, or equivalently

$$q \leq \left[\mathbf{a}(\mathbf{G}(\mathfrak{m})) + \sum_{i=1}^{d} a_i + 1\right] - \max\{a_i \mid 1 \leq i \leq d\}.$$

Thus $g(Q) = \left[a(G(\mathfrak{m})) + \sum_{i=1}^{d} a_i + 1\right] - \max\{a_i \mid 1 \le i \le d\}$, so that $g(Q) = a(G(\mathfrak{m})) + 1$,

if d = 1.

Remark 2.2 (cf. Example 5.3). Unless $G(\mathfrak{m})$ is a Gorenstein ring, the implication $(1) \Rightarrow (4)$ in Theorem 1.5 does not hold true in general, even though A is a complete intersection and $G(\mathfrak{m})$ is a Cohen-Macaulay ring. For example, let V = k[[t]] be the formal power series ring over a field k and look at the numerical semigroup ring $A = k[[t^5, t^8, t^{12}]] \subseteq V$. Then $A \cong k[[X, Y, Z]]/(Y^3 - Z^2, X^4 - YZ)$, while $G(\mathfrak{m}) \cong k[X, Y, Z]/(Y^4, YZ, Z^2)$, whence $G(\mathfrak{m})$ is a Cohen-Macaulay ring but not a Gorenstein ring. Let $Q = (t^{20})$ in A and let $I = Q : \mathfrak{m}^3$; hence $a_1 = 4$ and q = 3. Then $I = (t^{20}, t^{22}, t^{23}, t^{26}, t^{29}) \subseteq \mathfrak{m}^3$ and $I^3 = QI^2$, so that $I \subseteq \overline{Q}$, while $I^2 = QI + (t^{44}) \subseteq Q$ but $t^{44} \notin QI$, since $t^{24} \notin I$. Thus $I^2 = Q \cap I^2 \neq QI$, so that $r_Q(I) = 2$ and the ring G(I) is not Cohen-Macaulay. It is direct to check that $\mathfrak{m}^4 \subseteq I$, $\mathfrak{m}^3 \not\subseteq I$, and $I \not\subseteq Q + \mathfrak{m}^4 = \mathfrak{m}^4$ since $t^{22} \in I$ but $t^{22} \notin \mathfrak{m}^4$. Thus $\ell_1 = 4$ and $\ell_2 = 3$.

Proof of Corollary 1.7. Since $Q \subseteq \mathfrak{m}^a$, we readily get the equivalence (3) \Leftrightarrow (4). We also have $\overline{\mathfrak{m}^a} = \mathfrak{m}^a$, because the ring $G(\mathfrak{m})$ is reduced. Hence $\overline{Q} \subseteq \mathfrak{m}^a$. Therefore $I \subseteq \mathfrak{m}^a$, if $I \subseteq \overline{Q}$. Thus all conditions (1), (2), (3), and (4) are, by Theorem 1.5, equivalent to each other.

Thanks to Theorem 1.5, similarly as in [GKMP] we have the following complete answer to Question 1.1 for the parameter ideals $Q = (x_1, x_2, \dots, x_d)$. We later need it in the present paper. Let us note a brief proof.

Theorem 2.3. With the same notation as is in Theorem1.5 assume that $G(\mathfrak{m})$ is a Gorenstein ring. Suppose that $\ell \geq a_i$ for all $1 \leq i \leq d$. Then the following assertions hold true.

- (1) G(I) is a Cohen-Macaulay ring, $r_Q(I) = \lceil \frac{q}{\ell} \rceil$, and $a(G(I)) = \lceil \frac{q}{\ell} \rceil d$, where $\lceil \frac{q}{\ell} \rceil = \min\{n \in \mathbb{Z} \mid \frac{q}{\ell} \leq n\}.$
- (2) F(I) is a Cohen-Macaulay ring.
- (3) $\mathcal{R}(I)$ is a Cohen-Macaulay ring if and only if $q \leq (d-1)\ell$.
- (4) Suppose that q > 0. Then G(I) is a Gorenstein ring if and only if $\ell \mid q$.
- (5) Suppose that q > 0. Then $\mathcal{R}(I)$ is a Gorenstein ring if and only if $q = (d-2)\ell$.

To prove Proposition 2.3 we need the following. We skip the proof, since one can prove it exactly in the same way as is given in [GKMP, Lemma 2.2].

Lemma 2.4 (cf. [GKMP, Lemma 2.2]). With the same notation as is in Theorem1.5 assume that $G(\mathfrak{m})$ is a Gorenstein ring. If $\ell \geq a_i$ for all $1 \leq i \leq d$, then

$$Q \cap \mathfrak{m}^{(n+1)\ell+m} \subseteq \mathfrak{m}^m Q I^r$$

for all integers $m, n \ge 0$.

Proof of Theorem 2.3. (1) Let $n \ge 0$ be an integer. Then, since $I = Q + \mathfrak{m}^{\ell}$, we get $I^{n+1} = QI^n + \mathfrak{m}^{(n+1)\ell}$, so that

$$Q \cap I^{n+1} = QI^n + [Q \cap \mathfrak{m}^{(n+1)\ell}] \subseteq QI^n,$$

because $Q \cap \mathfrak{m}^{(n+1)\ell} \subseteq QI^n$ by Lemma 2.4. Therefore $Q \cap I^{n+1} = QI^n$ for all $n \ge 0$, so that G(I) is a Cohen-Macaulay ring and $r_Q(I) = \min\{n \in \mathbb{Z} \mid I^{n+1} \subseteq Q\}$. Let $n \in \mathbb{Z}$

and suppose that $I^{n+1} \subseteq Q$. Then $\mathfrak{m}^{(n+1)\ell} \subseteq Q$, whence $(n+1)\ell \ge \rho + 1$ (recall that $\rho = \mathfrak{a}(\mathbf{G}(\mathfrak{m}/Q))$). Therefore

$$n+1 \ge \frac{\rho+1}{\ell} = \frac{q+\ell}{\ell} = \frac{q}{\ell} + 1,$$

so that $n \geq \frac{q}{\ell}$. Conversely, if $n \geq \frac{q}{\ell}$, then $(n+1)\ell \geq (\frac{q}{\ell}+1)\ell = q+\ell = \rho+1$, whence $\mathfrak{m}^{(n+1)\ell} \subseteq Q$, so that $I^{n+1} \subseteq Q$. Thus $r_Q(I) = \lceil \frac{q}{\ell} \rceil$.

Let Y_i 's be the initial forms of x_i 's with respect to I. Then Y_1, Y_2, \dots, Y_d is a homogeneous system of parameters of G(I), whence it constitutes a regular sequence in G(I). Therefore

$$G(\overline{I}) \cong G(I)/(Y_1, Y_2, \cdots, Y_d)$$

as graded A-algebras ([VV]), where $\overline{I} = I/Q$. Hence $a(G(\overline{I})) = a(G(I)) + d$ (cf. [GW, (3.1.6)]). Thus $a(G(I)) = \lceil \frac{q}{\ell} \rceil - d$, since $a(G(\overline{I})) = r_Q(I) = \lceil \frac{q}{\ell} \rceil$.

(2) By Lemma 2.4

$$Q \cap \mathfrak{m}I^{n+1} = Q \cap [\mathfrak{m}QI^n + \mathfrak{m}^{(n+1)\ell+1}]$$
$$= \mathfrak{m}QI^n + [Q \cap \mathfrak{m}^{(n+1)\ell+1}]$$
$$\subseteq \mathfrak{m}QI^n.$$

Hence $Q \cap \mathfrak{m}I^{n+1} = \mathfrak{m}QI^n$ for all $n \ge 0$. Thus F(I) is a Cohen-Macaulay ring (cf. e.g., [CGPU, CZ]; recall that G(I) is a Cohen-Macaulay ring).

(3) The Rees algebra $\mathcal{R}(I)$ of I is a Cohen-Macaulay ring if and only if G(I) is a Cohen-Macaulay ring and a(G(I)) < 0 ([GSh, Remark (3.10)], [TI]). By assertion (1) the latter condition is equivalent to saying that $\lceil \frac{q}{\ell} \rceil < d$, or equivalently $q \leq (d-1)\ell$.

(4) Notice that G(I) is a Gorenstein ring if and only if so is the graded ring

$$\mathbf{G}(\overline{I}) = \mathbf{G}(I)/(Y_1, Y_2, \cdots, Y_d)$$

Let $r = r_Q(I)$ $(= \lceil \frac{q}{\ell} \rceil)$. Then $G(\overline{I})$ is a Gorenstein ring if and only if $(0) : \overline{I}^i = \overline{I}^{r+1-i}$ for all $i \in \mathbb{Z}$ (cf. [O, Theorem 1.6]). Therefore, if G(I) is a Gorenstein ring, we have $(0) : \overline{I} = \overline{I}^r = \overline{\mathfrak{m}}^{r\ell}$, where $\overline{\mathfrak{m}} = \mathfrak{m}/Q$. On the other hand, since $\overline{I} = \overline{\mathfrak{m}}^\ell$ and $q = \rho + 1 - \ell$, we get

$$(0): \overline{I} = (0): \overline{\mathfrak{m}}^{\ell} = \overline{\mathfrak{m}}^{q}$$

by [Wat] (see [O, Theorem 1.6] also). Hence $q = r\ell$, because $\overline{\mathfrak{m}}^{r\ell} = \overline{\mathfrak{m}}^q \neq (0)$ and q > 0. Thus $\ell \mid q$ and $r = \frac{q}{\ell}$. Conversely, suppose that $\ell \mid q$; hence $r = \frac{q}{\ell}$. Let $i \in \mathbb{Z}$. Then since $\overline{I} = \overline{\mathfrak{m}}^{\ell}$, we get $\overline{I}^{r+1-i} = \overline{\mathfrak{m}}^{(r+1-i)\ell}$, while

$$(0):\overline{I}^{i}=(0):\overline{\mathfrak{m}}^{i\ell}=\overline{\mathfrak{m}}^{\rho+1-i\ell}$$

by [O, Theorem 1.6]. Hence $(0): \overline{I}^i = \overline{I}^{r+1-i}$ for all $i \in \mathbb{Z}$, because

$$(r+1-i)\ell = q+\ell - i\ell = \rho+1-i\ell$$

Thus $G(\overline{I})$ is a Gorenstein ring, whence so is G(I).

(5) The Rees algebra $\mathcal{R}(I)$ of I is a Gorenstein ring if and only if G(I) is a Gorenstein ring and a(G(I)) = -2, provided $d \ge 2$ ([I, Corollary (3.7)]). Suppose that $\mathcal{R}(I)$ is a Gorenstein ring. Then $d \ge 2$ by assertion (2) (recall that q > 0). Since a(G(I)) = $r_Q(I) - d = -2$, thanks to assertions (1) and (4), we have $\frac{q}{\ell} = r_Q(I) = d - 2$, whence $q = (d - 2)\ell$. Conversely, suppose that $q = (d - 2)\ell$. Then $d \ge 3$, since q > 0. By assertions (1) and (4), G(I) is a Gorenstein ring with $r_Q(I) = \frac{q}{\ell} = d - 2$, whence a(G(I)) = (d - 2) - d = -2. Thus $\mathcal{R}(I)$ is a Gorenstein ring.

We now discuss Goto numbers. For each Noetherian local ring A let

 $\mathcal{G}(A) = \{ g(Q) \mid Q \text{ is a parameter ideal in } A \}.$

We explore the value $\min \mathcal{G}(A)$ in the setting of Theorem 1.5 with dim A = 1. For the purpose the following result is fundamental.

Theorem 2.5 ([HS, Theorem 3.1]). Let (A, \mathfrak{m}) be a Noetherian local ring of dimension one. Then there exists an integer $k \gg 0$ such that $g(Q) = \min \mathcal{G}(A)$ for every parameter ideal Q of A contained in \mathfrak{m}^k .

Thanks to Theorem 1.5 and Theorem 2.5, we then have the following.

Corollary 2.6. Let (A, \mathfrak{m}) be a Noetherian local ring with dim A = 1. Then min $\mathcal{G}(A) = a(G(\mathfrak{m})) + 1$, if $G(\mathfrak{m})$ is a Gorenstein ring.

We close this section with the following.

Proposition 2.7. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with dim A = 1. Then $v(A) \leq 2$ if and only if min $\mathcal{G}(A) = e(A) - 1$.

Proof. Suppose that $v(A) \leq 2$. Then $G(\mathfrak{m})$ is a Gorenstein ring with $a(G(\mathfrak{m})) = e(A) - 2$. Hence $\min \mathcal{G}(A) = a(G(\mathfrak{m})) + 1 = e(A) - 1$ by Corollary 2.6. Conversely, assume that $\min \mathcal{G}(A) = e(A) - 1$. To prove the assertion, enlarging the field A/\mathfrak{m} if necessary, we may assume that the field A/\mathfrak{m} is infinite (use Theorem 2.5). Let $x \in \mathfrak{m}$ and assume that Q = (x) is a reduction of \mathfrak{m} . We put e = e(A) and q = g(Q). Then $q \geq e - 1$. Let B = A/Q and $\mathfrak{n} = \mathfrak{m}/Q$. Then $Q : \mathfrak{m}^q \subseteq \overline{Q} \subsetneq A$. Hence $\mathfrak{n}^q \neq (0)$, so that $\mathfrak{n}^i \neq \mathfrak{n}^{i+1}$ for any $0 \leq i \leq q$. Consequently, because $q + 1 \geq e$ and

$$e = \ell_A(A/Q) = \sum_{i \ge 0} \ell_A(\mathfrak{n}^i/\mathfrak{n}^{i+1}) \ge \sum_{i=0}^q \ell_A(\mathfrak{n}^i/\mathfrak{n}^{i+1}) \ge q+1,$$

we get $\mathfrak{n}^{q+1} = (0)$ and $\ell_A(\mathfrak{n}^i/\mathfrak{n}^{i+1}) = 1$ for all $0 \le i \le q$. Hence $\ell_A(\mathfrak{n}/\mathfrak{n}^2) \le 1$, so that $v(A) \le 2$.

3. The case where A = B/yB and B is not a regular local ring

Let us now explore quasi-socle ideals in the ring A of the form A = B/yB, where (B, \mathfrak{n}) is a Cohen-Macaulay local ring of dimension 2 and y is a subsystem of parameters in B. Recall that this class of local rings contains all the local complete intersections of dimension one.

In this section we assume that B is *not* a regular local ring and our goal is the following.

Theorem 3.1. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let n, q be integers such that $n \ge q > 0$. Let $y \in \mathfrak{n}^n$ and assume that y is regular in B. We put A = B/yB and $\mathfrak{m} = \mathfrak{n}/yB$. Let Q be a parameter ideal in A and put $I = Q : \mathfrak{m}^q$. Then the following assertions hold true, where m = n - q.

- (1) $\mathfrak{m}^q I = \mathfrak{m}^q Q, I \subseteq \overline{Q}, and Q \cap I^2 = QI. Hence g(Q) \ge n.$
- (2) $I^2 = QI$, if one of the following conditions is satisfied.
 - (i) $m \ge q 1;$
 - (ii) m < q-1 and $Q \subseteq \mathfrak{m}^{q-m}$;
 - (iii) m > 0 and $Q \subseteq \mathfrak{m}^{q-1}$.

- (3) Suppose that B is a Gorenstein ring. Then $I^3 = QI^2$ and G(I) is a Cohen-Macaulay ring, if one of the following conditions is satisfied.
 - (i) m < q-1 and $Q \subseteq \mathfrak{m}^{q-(m+1)}$;
 - (ii) $Q \subseteq \mathfrak{m}^{q-1}$.

We begin with the following.

Lemma 3.2. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let q, ℓ , and m be integers such that $q \ge \ell > 0$ and $m \ge 0$. Let $x \in \mathfrak{n}^{\ell}$ and $y_i \in \mathfrak{n}$ $(1 \le i \le q + m)$ and assume that for all $1 \le i \le q + m$, the sequence x, y_i is B-regular. Then we have

$$(x, \prod_{i=1}^{q+m} y_i) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{\ell+m}.$$

Proof. Let $\alpha \in (x, \prod_{i=1}^{q+m} y_i) : \mathfrak{n}^q$ and write $\alpha \cdot \prod_{i=1}^{q} y_i = ux + v \cdot \prod_{i=1}^{q+m} y_i$ with $u, v \in B$. Then, since

$$(\alpha - v \cdot \prod_{i=q+1}^{q+m} y_i) \cdot \prod_{i=1}^{q} y_i \in (x)$$

and since $x, \prod_{i=1}^{q} y_i$ is a *B*-regular sequence, we get $\alpha - v \cdot \prod_{i=q+1}^{q+m} y_i \in (x)$. Let us write

$$\alpha = wx + v \cdot \prod_{i=q+1}^{q+m} y_i$$

with $w \in B$. We want to show $v \in \mathfrak{n}^{\ell}$. Let $z \in \mathfrak{n}^{\ell}$ and write $q-\ell$

$$\alpha z \cdot \prod_{i=1}^{n} y_i = u'x + v' \cdot \prod_{i=1}^{n} y_i$$

with $u', v' \in B$. Then, since

$$\alpha z \cdot \prod_{i=1}^{q-\ell} y_i = wxz \cdot \prod_{i=1}^{q-\ell} y_i + vz \cdot \prod_{i=1}^{q-\ell} y_i \cdot \prod_{i=q+1}^{q+m} y_i$$

we have

$$(vz - v' \cdot \prod_{i=q-\ell+1}^{q} y_i) \cdot \prod_{i=1}^{q-\ell} y_i \cdot \prod_{i=q+1}^{q+m} y_i \in (x).$$

Therefore, since the sequence $x, \prod_{i=1}^{q-\ell} y_i \cdot \prod_{i=q+1}^{q+m} y_i$ is *B*-regular, we see $vz \in (x, \prod_{i=q-\ell+1}^{q} y_i)$, so that $v \in (x, \prod_{i=q-\ell+1}^{q} y_i) : \mathfrak{n}^{\ell}$, because z is an arbitrary element in \mathfrak{n}^{ℓ} . We now notice that $\mathfrak{q} = (x, \prod_{i=q-\ell+1}^{q} y_i)$ is a parameter ideal in *B* such that $\prod_{i=q-\ell+1}^{q} y_i$ is a parameter ideal in *B* such that

 $\mathfrak{q} \subseteq \mathfrak{n}^{\ell}$. Then, since *B* is not a regular local ring, we have $\mathfrak{q} : \mathfrak{n}^{\ell} \subseteq \mathfrak{n}^{\ell}$, thanks to [Wan, Theorem 1.1]. Thus $v \in \mathfrak{n}^{\ell}$, whence $\alpha \in (x) + \mathfrak{n}^{\ell+m}$.

Proposition 3.3. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let q, ℓ , and m be integers such that $q \ge \ell > 0$ and $m \ge 0$. Let $x, y \in B$ be a system of parameters of B and assume that $x \in \mathfrak{n}^{\ell}$ and $y \in \mathfrak{n}^{q+m}$. Then

- (1) $(x,y): \mathbf{n}^q \subseteq (x) + \mathbf{n}^{\ell+m}.$
- (2) $\mathfrak{n}^q \cdot [(x, y) : \mathfrak{n}^q] \subseteq \mathfrak{n}^q x + (y).$

Proof. (1) We notice that the ideal \mathbf{n}^k is, for each integer k > 0, generated by the set $F_k = \{\prod_{i=1}^k z_i \mid z_i \in \mathbf{n} \text{ and } x, z_i \text{ is a system of parameters of } B \text{ for all } 1 \le i \le k\}.$ Let $\alpha \in (x, y) : \mathbf{n}^q$. Let $z \in F_{q+m}$ and $z' \in F_q$ and write

$$z\alpha = ux + vy,$$
$$z'\alpha = u'x + v'y$$

with $u, v, u', v' \in B$. Then $z'z\alpha = z'ux + z'vy = zu'x + zv'y$, whence $y(z'v - zv') \in (x)$, so that $z'v \in (x, z)$, because the sequence x, y is *B*-regular. Since z' is an arbitrary element of F_k which generates the ideal \mathfrak{n}^q , we have

$$v \in (x,z) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{\ell+m}$$

by Lemma 3.2. Hence $z\alpha = ux + vy \in (x) + \mathfrak{n}^{\ell+m}y$, so that

$$\alpha \in [(x) + \mathfrak{n}^{\ell+m}y] : \mathfrak{n}^{q+m},$$

because z is an arbitrary element of F_{q+m} . Since $y \in \mathfrak{n}^{q+m}$, we then have

$$y\alpha = \rho x + \tau y$$

with $\rho \in B$ and $\tau \in \mathfrak{n}^{\ell+m}$. Therefore $\alpha - \tau \in (x)$, so that $\alpha \in (x) + \mathfrak{n}^{\ell+m}$. Thus $(x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{\ell+m}$.

(2) The ideal \mathbf{n}^q is generated by the set

$$F = \{ z \in \mathfrak{n}^q \mid y, z \text{ is a system of parameters in } B \}.$$

Let $\alpha \in (x, y) : \mathfrak{n}^q$ and $z, z' \in F$. We write $z\alpha = ux + vy$ and $z'\alpha = u'x + v'y$ with $u, v, u', v' \in B$. We want to show $ux \in \mathfrak{n}^q x$. Since $z'z\alpha = z'ux + z'vy = zu'x + zv'y$, we have $x(z'u - zu') \in (y)$, whence $z'u \in (z, y)$. Therefore $u \in (z, y) : \mathfrak{n}^q$, whence $u \in (z) + \mathfrak{n}^{q+m}$, because $(z, y) : \mathfrak{n}^q \subseteq (z) + \mathfrak{n}^{q+m}$ by assertion (1) (take x = z, and $\ell = q$). Thus $ux \in (zx) + \mathfrak{n}^{q+m} x \subseteq \mathfrak{n}^q x$, whence $\mathfrak{n}^q \cdot [(x, y) : \mathfrak{n}^q] \subseteq \mathfrak{n}^q x + (y)$. \Box

We need also the following result to prove Theorem 3.1.

Proposition 3.4. Let (A, \mathfrak{m}) be a Gorenstein local ring with $d = \dim A > 0$. Let Q be a parameter ideal in A and q > 0 an integer. We put $I = Q : \mathfrak{m}^q$. Then $I^3 = QI^2$ and G(I) is a Cohen-Macaulay ring, if $I \subseteq Q + \mathfrak{m}^{q-1}$ and $\mathfrak{m}^q I = \mathfrak{m}^q Q$.

Proof. We have $\mathfrak{m}^q I^i = \mathfrak{m}^q Q^i$ and $Q^i \cap I^{i+1} = Q^i I$ for all $i \ge 1$ (cf. [GMT, Corollary 2.3]). Therefore, since $Q \cap I^2 = QI$, we may assume that $I^2 \not\subseteq Q$. Notice that $\mathfrak{m}I^2 = \mathfrak{m}I \cdot I \subseteq (Q + \mathfrak{m}^q) \cdot I \subseteq Q$ and we have $I^2 \subseteq Q : \mathfrak{m}$. Hence $Q : \mathfrak{m} = Q + I^2$, because A is a Gorenstein ring. We similarly have $\mathfrak{m}I^3 \subseteq \mathfrak{m}I \cdot I^2 \subseteq (\mathfrak{m}Q + \mathfrak{m}^q) \cdot I^2 = \mathfrak{m}I^2 \cdot Q + \mathfrak{m}^q I^2 \subseteq Q^2$, so that $I^3 \subseteq Q^2 : \mathfrak{m} = Q \cdot [Q : \mathfrak{m}] = Q^2 + QI^2$. Therefore $I^3 = [Q^2 + QI^2] \cap I^3 = [Q^2 \cap I^3] + QI^2 = Q^2I + QI^2 = QI^2$. Hence $I^3 = QI^2$, which implies, because $Q \cap I^2 = QI$, that G(I) is a Cohen-Macaulay ring.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let $Q = (\overline{x})$ with $x \in \mathfrak{n}$, where \overline{x} denotes the image of x in A. We put $J = (x, y) : \mathfrak{n}^q$; hence I = JA. We have by Proposition 3.3 that $J \subseteq (x) + \mathfrak{n}^{m+1}$ and $\mathfrak{n}^q J \subseteq \mathfrak{n}^q x + (y)$ (take $\ell = 1$). Hence $\mathfrak{m}^q I = \mathfrak{m}^q Q$, so that $I \subseteq \overline{Q}$ (cf. [NR]). Let $\alpha \in Q \cap I^2$ and write $\alpha = \overline{x}\beta$ with $\beta \in A$. Then, for all $\gamma \in \mathfrak{m}^q$, we have $\alpha\gamma = \overline{x} \cdot \beta\gamma \in \mathfrak{m}^q I^2 \subseteq Q^2 = (\overline{x}^2)$, so that $\beta\gamma \in (\overline{x}) = Q$. Therefore $\beta \in Q : \mathfrak{m}^q = I$, whence $\alpha = \overline{x}\beta \in QI$. Thus $Q \cap I^2 = QI$, which proves assertion (1).

If $m \ge q-1$, we have $J \subseteq (x) + \mathfrak{n}^{m+1} \subseteq (x) + \mathfrak{n}^q$, whence $I \subseteq Q + \mathfrak{m}^q$. Therefore $I^2 \subseteq Q$, so that $I^2 = QI$ by assertion (1). Suppose that m < q-1 and $Q \subseteq \mathfrak{m}^{q-m}$. We choose the element x so that $x \in \mathfrak{n}^{q-m}$. Then, taking $\ell = q - m$, by Proposition 3.3 (1) we get $J = (x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^q$. Hence $I \subseteq Q + \mathfrak{m}^q$. Thus $I^2 = QI$. Suppose now that m > 0 and $Q \subseteq \mathfrak{m}^{q-1}$. To show $I^2 = QI$, we may assume by condition (ii) that

m < q - 1. Then $Q \subseteq \mathfrak{m}^{q-m}$, since $Q \subseteq \mathfrak{m}^{q-1}$ and m > 0. Hence $I^2 = QI$. This proves assertion (2).

Let us consider assertion (3). Suppose that B is a Gorenstein ring and assume that condition (i) is satisfied. We choose the element x so that $x \in \mathfrak{n}^{q-(m+1)}$. Then $J = (x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{q-1}$ (take $\ell = q - (m + 1)$), whence $I \subseteq Q + \mathfrak{m}^{q-1}$, so that the result follows from Proposition 3.4. Assume that condition (ii) is satisfied. By assertion (2) we may assume that m < q - 1. Then, since $\mathfrak{m}^{q-1} \subseteq \mathfrak{m}^{q-(m+1)}$, we have $Q \subseteq \mathfrak{m}^{q-(m+1)}$, so that condition (i) is satisfied, whence the result follows. This completes the proof of Theorem 3.1.

4. The case where A = B/yB and B is a regular local ring

Similarly as in Section 3, we explore quasi-socle ideals in the ring A of the form A = B/yB, where (B, \mathfrak{n}) is a regular local ring of dimension 2 and y is a subsystem of parameters in B; hence $v(A) \leq 2$ and $\min \mathcal{G}(A) = e(A) - 1$ (Proposition 2.7).

Our goal of this time is the following.

Theorem 4.1. Let (B, \mathfrak{n}) be a regular local ring of dimension 2. Let n, q be integers such that n > q > 0 and put m = n - q. Let $0 \neq y \in \mathfrak{n}^n$ and put A = B/yB and $\mathfrak{m} = \mathfrak{n}/yB$. Let Q be a parameter ideal in A and put $I = Q : \mathfrak{m}^q$. Then the following assertions hold true.

- (1) $\mathfrak{m}^q I = \mathfrak{m}^q Q$, $I \subseteq \overline{Q}$, and $Q \cap I^2 = QI$.
- (2) $I^2 = QI$, if one of the following conditions is satisfied.
 - (i) $m \ge q$;
 - (ii) m < q and $Q \subseteq \mathfrak{m}^{q-(m-1)}$.
- (3) $I^3 = QI^2$ and the ring G(I) is Cohen-Macaulay, if one of the following conditions is satisfied.
 - (i) m < q and $Q \subseteq \mathfrak{m}^{q-m}$;
 - (ii) $Q \subseteq \mathfrak{m}^{q-1}$.

Our proof of Theorem 4.1 is, this time, based on the following.

Proposition 4.2. Let (B, \mathfrak{n}) be a regular local ring of dimension 2 and let x, y be a system of parameters of B. Let $q, \ell > 0$ and $m \ge 0$ be integers such that $q + 1 \ge \ell$ and assume that $x \in \mathfrak{n}^{\ell}$ and $y \in \mathfrak{n}^{q+m}$. Then the following assertions hold true.

- (1) $(x,y): \mathbf{n}^q \subseteq (x) + \mathbf{n}^{\ell+m-1}.$
- (2) Suppose that m > 0. Then $\mathfrak{n}^q \cdot [(x, y) : \mathfrak{n}^q] \subseteq \mathfrak{n}^q x + (y)$.

Proof. (1) Enlarging the field B/\mathfrak{n} if necessary, we may assume that the field B/\mathfrak{n} is infinite. Let $G(\mathfrak{n}) = \bigoplus_{n\geq 0} \mathfrak{n}^n/\mathfrak{n}^{n+1}$ denote the associated graded ring of B. Then $G(\mathfrak{n})$ is the polynomial ring with two indeterminates over B/\mathfrak{n} . For each element $0 \neq f \in B$ let $o_\mathfrak{n}(f) = \max\{n \in \mathbb{Z} \mid y \in \mathfrak{n}^n\}$ and let $f^* = f \mod \mathfrak{n}^{o_\mathfrak{n}(f)+1}$ be the initial form of f; hence f^* is $G(\mathfrak{n})$ -regular. For each integer k > 0, the ideal \mathfrak{n}^k is generated by the set

 $F_k = \{ z \in \mathfrak{n}^k \mid z \in \mathfrak{n}^k \setminus \mathfrak{n}^{k+1} \text{ and } x^*, z^* \text{ is a homogeneous system of parameters in G}(\mathfrak{n}) \}.$

Now let $\alpha \in (x, y) : \mathfrak{n}^q$, $z \in F_{q+m}$, and $z' \in F_q$. Then $z\alpha = ux + vy$ and $z'\alpha = u'x + v'y$. for some $u, v, u', v' \in B$. Hence, because the sequence x, y is *B*-regular, comparing two expressions of $z'z\alpha$, we get $z'v \in (x, z)$, whence $v \in (x, z) : \mathfrak{n}^q$. Recall now that $(x, z) : \mathfrak{n}^q = (x, z) + \mathfrak{n}^{\ell'}$ with

$$\begin{aligned} \ell' &= [a(G(\mathfrak{n}/(x,z)))+1] - q \\ &= [a(G(\mathfrak{n})/(x^*,z^*))+1] - q \\ &= [a(G(\mathfrak{n})) + o_{\mathfrak{n}}(x) + o_{\mathfrak{n}}(z)) + 1] - q \\ &\geq [(-2) + \ell + (q+m) + 1] - q = \ell + m - 1 \end{aligned}$$

(cf. [Wat]; see [O, Theorem 1.6] also), where a(*) denotes the *a*-invariant of the corresponding graded ring ([GW, (3.1.4)]). Therefore

$$z\alpha = ux + vy \in (x) + (zy) + \mathfrak{n}^{\ell'}y \subseteq (x) + \mathfrak{n}^{\ell+m-1}y,$$

because $\ell' \geq \ell + m - 1$ and $z \in \mathfrak{n}^{q+m}$ with $q \geq \ell - 1$. Hence $\alpha \in [(x) + \mathfrak{n}^{\ell+m-1}y] : \mathfrak{n}^{q+m}$, so that $\alpha y \in (x) + \mathfrak{n}^{\ell+m-1}y$, whence $\alpha \in (x) + \mathfrak{n}^{\ell+m-1}$, since the sequence x, y is *B*-regular. Thus $(x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{\ell+m-1}$.

(2) The ideal \mathfrak{n}^q is generated by the set $F = \{z \in \mathfrak{n}^q \mid y, z \text{ is a } B\text{-regular sequence}\}$. Let $\alpha \in (x, y) : \mathfrak{n}^q$ and $z, z' \in F$. Then $z\alpha = ux + vy$ and $z'\alpha = u'x + v'y$ for some $\frac{17}{17}$ $u, v, u', v' \in B$. We want to show that $z\alpha \in \mathfrak{n}^q x + (y)$. Because the sequence y, x is *B*-regular, comparing two expressions of $z'z\alpha$, we get $z'u \in (z, y)$, whence $u \in (z, y) : \mathfrak{n}^q$. Notice now that $(z, y) : \mathfrak{n}^q \subseteq (z) + \mathfrak{n}^{q+m-1}$ by assertion (1) (take x = z and $q = \ell$). Then

$$z\alpha = ux + vy \in (zx) + \mathfrak{n}^{q+m-1}x + (y) \subseteq \mathfrak{n}^q x + (y),$$

since m > 0, whence we have $\mathbf{n}^q \cdot [(x, y) : \mathbf{n}^q] \subseteq \mathbf{n}^q x + (y)$.

Our proof of Theorem 4.1 is now similar to that of Theorem 3.1. We briefly note it.

Proof of Theorem 4.1. Let $Q = (\overline{x})$ with $x \in \mathfrak{n}$, where \overline{x} denotes the image of x in A. Let $J = (x, y) : \mathfrak{n}^q$. Then by Proposition 4.2 that $J \subseteq (x) + \mathfrak{n}^m$ and $\mathfrak{n}^q J \subseteq \mathfrak{n}^q x + (y)$ (take $\ell = 1$). Hence $\mathfrak{m}^q I = \mathfrak{m}^q Q$, so that $I \subseteq \overline{Q}$. We have $Q \cap I^2 = QI$ exactly for the same reason as is in Proof of Theorem 3.1.

To see assertion (2), suppose that $m \ge q$. Then $J \subseteq (x) + \mathfrak{n}^q$, whence $I \subseteq Q + \mathfrak{m}^q$. Therefore $I^2 \subseteq Q$, so that $I^2 = QI$ by assertion (1). Suppose that m < q - 1 and $Q \subseteq \mathfrak{m}^{q-m+1}$. We choose the element x so that $x \in \mathfrak{n}^{q-m+1}$. Then, taking $\ell = q - m + 1$, by Proposition 4.2 (1) we get $J = (x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^q$. Hence $I \subseteq Q + \mathfrak{m}^q$, so that $I^2 \subseteq Q$, whence $I^2 = QI$.

Suppose that condition (i) in assertion (3) is satisfied. We choose the element x so that $x \in \mathfrak{n}^{q-m}$. Then $J = (x, y) : \mathfrak{n}^q \subseteq (x) + \mathfrak{n}^{q-1}$ (take $\ell = q-m$), whence $I \subseteq Q + \mathfrak{m}^{q-1}$, so that the result follows from Proposition 3.4. Suppose that condition (ii) in assertion (3) is satisfied but m < q. Then $Q \subseteq \mathfrak{m}^{q-m}$, since $Q \subseteq \mathfrak{m}^{q-1}$ and m > 0. Hence the result follows.

Let us give a consequence of Theorem 4.1.

Corollary 4.3. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with dim A = 1 and v(A) = 2. Let q > 0 be an integer such that e(A) > q > 0 and put m = e(A) - q. Then if $m \ge q - 2$, for every parameter ideal Q in A the following assertions hold true, where $I = Q : \mathfrak{m}^{q}$.

- (1) $\mathfrak{m}^q I = \mathfrak{m}^q Q$ and $\mathbf{r}_Q(I) \leq 3$.
- (2) q = 3 and Q is a reduction of \mathfrak{m} , if $r_Q(I) = 3$.
- (3) G(I) is a Cohen-Macaulay ring.

Proof. Let e = e(A). Passing to the **m**-adic completion of A, we may assume that A = B/yB, where (B, \mathfrak{n}) is a regular local ring of dimension 2 and $0 \neq y \in \mathfrak{n}^e$. Hence $\mathfrak{m}^q I = \mathfrak{m}^q Q$ by Theorem 4.1 (1). We must show that $r_Q(I) \leq 3$ and G(I) is a Cohen-Macaulay ring. Thanks to Theorem 4.1 (2), we may assume m < q and $Q \not\subseteq \mathfrak{m}^{q-m}$. Hence m = q-2 or m = q-1. Let $Q = (\bar{x})$ with $x \in \mathfrak{n}$, where $\bar{*}$ denotes the image in A. Then $q-m \neq 1$ since $x \notin \mathfrak{n}^{q-m}$, whence m = q-2, that is e = 2q-2. Let $\mathfrak{n} = (x, z)$ with $z \in B$ and let D = B/xB. Then D is a DVR. Let us write $yD = z^{\ell}D$ with $\ell \geq e > q$ and we have $(x, y) : \mathfrak{n}^q = (x) + \mathfrak{n}^{\ell-q}$. If $\ell > e$, then $I = Q + \mathfrak{m}^{\ell-q} \subseteq Q + \mathfrak{m}^{e+1-q} = Q + \mathfrak{m}^{q-1}$, so that $I^2 = QI$ by Proposition 3.4. Assume that $\ell = e$. Then x^*, y^* is a homogeneous system of parameters in $G(\mathfrak{n})$ with $\deg x^* = 1$ and $\deg y^* = e$, so that Q is a reduction of \mathfrak{m} and $I = Q + \mathfrak{m}^{\ell'}$ by [Wat], where

$$\ell' = a(G(\mathfrak{m}/Q)) + 1 - q$$

= $[a(G(\mathfrak{n})/(x^*, y^*)) + 1] - q$
= $[(-2) + (1 + e)] + 1 - q$
= $e - q$
= m .

Therefore $r_Q(I) = \lceil \frac{q}{m} \rceil = \lceil \frac{q}{q-2} \rceil$, thanks to Theorem 2.3 (1). Hence, if $r_Q(I) \ge 4$, then $\frac{q}{q-2} > 3$, so that q < 3. This is impossible, since m = q - 2 > 0. Thus $r_Q(I) \le 3$. We similarly have q = 3, if $r_Q(I) = 3$.

Let $4 \le a < b$ be integers such that GCD(a, b) = 1 and let

$$H = \langle a, b \rangle := \{ a\alpha + b\beta \mid 0 \le \alpha, \beta \in \mathbb{Z} \}$$

be the numerical semigroup generated by a, b. Let $A = k[[t^a, t^b]] (\subseteq k[[t]])$ be the numerical semigroup ring of H and $\mathfrak{m} = (t^a, t^b)$ the maximal ideal in A, where k[[t]] is the formal power series ring over a field k. Then

$$A \cong k[[X, Y]]/(X^b - Y^a),$$

where B = k[[X, Y]] denotes the formal power series ring. Hence, applying Corollaries 2.7 and 4.3, we get the following.

Corollary 4.4. The following assertions hold true.

- (1) $\min \mathcal{G}(A) = a 1 \ge 3.$
- (2) Let Q be a parameter ideal in A and put I = Q : m³. Then I⁴ = QI³ and G(I) is a Cohen-Macaulay ring.

5. Examples and remarks

Let $n \ge 0$ be an integer and put a = 6n + 5, b = 6n + 8, and c = 9n + 12. Then 0 < a < b < c and GCD(a, b, c) = 1. Let $A = k[[t^a, t^b, t^c]] \subseteq k[[t]]$, where k[[t]] denotes the formal power series ring over a field k. Then

$$A \cong k[[X, Y, Z]]/(Y^3 - Z^2, \ X^{3n+4} - Y^{3n+1}Z),$$

where k[[X, Y, Z]] denotes the formal powers series ring. Let \mathfrak{m} be the maximal ideal in A. Then

$$\mathbf{G}(\mathfrak{m}) \cong k[X, Y, Z]/(Y^{3n+4}, Y^{3n+1}Z, Z^2).$$

Hence A is a complete intersection with dim A = 1, whose associated graded ring $G(\mathfrak{m})$ is not a Gorenstein ring but Cohen-Macaulay. We put

$$B = k[[X, Y, Z]]/(Y^3 - Z^2)$$

and let y denote the image of $X^{3n+4} - Y^{3n+1}Z$ in B. Let $\mathfrak{n} = (X, Y, Z)B$ be the maximal ideal in B. Then B is not a regular local ring and A = B/yB. We have $y \in \mathfrak{n}^{3n+2}$ and y is a subsystem of parameters of B. Therefore by Theorem 3.1 (1), (2), and (3) we have the following.

Example 5.1. Let $0 < q \leq 3n + 2$ be an integer and put m = (3n + 2) - q. Let Q be a parameter ideal in A and put $I = Q : \mathfrak{m}^{q}$. Then the following assertions hold true.

- (1) $\mathfrak{m}^q I = \mathfrak{m}^q Q$, $I \subseteq \overline{Q}$, and $Q \cap I^2 = QI$. Hence $g(Q) \ge 3n + 2$.
- (2) $I^2 = QI$, if one of the following conditions is satisfied.
 - (i) $m \ge q 1;$
 - (ii) m < q 1 and $Q \subseteq \mathfrak{m}^{q-m}$;
 - (iii) m > 0 and $Q \subseteq \mathfrak{m}^{q-1}$.
- (3) $I^3 = QI^2$ and the ring G(I) is Cohen-Macaulay, if one of the following conditions is satisfied.
 - (i) m < q-1 and $Q \subseteq \mathfrak{m}^{q-(m+1)}$;

(ii)
$$Q \subseteq \mathfrak{m}^{q-1}$$
.

Remark 5.2. In Example 5.1 (3) the equality $I^2 = QI$ does not necessarily hold true. For example, let n = 0; hence $A = k[[t^5, t^8, t^{12}]]$. Let $Q = (t^5)$ in A and $I = Q : \mathfrak{m}^2$. Then $I = (t^5, t^{12}, t^{16}) \subseteq \overline{Q}$ and $r_Q(I) = 2$.

The assumption $y \in \mathfrak{n}^q$ in Theorem 3.1 is crucial in order to control quasi-socle ideals $I = Q : \mathfrak{m}^q$.

Example 5.3. In Example 5.1 take n = 0 and look at the local ring $A = k[[t^5, t^8, t^{12}]]$. Hence

$$A \cong k[[X, Y, Z]]/(Y^3 - Z^2, X^4 - YZ).$$

Let $0 < s \in \langle 5, 8, 12 \rangle := \{5\alpha + 8\beta + 12\gamma \mid 0 \le \alpha, \beta, \gamma \in \mathbb{Z}\}$ and $Q = (t^s)$ in A, monomial parameters. Let us consider the quasi-socle ideal $I = Q : \mathfrak{m}^3$. Then we always have $I \subseteq \overline{Q}$, but G(I) is Cohen-Macaulay (resp. the equality $\mathfrak{m}^3 I = \mathfrak{m}^3 Q$ holds true) if and only if $s \in \{5, 10, 12, 15, 17\}$ (resp. $s \in \{5, 12, 17\}$), or equivalently $Q \cap I^2 = QI$. Thus the Cohen-Macaulayness in G(I) is rather wild, as we summarize in the following table.

s	Ι	$\mathfrak{m}^3 I = \mathfrak{m}^3 Q$	G(I) is CM	$r_Q(I)$
5	$\mathfrak{m}=(t^5,t^8,t^{12})$	Yes	Yes	3
8	(t^8, t^{10}, t^{17})	No	No	3
10	$(t^{10}, t^{12}, t^{13}, t^{16})$	No	Yes	2
12	$(t^{12}, t^{15}, t^{18}, t^{21})$	Yes	Yes	1
13	$(t^{13}, t^{15}, t^{16}, t^{22})$	No	No	2
15	$(t^{15}, t^{17}, t^{18}, t^{21}, t^{24})$	No	Yes	2
16	$(t^{16}, t^{18}, t^{22}, t^{25})$	No	No	2
17	$(t^{17}, t^{20}, t^{23}, t^{24}, t^{26})$	Yes	Yes	1
18	$(t^{18}, t^{20}, t^{21}, t^{24}, t^{27})$	No	No	2
≥ 20	$(t^s, t^{s+2}, t^{s+3}, t^{s+6}, t^{s+9})$	No	No	2

Remark 5.4. To see that the results of Theorem 4.1 are sharp, the reader may consult [GKM, GKMP] for examples of monomial parameter ideals $Q = (t^s)$ ($0 < s \in H$) in numerical semigroup rings A = k[[H]]. See [GKMP, Proposition 10] for the case where $H = \langle a, b \rangle$ with GCD(a, b) = 1. Here let us pick up the simplest ones.

- (1) The equality $I^2 = QI$ does not necessarily hold true. Let $A = k[[t^3, t^4]], Q = (t^3)$, and $I = Q : \mathfrak{m}^2$. Then $I = \mathfrak{m} \subseteq \overline{Q}$ and $r_Q(I) = 2$.
- (2) The reduction number $r_Q(I)$ could be not less than 3. Let $A = k[[t^4, t^5]], Q = (t^4)$, and $I = Q : \mathfrak{m}^3$. Then $I = \mathfrak{m} \subseteq \overline{Q}$ and $r_Q(I) = 3$.
- (3) The ring G(I) is not necessarily Cohen-Macaulay. Let $A = k[[t^5, t^6]], Q = (t^{11}),$ and $I = Q : \mathfrak{m}^4$. Then $I = (t^{11}, t^{12}, t^{15}) \subseteq \overline{Q}$ and $r_Q(I) = 3$. However, since $t^{36} \in Q \cap I^3$ but $t^{36} \notin QI^2$, we have $Q \cap I^3 \neq QI^2$, so that G(I) is not a Cohen-Macaulay ring.

Acknowledgements

The authors are most grateful to Prof. Irena Swanson for her excellent lectures at the seminar of Meiji University and the 30-th Conference on Commutative Algebra in Japan held at Saga. The present research is deep in debt from her inspiring suggestions and discussions.

References

- [B] L. Burch, On ideals of finite homological dimension in local rings, Proc. Camb. Phil. Soc., 64 (1968), 941–948.
- [CP1] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra, 178 (1995), 224–238.
- [CP2] A. Corso and C. Polini, Reduction number of links of irreducible varieties, J. Pure Appl. Algebra, 121 (1997), 29–43.
- [CGPU] A. Corso, L. Ghezzhi, C. Polini, and B. Ulrich, Cohen-Macaulayness of special fiber rings, Comm. Algebra, 31 (2003), no. 8, 3713–3734.
- [CZ] T. Cortadellas and S. Zarzuela, On the Cohen-Macaulay property of the fiber cone of ideals with reduction number at most one, Commutative algebra, algebraic geometry, and computational methods (Hanoi, 1996), 215–222, Springer, Singapore, 1999.
- [GH] S. Goto and F. Hayasaka Finite homological dimension and primes associated to integrally closed ideals, Proc. Amer. Math. Soc., 130 (2002), 3159–3164.
- [GKM] S. Goto, S. Kimura, and N. Matsuoka, Quasi-socle ideals in Gorenstein numerical semigroup rings, J. Algebra, 320 (2008) 276–293
- [GKMP] S. Goto, S. Kimura, and N. Matsuoka, T. T. Phuong, *Quasi-socle ideals in local rings with Gorenstein tangent cones*, J. Commutative Algebra, (to appear).
- [GMT] S. Goto, N. Matsuoka, and Ryo Takahashi, Quasi-socle ideals in a Gorenstein local ring, J. Pure App. Algebra, 212, (2008) 969–980.
- [GSa1] S. Goto and H. Sakurai, *The equality* $I^2 = QI$ in *Buchsbaum rings*, Rend. Sem. Mat. Univ. Padova, **110** (2003), 25–56.
- [GSa2] S. Goto and H. Sakurai, The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan, 56 (2004), 1157–1168.
- [GSa3] S. Goto and H. Sakurai, When does the equality $I^2 = QI$ hold true in Buchsbaum rings?, Commutative Algebra, 115–139, Lect. Notes Pure Appl. Math., **244**, 2006.

- [GSh] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative Algebra (Fairfax, Va., 1979), 201–231, Lecture Notes in Pure and Appl. Math., 68, Dekker, New York, 1982.
- [GW] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30(1978), 179–213.
- [HS] W. Heinzer, I. Swanson, The Goto numbers of parameter ideals, J. Algebra 321 (2009) 152– 166.
- S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102 (1986), 135–154.
- [NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145–158.
- [O] A. Ooishi, On the Gorenstein property of the associated graded ring and the Rees algebra of an ideal, J. Algebra, 115 (1993), 397–414.
- [PU] C. Polini and B. Ulrich, *Linkage and reduction numbers*, Math. Ann., **310** (1998), 631–651.
- [TI] N. V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra, 17 (1989), 2893–2922.
- [VV] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya. Math. J., 72 (1978), 93–101.
- [Wan] H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z., 256 (2007), 749–756.
- [Wat] J. Watanabe, The Dilworth number of Artin Gorenstein rings, Adv. in Math., 76 (1989), 194–199.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN

E-mail address: goto@math.meiji.ac.jp

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, 1-1-1 HIGASHIMITA, TAMA-KU, KAWASAKI 214-8571, JAPAN

E-mail address: skimura@math.meiji.ac.jp

DEPARTMENT OF INFORMATION TECHNOLOGY AND APPLIED MATHEMATICS, TON DUC THANG UNIVERSITY, 98 NGO TAT TO STREET, WARD 19, BINH THANH DISTRICT, HO CHI MINH CITY, VIETNAM

E-mail address: sugarphuong@gmail.com

INSTITUTE OF MATHEMATICS, VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY, 18 HOANG QUOC VIET ROAD, 10307 HANOI, VIETNAM

E-mail address: hltruong@math.ac.vn