QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS

SHIRO GOTO, SATORU KIMURA, TRAN THI PHUONG, AND HOANG LE TRUONG

Abstract

Goto numbers $\mathrm{g}(Q)=\max \left\{q \in \mathbb{Z} \mid Q: \mathfrak{m}^{q}\right.$ is integral over $\left.Q\right\}$ for certain parameter ideals Q in a Noetherian local ring (A, \mathfrak{m}) with Gorenstein associated graded ring $\mathrm{G}(\mathfrak{m})=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ are explored. As an application, the structure of quasisocle ideals $I=\bar{Q}: \mathfrak{m}^{q}(q \geq 1)$ in a one-dimensional local complete intersection and the question of when the graded rings $\mathrm{G}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ are Cohen-Macaulay are studied in the case where the ideals I are integral over Q.

Contents

1. Introduction and the main results 1
2. The case where $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring 7
3. The case where $A=B / y B$ and B is not a regular local ring 12
4. The case where $A=B / y B$ and B is a regular local ring 16
5. Examples and remarks 20

References 22

1. Introduction and the main results

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. Let Q be a parameter ideal in A and let $q>0$ be an integer. We put $I=Q: \mathfrak{m}^{q}$ and refer to those ideals as quasi-socle ideals in A. In this paper we are interested in the following question about quasi-socle ideals I, which are also the main subject of the researches [GMT, GKM, GKMP].

Question 1.1.

(1) Find the conditions under which $I \subseteq \bar{Q}$, where \bar{Q} stands for the integral closure of Q.
(2) When $I \subseteq \bar{Q}$, estimate or describe the reduction number

$$
\mathrm{r}_{Q}(I)=\min \left\{n \in \mathbb{Z} \mid I^{n+1}=Q I^{n}\right\}
$$

Key words and phrases: Quasi-socle ideal, Cohen-Macaulay ring, associated graded ring, Rees algebra, Fiber cone, integral closure, multiplicity, Goto number.

2000 Mathematics Subject Classification: 13H10, 13A30, 13B22, 13H15.
of I with respect to Q in terms of some invariants of Q or A.
(3) Clarify what kind of ring-theoretic properties of the graded rings

$$
\mathcal{R}(I)=\bigoplus_{n \geq 0} I^{n}, \quad \mathrm{G}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}, \text { and } \mathrm{F}(I)=\bigoplus_{n \geq 0} I^{n} / \mathfrak{m} I^{n}
$$

associated to the ideal I enjoy.

The present research is a continuation of [GMT, GKM, GKMP] and aims mainly at the analysis of the case where A is a complete intersection with $\operatorname{dim} A=1$. Following W. Heinzer and I. Swanson [HS], for each parameter ideal Q in a Noetherian local ring (A, \mathfrak{m}) we define

$$
\mathrm{g}(Q)=\max \left\{q \in \mathbb{Z} \mid Q: \mathfrak{m}^{q} \subseteq \bar{Q}\right\}
$$

and call it the Goto number of Q. In the present paper we are also interested in computing Goto numbers $\mathrm{g}(Q)$ of parameter ideals. In [HS] one finds, among many interesting results, that if the base local ring (A, \mathfrak{m}) has dimension one, then there exists an integer $k \gg 0$ such that the Goto number $\mathrm{g}(Q)$ is constant for every parameter ideal Q contained in \mathfrak{m}^{k}. We will show that this is no more true, unless $\operatorname{dim} A=1$, explicitly computing Goto numbers $\mathrm{g}(Q)$ for certain parameter ideals Q in a Noetherian local ring (A, \mathfrak{m}) with Gorenstein associated graded ring $G(\mathfrak{m})=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$. However, before entering details, let us briefly explain the reasons why we are interested in Goto numbers and quasi-socle ideals as well.

The study of socle ideals $Q: \mathfrak{m}$ dates back to the research of L . Burch [B], where she explored certain socle ideals of finite projective dimension and gave a beautiful characterization of regular local rings (cf. [GH, Theorem 1.1]). More recently, A. Corso and C. Polini [CP1, CP2] studied, with interaction to the linkage theory of ideals, the socle ideals $I=Q: \mathfrak{m}$ of parameter ideals Q in a Cohen-Macaulay local ring (A, \mathfrak{m}) and showed that $I^{2}=Q I$, once A is not a regular local ring. Consequently the associated graded ring $\mathrm{G}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ and the fiber cone $\mathrm{F}(I)=\bigoplus_{n \geq 0} I^{n} / \mathfrak{m} I^{n}$ are Cohen-Macaulay and so is the ring $\mathcal{R}(I)=\bigoplus_{n \geq 0} I^{n}$, if $\operatorname{dim} A \geq 2$. The first author and H. Sakurai [GSa1, GSa2, GSa3] explored also the case where the base ring is not necessarily Cohen-Macaulay but Buchsbaum, and showed that the equality $I^{2}=Q I$ (here $I=Q: \mathfrak{m}$) holds true for numerous parameter ideals Q in a given Buchsbaum
local ring (A, \mathfrak{m}), whence $\mathrm{G}(I)$ is a Buchsbaum ring, provided that $\operatorname{dim} A \geq 2$ or that $\operatorname{dim} A=1$ but the multiplicity $\mathrm{e}(A)$ of A is not less than 2 . Thus socle ideals $Q: \mathfrak{m}$ still enjoy very good properties even in the case where the base local rings are not Cohen-Macaulay.

However a more important fact is the following. If J is an equimultiple CohenMacaulay ideal of reduction number one in a Cohen-Macaulay local ring, the associated graded ring $\mathrm{G}(J)=\bigoplus_{n \geq 0} J^{n} / J^{n+1}$ of J is a Cohen-Macaulay ring and, so is the Rees algebra $\mathcal{R}(J)=\bigoplus_{n \geq 0} J^{n}$ of J, provided $\mathrm{ht}_{A} J \geq 2$. One knows the number and degrees of defining equations of $\mathcal{R}(J)$ also, which makes the process of desingularization of Spec A along the subscheme $\mathrm{V}(J)$ fairly explicit to understand. This observation motivated the ingenious research of C. Polini and B. Ulrich [PU], where they posed, among many important results, the following conjecture.

Conjecture $1.2([\mathrm{PU}])$. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A \geq 2$. Assume that $\operatorname{dim} A \geq 3$ when A is regular. Let $q \geq 2$ be an integer and let Q be a parameter ideal in A such that $Q \subseteq \mathfrak{m}^{q}$. Then

$$
Q: \mathfrak{m}^{q} \subseteq \mathfrak{m}^{q} .
$$

This conjecture was settled by H.-J. Wang [Wan], whose theorem says:
Theorem 1.3 ([Wan]). Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $d=\operatorname{dim} A \geq 2$. Let $q \geq 1$ be an integer and Q a parameter ideal in A. Assume that $Q \subseteq \mathfrak{m}^{q}$ and put $I=Q: \mathfrak{m}^{q}$. Then

$$
I \subseteq \mathfrak{m}^{q}, \quad \mathfrak{m}^{q} I=\mathfrak{m}^{q} Q, \quad \text { and } \quad I^{2}=Q I,
$$

provided that A is not regular if $d \geq 2$ and that $q \geq 2$ if $d \geq 3$.
The research of the first author, N. Matsuoka, and R. Takahashi [GMT] reported a different approach to the Polini-Ulrich conjecture. They proved the following.

Theorem 1.4 ([GMT]). Let (A, \mathfrak{m}) be a Gorenstein local ring with $d=\operatorname{dim} A>0$ and $\mathrm{e}(A) \geq 3$, where $\mathrm{e}(A)$ denotes the multiplicity of A. Let Q be a parameter ideal in A and put $I=Q: \mathfrak{m}^{2}$. Then $\mathfrak{m}^{2} I=\mathfrak{m}^{2} Q, I^{3}=Q I^{2}$, and $\mathrm{G}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ is a Cohen-Macaulay ring, so that $\mathcal{R}(I)=\bigoplus_{n \geq 0} I^{n}$ is also a Cohen-Macaulay ring, provided $d \geq 3$.

The researches [Wan] and [GMT] are performed independently and their methods of proof are totally different from each other's. The technique of [GMT] can not go beyond the restrictions that A is a Gorenstein ring, $q=2$, and $\mathrm{e}(A) \geq 3$. However, despite these restrictions, the result [GMT, Theorem 1.1] holds true even in the case where $\operatorname{dim} A=1$, while Wang's result says nothing about the case where $\operatorname{dim} A=1$. As is suggested in [GMT], the one-dimensional case is substantially different from higherdimensional cases and more complicated to control. This observation has led S. Goto, S. Kimura, N. Matsuoka, and T. T. Phuong to the researches [GKM] (resp. [GKMP]), where they have explored quasi-socle ideals in Gorenstein numerical semigroup rings over fields (resp. the case where $\mathrm{G}(\mathfrak{m})=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ is a Gorenstein ring and $Q=\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \cdots, x_{d}^{a_{d}}\right)\left(a_{i} \geq 1\right)$ are diagonal parameter ideals in A, that is $x_{1}, x_{2}, \cdots, x_{d}$ is a system of parameters in A which generates a reduction of the maximal ideal $\mathfrak{m})$. The present research is a continuation of [GMT, GKM, GKMP] and the main purpose is to go beyond the restriction in [GKMP] that the parameter ideals $Q=\left(x_{1}^{a_{1}}, x_{2}^{a_{2}}, \cdots, x_{d}^{a_{d}}\right)$ are diagonal and the assumption in [GKM] that the parameter ideals are monomial.

To state the main results of the present paper, let us fix some notation. Let A denote a Noetherian local ring with the maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. Let $\left\{a_{i}\right\}_{1 \leq i \leq d}$ be positive integers and let $\left\{x_{i}\right\}_{1 \leq i \leq d}$ be elements of A with $x_{i} \in \mathfrak{m}^{a_{i}}$ for each $1 \leq i \leq d$ such that the initial forms $\left\{x_{i} \bmod \mathfrak{m}^{a_{i}+1}\right\}_{1 \leq i \leq d}$ constitute a homogeneous system of parameters in $\mathrm{G}(\mathfrak{m})$. Hence $\mathfrak{m}^{\ell}=\sum_{i=1}^{d} x_{i} \mathfrak{m}^{\ell-a_{i}}$ for $\ell \gg 0$, so that $Q=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$ is a parameter ideal in A. Let $q \in \mathbb{Z}, I=Q: \mathfrak{m}^{q}$,

$$
\rho=\mathrm{a}(\mathrm{G}(\mathfrak{m} / Q))=\mathrm{a}(\mathrm{G}(\mathfrak{m}))+\sum_{i=1}^{d} a_{i}, \quad \text { and } \quad \ell=\rho+1-q,
$$

where $\mathrm{a}(*)$ denote the a-invariants of graded rings ([GW, (3.1.4)]). We put

$$
\ell_{1}=\inf \left\{n \in \mathbb{Z} \mid \mathfrak{m}^{n} \subseteq I\right\} \text { and } \ell_{2}=\sup \left\{n \in \mathbb{Z} \mid I \subseteq Q+\mathfrak{m}^{n}\right\}
$$

With this notation our main result is sated as follows.
Theorem 1.5. Suppose that $\mathrm{G}(\mathfrak{m})=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ is a Cohen-Macaulay ring and consider the following four conditions:
(1) $\ell_{1} \geq a_{i}$ for all $1 \leq i \leq d$.
(2) $I \subseteq \bar{Q}$.
(3) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$.
(4) $\ell_{2} \geq a_{i}$ for all $1 \leq i \leq d$.

Then one has the implications $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$. If $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring, then one has the equality $I=Q+\mathfrak{m}^{\ell}$, so that $\ell_{1} \leq \ell \leq \ell_{2}$, whence conditions (1), (2), (3), and (4) are equivalent to the following:
(5) $\ell \geq a_{i}$ for all $1 \leq i \leq d$.

Consequently, the Goto number $\mathrm{g}(Q)$ of Q is given by the formula

$$
\mathrm{g}(Q)=\left[\mathrm{a}(\mathrm{G}(\mathfrak{m}))+\sum_{i=1}^{d} a_{i}+1\right]-\max \left\{a_{i} \mid 1 \leq i \leq d\right\}
$$

provided $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring; in particular $\mathrm{g}(Q)=\mathrm{a}(\mathrm{G}(\mathfrak{m}))+1$, if $d=1$.
Let $R=k\left[R_{1}\right]$ be a homogeneous ring over a filed k with $d=\operatorname{dim} R>0$. We choose a homogeneous system $f_{1}, f_{2}, \cdots, f_{d}$ of parameters of R and put $\mathfrak{q}=\left(f_{1}, f_{2}, \cdots, f_{d}\right)$. Let $M=R_{+}$. Then, applying Theorem 1.5 to the local ring $A=R_{M}$, we readily get the following, where $\mathrm{g}(\mathfrak{q})=\max \left\{n \in \mathbb{Z} \mid \mathfrak{q}: M^{n}\right.$ is integral over $\left.\mathfrak{q}\right\}$.

Corollary 1.6. Suppose that R is a Gorenstein ring. Then

$$
\mathrm{g}(\mathfrak{q})=\left[\mathrm{a}(R)+\sum_{i=1}^{d} \operatorname{deg} f_{i}+1\right]-\max \left\{\operatorname{deg} f_{i} \mid 1 \leq i \leq d\right\} .
$$

Hence $\mathrm{g}(\mathfrak{q})=\mathrm{a}(R)+1$, if $d=1$.
Corollary 1.7. With the same notation as is in Theorem 1.5 let $d=1$ and put $a=a_{1}$. Assume that $\mathrm{G}(\mathfrak{m})$ is a reduced ring. Then the following conditions are equivalent to each other.
(1) $I \subseteq \bar{Q}$.
(2) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$.
(3) $I \subseteq \mathfrak{m}^{a}$.
(4) $\ell_{2} \geq a$.

Later we will give some applications of these results. So, we are now in a position to explain how this paper is organized. Theorem 1.5 will be proven in Section 2. Once we have proven Theorem 1.5, exactly the same technique as is developed by [GKMP]
works to get a complete answer to Question 1.1 in the case where $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring and Q is a parameter ideal given in Theorem 1.5, which we shall briefly discuss in Section 2.

Sections 3 and 4 are devoted to the analysis of quasi-socle ideals in the ring A of the form $A=B / y B$, where y is subsystem of parameters in a Cohen-Macaulay local ring (B, \mathfrak{n}) of dimension 2. Here we notice that this class of local rings contains all the local complete intersections of dimension one. In Section 3 (resp. Section 4) we focus our attention on the case where B is not a regular local ring (resp. B is a regular local ring), and our results are summarized into Theorems 3.1 and 4.1. The proofs given in Sections 3 and 4 are based on the beautiful method developed by Wang [Wan] in higher dimensional cases and similar to each other, but the techniques are substantially different, depending on the assumptions that B is a regular local ring or not. In Sections 3 and 4 we shall give a careful description of the reason why such a difference should occur. In the final Section 5 we explore, in order to see how effectively our theorems work in the analysis of concrete examples, the numerical semigroup rings $A=k\left[\left[t^{6 n+5}, t^{6 n+8}, t^{9 n+12}\right]\right](\subseteq k[[t]])$, where $n \geq 0$ are integers and $k[[t]]$ is the formal power series ring over a field k. Here we note

$$
\begin{gathered}
A \cong k[[X, Y, Z]] /\left(Y^{3}-Z^{2}, X^{3 n+4}-Y^{3 n+1} Z\right) \text { and } \\
\mathrm{G}(\mathfrak{m}) \cong k[X, Y, Z] /\left(Y^{3 n+4}, Y^{3 n+1} Z, Z^{2}\right),
\end{gathered}
$$

where $k[[X, Y, Z]]$ denotes the formal powers series ring over the field k. Hence A is a local complete intersection with $\operatorname{dim} A=1$, whose associated graded $\operatorname{ring} \mathrm{G}(\mathfrak{m})$ is not a Gorenstein ring but Cohen-Macaulay.

In what follows, unless otherwise specified, let (A, \mathfrak{m}) be Noetherian local ring with $d=\operatorname{dim} A>0$. We denote by $\mathrm{e}(A)=\mathrm{e}_{\mathrm{m}}^{0}(A)$ the multiplicity of A with respect to the maximal ideal \mathfrak{m}. Let $J \subseteq K(\subsetneq A)$ be ideals in A. We denote by \bar{J} the integral closure of J. When $K \subseteq \bar{J}$, let

$$
\mathrm{r}_{J}(K)=\min \left\{n \in \mathbb{Z} \mid K^{n+1}=J K^{n}\right\}
$$

denote the reduction number of K with respect to J. For each finitely generated A module M let $\mu_{A}(M)$ and $\ell_{A}(M)$ be the number of elements in a minimal system of
generators for M and the length of M, respectively. We denote by $\mathrm{v}(A)=\ell_{A}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$ the embedding dimension of A.

2. The case where $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring

The purpose of this section is to prove Theorem 1.5. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. Let $\left\{a_{i}\right\}_{1 \leq i \leq d}$ be positive integers and let $\left\{x_{i}\right\}_{1 \leq i \leq d}$ be elements of A such that $x_{i} \in \mathfrak{m}^{a_{i}}$ for each $1 \leq i \leq d$. Assume that the initial forms $\left\{x_{i} \bmod \mathfrak{m}^{a_{i}+1}\right\}_{1 \leq i \leq d}$ constitute a homogeneous system of parameters in $\mathrm{G}(\mathfrak{m})$. Let $q \in \mathbb{Z}$ and $Q=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$. We put $I=Q: \mathfrak{m}^{q}$.

Let us begin with the following.

Proposition 2.1. Let $\ell_{3} \in \mathbb{Z}$ and suppose that $\mathfrak{m}^{\ell_{3}} \subseteq \bar{Q}$. Then $\ell_{3} \geq a_{i}$ for all $1 \leq i \leq d$.

Proof. Assume that $\mathfrak{m}^{\ell_{3}} \subseteq \bar{Q}$ with $\ell_{3} \in \mathbb{Z}$. Then $\ell_{3}>0$. We want to show $\ell_{3} \geq$ $\max \left\{a_{i} \mid 1 \leq i \leq d\right\}$. Assume the contrary and let x be an arbitrary element of \mathfrak{m} and put $y=x^{\ell_{3}}$. Then since y is integral over Q, we have an equation

$$
y^{n}+c_{1} y^{n-1}+\cdots+c_{n}=0
$$

with $n>0$ and $c_{i} \in Q^{i}$ for all $1 \leq i \leq n$. We put $a=\max \left\{a_{i} \mid 1 \leq i \leq d\right\}$ (hence $\left.\ell_{3}<a\right)$ and let $a=a_{u}$ with $1 \leq u \leq d$. Let $B=A /\left(x_{i} \mid 1 \leq i \leq d, i \neq u\right)$ and $\mathfrak{n}=\mathfrak{m} B$. Let $\bar{*}$ denote the image in B. Then

$$
\bar{y}^{n}+{\overline{c_{1} y}}^{n-1}+\cdots+\overline{c_{n}}=0
$$

in B. Therefore, because $i \ell_{3}<i a$ and $\overline{c_{i}} \in Q^{i} B=\overline{x_{u}^{i}} B \subseteq \mathfrak{n}^{i a}$, we get $\overline{c_{i}} \in \mathfrak{n}^{i \ell_{3}+1}$ for all $1 \leq i \leq n$. Consequently, $\overline{c_{i}} \bar{y}^{n-i} \in \mathfrak{n}^{i \ell_{3}+1} \mathfrak{n}^{(n-i) \ell_{3}}=\mathfrak{n}^{n \ell_{3}+1}$, so that we have $\bar{y}^{n}=$ $\overline{x^{n \ell_{3}}} \in \mathfrak{n}^{n \ell_{3}+1}$. Hence, for every $z \in \mathfrak{n}$, the initial form $z \bmod \mathfrak{n}^{2}$ of z is nilpotent in the associated graded ring $\mathrm{G}(\mathfrak{n})=\bigoplus_{n \geq 0} \mathfrak{n}^{n} / \mathfrak{n}^{n+1}$, which is impossible, because $\operatorname{dim} \mathrm{G}(\mathfrak{n})=$ $\operatorname{dim} B=1$. Thus $\ell_{3} \geq a_{i}$ for all $1 \leq i \leq d$.

We put $\rho=\mathrm{a}(\mathrm{G}(\mathfrak{m} / Q))=\mathrm{a}(\mathrm{G}(\mathfrak{m}))+\sum_{i=1}^{d} a_{i}$ (cf. [GW, (3.1.6)]) and $\ell=\rho+1-q$. Let $\ell_{1}=\inf \left\{n \in \mathbb{Z} \mid \mathfrak{m}^{n} \subseteq I\right\}$ and $\ell_{2}=\sup \left\{n \in \mathbb{Z} \mid I \subseteq Q+\mathfrak{m}^{n}\right\}$.

We are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. (4) \Rightarrow (3) We may assume $\ell_{2}<\infty$. Then, since $I \subseteq Q+\mathfrak{m}^{\ell_{2}}$, we have $\mathfrak{m}^{q} I \subseteq \mathfrak{m}^{q} Q+\mathfrak{m}^{q+\ell_{2}}$, whence $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q+\left[Q \cap \mathfrak{m}^{q+\ell_{2}}\right]$. Notice that

$$
Q \cap \mathfrak{m}^{q+\ell_{2}}=\sum_{i=1}^{d} x_{i} \mathfrak{m}^{q+\ell_{2}-a_{i}},
$$

because the initial forms $\left\{x_{i} \bmod \mathfrak{m}^{a_{i}+1}\right\}_{1 \leq i \leq d}$ constitute a homogeneous system of parameters in the Cohen-Macaulay ring $\mathrm{G}(\mathfrak{m})$, and we have $\mathfrak{m}^{q+\ell_{2}-a_{i}} \subseteq \mathfrak{m}^{q}$, since $\ell_{2} \geq a_{i}$ for all $1 \leq i \leq d$. Thus $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$.
$(3) \Rightarrow(2)$ See [NR, Section 7, Theorem 2].
$(2) \Rightarrow(1)$ This follows from Proposition 2.1.
We now assume that $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring. Then $I=Q+\mathfrak{m}^{\ell}$ by [Wat] (see [O, Theorem 1.6] also), whence $\ell_{1} \leq \ell \leq \ell_{2}$, so that the implication (1) \Rightarrow (4) follows. Therefore, $I \subseteq \bar{Q}$ if and only if $\ell=\rho+1-q \geq a_{i}$ for all $1 \leq i \leq d$, or equivalently

$$
q \leq\left[\mathrm{a}(\mathrm{G}(\mathfrak{m}))+\sum_{i=1}^{d} a_{i}+1\right]-\max \left\{a_{i} \mid 1 \leq i \leq d\right\}
$$

Thus $\mathrm{g}(Q)=\left[\mathrm{a}(\mathrm{G}(\mathfrak{m}))+\sum_{i=1}^{d} a_{i}+1\right]-\max \left\{a_{i} \mid 1 \leq i \leq d\right\}$, so that

$$
\mathrm{g}(Q)=\mathrm{a}(\mathrm{G}(\mathfrak{m}))+1
$$

if $d=1$.

Remark 2.2 (cf. Example 5.3). Unless $G(\mathfrak{m})$ is a Gorenstein ring, the implication $(1) \Rightarrow(4)$ in Theorem 1.5 does not hold true in general, even though A is a complete intersection and $\mathrm{G}(\mathfrak{m})$ is a Cohen-Macaulay ring. For example, let $V=k[[t]]$ be the formal power series ring over a field k and look at the numerical semigroup ring $A=k\left[\left[t^{5}, t^{8}, t^{12}\right]\right] \subseteq V$. Then $A \cong k[[X, Y, Z]] /\left(Y^{3}-Z^{2}, X^{4}-Y Z\right)$, while $\mathrm{G}(\mathfrak{m}) \cong k[X, Y, Z] /\left(Y^{4}, Y Z, Z^{2}\right)$, whence $\mathrm{G}(\mathfrak{m})$ is a Cohen-Macaulay ring but not a Gorenstein ring. Let $Q=\left(t^{20}\right)$ in A and let $I=Q: \mathfrak{m}^{3} ;$ hence $a_{1}=4$ and $q=3$. Then $I=\left(t^{20}, t^{22}, t^{23}, t^{26}, t^{29}\right) \subseteq \mathfrak{m}^{3}$ and $I^{3}=Q I^{2}$, so that $I \subseteq \bar{Q}$, while $I^{2}=Q I+\left(t^{44}\right) \subseteq Q$ but $t^{44} \notin Q I$, since $t^{24} \notin I$. Thus $I^{2}=Q \cap I^{2} \neq Q I$, so that $\mathrm{r}_{Q}(I)=2$ and the $\operatorname{ring} \mathrm{G}(I)$ is not Cohen-Macaulay. It is direct to check that $\mathfrak{m}^{4} \subseteq I, \mathfrak{m}^{3} \nsubseteq I$, and $I \nsubseteq Q+\mathfrak{m}^{4}=\mathfrak{m}^{4}$ since $t^{22} \in I$ but $t^{22} \notin \mathfrak{m}^{4}$. Thus $\ell_{1}=4$ and $\ell_{2}=3$.

Proof of Corollary 1.7. Since $Q \subseteq \mathfrak{m}^{a}$, we readily get the equivalence (3) \Leftrightarrow (4). We also have $\overline{\mathfrak{m}^{a}}=\mathfrak{m}^{a}$, because the ring $\mathrm{G}(\mathfrak{m})$ is reduced. Hence $\bar{Q} \subseteq \mathfrak{m}^{a}$. Therefore $I \subseteq \mathfrak{m}^{a}$, if $I \subseteq \bar{Q}$. Thus all conditions (1), (2), (3), and (4) are, by Theorem 1.5, equivalent to each other.

Thanks to Theorem 1.5, similarly as in [GKMP] we have the following complete answer to Question 1.1 for the parameter ideals $Q=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$. We later need it in the present paper. Let us note a brief proof.

Theorem 2.3. With the same notation as is in Theorem1.5 assume that $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring. Suppose that $\ell \geq a_{i}$ for all $1 \leq i \leq d$. Then the following assertions hold true.
(1) $\mathrm{G}(I)$ is a Cohen-Macaulay ring, $\mathrm{r}_{Q}(I)=\left\lceil\frac{q}{\ell}\right\rceil$, and $\mathrm{a}(\mathrm{G}(I))=\left\lceil\frac{q}{\ell}\right\rceil-d$, where $\left\lceil\frac{q}{\ell}\right\rceil=\min \left\{n \in \mathbb{Z} \left\lvert\, \frac{q}{\ell} \leq n\right.\right\}$.
(2) $\mathrm{F}(I)$ is a Cohen-Macaulay ring.
(3) $\mathcal{R}(I)$ is a Cohen-Macaulay ring if and only if $q \leq(d-1) \ell$.
(4) Suppose that $q>0$. Then $\mathrm{G}(I)$ is a Gorenstein ring if and only if $\ell \mid q$.
(5) Suppose that $q>0$. Then $\mathcal{R}(I)$ is a Gorenstein ring if and only if $q=(d-2) \ell$.

To prove Proposition 2.3 we need the following. We skip the proof, since one can prove it exactly in the same way as is given in [GKMP, Lemma 2.2].

Lemma 2.4 (cf. [GKMP, Lemma 2.2]). With the same notation as is in Theorem1.5 assume that $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring. If $\ell \geq a_{i}$ for all $1 \leq i \leq d$, then

$$
Q \cap \mathfrak{m}^{(n+1) \ell+m} \subseteq \mathfrak{m}^{m} Q I^{n}
$$

for all integers $m, n \geq 0$.
Proof of Theorem 2.3. (1) Let $n \geq 0$ be an integer. Then, since $I=Q+\mathfrak{m}^{\ell}$, we get $I^{n+1}=Q I^{n}+\mathfrak{m}^{(n+1) \ell}$, so that

$$
Q \cap I^{n+1}=Q I^{n}+\left[Q \cap \mathfrak{m}^{(n+1) \ell}\right] \subseteq Q I^{n}
$$

because $Q \cap \mathfrak{m}^{(n+1) \ell} \subseteq Q I^{n}$ by Lemma 2.4. Therefore $Q \cap I^{n+1}=Q I^{n}$ for all $n \geq 0$, so that $\mathrm{G}(I)$ is a Cohen-Macaulay ring and $\mathrm{r}_{Q}(I)=\min \left\{n \in \mathbb{Z} \mid I^{n+1} \subseteq Q\right\}$. Let $n \in \mathbb{Z}$
and suppose that $I^{n+1} \subseteq Q$. Then $\mathfrak{m}^{(n+1) \ell} \subseteq Q$, whence $(n+1) \ell \geq \rho+1$ (recall that $\rho=\mathrm{a}(\mathrm{G}(\mathfrak{m} / Q))$. Therefore

$$
n+1 \geq \frac{\rho+1}{\ell}=\frac{q+\ell}{\ell}=\frac{q}{\ell}+1
$$

so that $n \geq \frac{q}{\ell}$. Conversely, if $n \geq \frac{q}{\ell}$, then $(n+1) \ell \geq\left(\frac{q}{\ell}+1\right) \ell=q+\ell=\rho+1$, whence $\mathfrak{m}^{(n+1) \ell} \subseteq Q$, so that $I^{n+1} \subseteq Q$. Thus $\mathrm{r}_{Q}(I)=\left\lceil\frac{q}{\ell}\right\rceil$.

Let Y_{i} 's be the initial forms of x_{i} 's with respect to I. Then $Y_{1}, Y_{2}, \cdots, Y_{d}$ is a homogeneous system of parameters of $\mathrm{G}(I)$, whence it constitutes a regular sequence in $\mathrm{G}(I)$. Therefore

$$
\mathrm{G}(\bar{I}) \cong \mathrm{G}(I) /\left(Y_{1}, Y_{2}, \cdots, Y_{d}\right)
$$

as graded A-algebras $([\mathrm{VV}])$, where $\bar{I}=I / Q$. Hence $\mathrm{a}(\mathrm{G}(\bar{I}))=\mathrm{a}(\mathrm{G}(I))+d$ (cf. [GW, (3.1.6)]). Thus $\mathrm{a}(\mathrm{G}(I))=\left\lceil\frac{q}{\ell}\right\rceil-d$, since $\mathrm{a}(\mathrm{G}(\bar{I}))=\mathrm{r}_{Q}(I)=\left\lceil\frac{q}{\ell}\right\rceil$.
(2) By Lemma 2.4

$$
\begin{aligned}
Q \cap \mathfrak{m} I^{n+1} & =Q \cap\left[\mathfrak{m} Q I^{n}+\mathfrak{m}^{(n+1) \ell+1}\right] \\
& =\mathfrak{m} Q I^{n}+\left[Q \cap \mathfrak{m}^{(n+1) \ell+1}\right] \\
& \subseteq \mathfrak{m} Q I^{n}
\end{aligned}
$$

Hence $Q \cap \mathfrak{m} I^{n+1}=\mathfrak{m} Q I^{n}$ for all $n \geq 0$. Thus $\mathrm{F}(I)$ is a Cohen-Macaulay ring (cf. e.g., [CGPU, CZ]; recall that $\mathrm{G}(I)$ is a Cohen-Macaulay ring).
(3) The Rees algebra $\mathcal{R}(I)$ of I is a Cohen-Macaulay ring if and only if $\mathrm{G}(I)$ is a Cohen-Macaulay ring and $a(\mathrm{G}(I))<0$ ([GSh, Remark (3.10)], [TI]). By assertion (1) the latter condition is equivalent to saying that $\left\lceil\frac{q}{\ell}\right\rceil<d$, or equivalently $q \leq(d-1) \ell$.
(4) Notice that $\mathrm{G}(I)$ is a Gorenstein ring if and only if so is the graded ring

$$
\mathrm{G}(\bar{I})=\mathrm{G}(I) /\left(Y_{1}, Y_{2}, \cdots, Y_{d}\right)
$$

Let $r=\mathrm{r}_{Q}(I)\left(=\left\lceil\frac{q}{\ell}\right\rceil\right)$. Then $\mathrm{G}(\bar{I})$ is a Gorenstein ring if and only if $(0): \bar{I}^{i}=\bar{I}^{r+1-i}$ for all $i \in \mathbb{Z}$ (cf. [O, Theorem 1.6]). Therefore, if $\mathrm{G}(I)$ is a Gorenstein ring, we have $(0): \bar{I}=\bar{I}^{r}=\overline{\mathfrak{m}}^{r \ell}$, where $\overline{\mathfrak{m}}=\mathfrak{m} / Q$. On the other hand, since $\bar{I}=\overline{\mathfrak{m}}^{\ell}$ and $q=\rho+1-\ell$, we get

$$
(0): \bar{I}=(0): \overline{\mathfrak{m}}^{\ell}=\overline{\mathfrak{m}}^{q}
$$

by [Wat] (see [O, Theorem 1.6] also). Hence $q=r \ell$, because $\overline{\mathfrak{m}}^{r \ell}=\overline{\mathfrak{m}}^{q} \neq(0)$ and $q>0$. Thus $\ell \mid q$ and $r=\frac{q}{\ell}$. Conversely, suppose that $\ell \mid q$; hence $r=\frac{q}{\ell}$. Let $i \in \mathbb{Z}$. Then since $\bar{I}=\overline{\mathfrak{m}}^{\ell}$, we get $\bar{I}^{r+1-i}=\overline{\mathfrak{m}}^{(r+1-i) \ell}$, while

$$
\text { (0) }: \bar{I}^{i}=(0): \overline{\mathfrak{m}}^{i \ell}=\overline{\mathfrak{m}}^{\rho+1-i \ell}
$$

by $\left[\mathrm{O}\right.$, Theorem 1.6]. Hence (0) : $\bar{I}^{i}=\bar{I}^{r+1-i}$ for all $i \in \mathbb{Z}$, because

$$
(r+1-i) \ell=q+\ell-i \ell=\rho+1-i \ell .
$$

Thus $\mathrm{G}(\bar{I})$ is a Gorenstein ring, whence so is $\mathrm{G}(I)$.
(5) The Rees algebra $\mathcal{R}(I)$ of I is a Gorenstein ring if and only if $\mathrm{G}(I)$ is a Gorenstein ring and $a(\mathrm{G}(I))=-2$, provided $d \geq 2$ ([I, Corollary (3.7)]). Suppose that $\mathcal{R}(I)$ is a Gorenstein ring. Then $d \geq 2$ by assertion (2) (recall that $q>0$). Since $a(\mathrm{G}(I))=$ $\mathrm{r}_{Q}(I)-d=-2$, thanks to assertions (1) and (4), we have $\frac{q}{\ell}=\mathrm{r}_{Q}(I)=d-2$, whence $q=(d-2) \ell$. Conversely, suppose that $q=(d-2) \ell$. Then $d \geq 3$, since $q>0$. By assertions (1) and (4), $\mathrm{G}(I)$ is a Gorenstein ring with $\mathrm{r}_{Q}(I)=\frac{q}{\ell}=d-2$, whence $a(\mathrm{G}(I))=(d-2)-d=-2$. Thus $\mathcal{R}(I)$ is a Gorenstein ring.

We now discuss Goto numbers. For each Noetherian local ring A let

$$
\mathcal{G}(A)=\{\mathrm{g}(Q) \mid Q \text { is a parameter ideal in } A\} .
$$

We explore the value $\min \mathcal{G}(A)$ in the setting of Theorem 1.5 with $\operatorname{dim} A=1$. For the purpose the following result is fundamental.

Theorem 2.5 ([HS, Theorem 3.1]). Let (A, \mathfrak{m}) be a Noetherian local ring of dimension one. Then there exists an integer $k \gg 0$ such that $g(Q)=\min \mathcal{G}(A)$ for every parameter ideal Q of A contained in \mathfrak{m}^{k}.

Thanks to Theorem 1.5 and Theorem 2.5, we then have the following.
Corollary 2.6. Let (A, \mathfrak{m}) be a Noetherian local ring with $\operatorname{dim} A=1$. Then $\min \mathcal{G}(A)=$ $\mathrm{a}(\mathrm{G}(\mathfrak{m}))+1$, if $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring.

We close this section with the following.
Proposition 2.7. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. Then $\mathrm{v}(A) \leq 2$ if and only if $\min \mathcal{G}(A)=\mathrm{e}(A)-1$.

Proof. Suppose that $\mathrm{v}(A) \leq 2$. Then $\mathrm{G}(\mathfrak{m})$ is a Gorenstein ring with $\mathrm{a}(\mathrm{G}(\mathfrak{m}))=$ $\mathrm{e}(A)-2$. Hence $\min \mathcal{G}(A)=\mathrm{a}(\mathrm{G}(\mathfrak{m}))+1=\mathrm{e}(A)-1$ by Corollary 2.6. Conversely, assume that $\min \mathcal{G}(A)=\mathrm{e}(A)-1$. To prove the assertion, enlarging the field A / \mathfrak{m} if necessary, we may assume that the field A / \mathfrak{m} is infinite (use Theorem 2.5). Let $x \in \mathfrak{m}$ and assume that $Q=(x)$ is a reduction of \mathfrak{m}. We put $e=\mathrm{e}(A)$ and $q=\mathrm{g}(Q)$. Then $q \geq e-1$. Let $B=A / Q$ and $\mathfrak{n}=\mathfrak{m} / Q$. Then $Q: \mathfrak{m}^{q} \subseteq \bar{Q} \subsetneq A$. Hence $\mathfrak{n}^{q} \neq(0)$, so that $\mathfrak{n}^{i} \neq \mathfrak{n}^{i+1}$ for any $0 \leq i \leq q$. Consequently, because $q+1 \geq e$ and

$$
e=\ell_{A}(A / Q)=\sum_{i \geq 0} \ell_{A}\left(\mathfrak{n}^{i} / \mathfrak{n}^{i+1}\right) \geq \sum_{i=0}^{q} \ell_{A}\left(\mathfrak{n}^{i} / \mathfrak{n}^{i+1}\right) \geq q+1
$$

we get $\mathfrak{n}^{q+1}=(0)$ and $\ell_{A}\left(\mathfrak{n}^{i} / \mathfrak{n}^{i+1}\right)=1$ for all $0 \leq i \leq q$. Hence $\ell_{A}\left(\mathfrak{n} / \mathfrak{n}^{2}\right) \leq 1$, so that $\mathrm{v}(A) \leq 2$.

3. The case where $A=B / y B$ and B is not a Regular local ring

Let us now explore quasi-socle ideals in the ring A of the form $A=B / y B$, where (B, \mathfrak{n}) is a Cohen-Macaulay local ring of dimension 2 and y is a subsystem of parameters in B. Recall that this class of local rings contains all the local complete intersections of dimension one.

In this section we assume that B is not a regular local ring and our goal is the following.

Theorem 3.1. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let n, q be integers such that $n \geq q>0$. Let $y \in \mathfrak{n}^{n}$ and assume that y is regular in B. We put $A=B / y B$ and $\mathfrak{m}=\mathfrak{n} / y B$. Let Q be a parameter ideal in A and put $I=Q: \mathfrak{m}^{q}$. Then the following assertions hold true, where $m=n-q$.
(1) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q, I \subseteq \bar{Q}$, and $Q \cap I^{2}=Q I$. Hence $\mathrm{g}(Q) \geq n$.
(2) $I^{2}=Q I$, if one of the following conditions is satisfied.
(i) $m \geq q-1$;
(ii) $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-m}$;
(iii) $m>0$ and $Q \subseteq \mathfrak{m}^{q-1}$.
(3) Suppose that B is a Gorenstein ring. Then $I^{3}=Q I^{2}$ and $\mathrm{G}(I)$ is a CohenMacaulay ring, if one of the following conditions is satisfied.
(i) $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-(m+1)}$;
(ii) $Q \subseteq \mathfrak{m}^{q-1}$.

We begin with the following.
Lemma 3.2. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let q, ℓ, and m be integers such that $q \geq \ell>0$ and $m \geq 0$. Let $x \in \mathfrak{n}^{\ell}$ and $y_{i} \in \mathfrak{n}(1 \leq i \leq q+m)$ and assume that for all $1 \leq i \leq q+m$, the sequence x, y_{i} is B-regular. Then we have

$$
\left(x, \prod_{i=1}^{q+m} y_{i}\right): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m}
$$

Proof. Let $\alpha \in\left(x, \prod_{i=1}^{q+m} y_{i}\right): \mathfrak{n}^{q}$ and write $\alpha \cdot \prod_{i=1}^{q} y_{i}=u x+v \cdot \prod_{i=1}^{q+m} y_{i}$ with $u, v \in B$. Then, since

$$
\left(\alpha-v \cdot \prod_{i=q+1}^{q+m} y_{i}\right) \cdot \prod_{i=1}^{q} y_{i} \in(x)
$$

and since $x, \prod_{i=1}^{q} y_{i}$ is a B-regular sequence, we get $\alpha-v \cdot \prod_{i=q+1}^{q+m} y_{i} \in(x)$. Let us write

$$
\alpha=w x+v \cdot \prod_{i=q+1}^{q+m} y_{i}
$$

with $w \in B$. We want to show $v \in \mathfrak{n}^{\ell}$. Let $z \in \mathfrak{n}^{\ell}$ and write

$$
\alpha z \cdot \prod_{i=1}^{q-\ell} y_{i}=u^{\prime} x+v^{\prime} \cdot \prod_{i=1}^{q+m} y_{i}
$$

with $u^{\prime}, v^{\prime} \in B$. Then, since

$$
\alpha z \cdot \prod_{i=1}^{q-\ell} y_{i}=w x z \cdot \prod_{i=1}^{q-\ell} y_{i}+v z \cdot \prod_{i=1}^{q-\ell} y_{i} \cdot \prod_{i=q+1}^{q+m} y_{i}
$$

we have

$$
\left(v z-v^{\prime} \cdot \prod_{i=q-\ell+1}^{q} y_{i}\right) \cdot \prod_{i=1}^{q-\ell} y_{i} \cdot \prod_{i=q+1}^{q+m} y_{i} \in(x)
$$

Therefore, since the sequence $x, \prod_{i=1}^{q-\ell} y_{i} \cdot \prod_{i=q+1}^{q+m} y_{i}$ is B-regular, we see $v z \in$ $\left(x, \prod_{i=q-\ell+1}^{q} y_{i}\right)$, so that $v \in\left(x, \prod_{i=q-\ell+1}^{q} y_{i}\right): \mathfrak{n}^{\ell}$, because z is an arbitrary element in \mathfrak{n}^{ℓ}. We now notice that $\mathfrak{q}=\left(x, \prod_{i=q-\ell+1}^{q} y_{i}\right)$ is a parameter ideal in B such that
$\mathfrak{q} \subseteq \mathfrak{n}^{\ell}$. Then, since B is not a regular local ring, we have $\mathfrak{q}: \mathfrak{n}^{\ell} \subseteq \mathfrak{n}^{\ell}$, thanks to [Wan, Theorem 1.1]. Thus $v \in \mathfrak{n}^{\ell}$, whence $\alpha \in(x)+\mathfrak{n}^{\ell+m}$.

Proposition 3.3. Let (B, \mathfrak{n}) be a Cohen-Macaulay local ring of dimension 2 and assume that B is not a regular local ring. Let q, ℓ, and m be integers such that $q \geq \ell>0$ and $m \geq 0$. Let $x, y \in B$ be a system of parameters of B and assume that $x \in \mathfrak{n}^{\ell}$ and $y \in \mathfrak{n}^{q+m}$. Then
(1) $(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m}$.
(2) $\mathfrak{n}^{q} .\left[(x, y): \mathfrak{n}^{q}\right] \subseteq \mathfrak{n}^{q} x+(y)$.

Proof. (1) We notice that the ideal \mathfrak{n}^{k} is, for each integer $k>0$, generated by the set

$$
F_{k}=\left\{\prod_{i=1}^{k} z_{i} \mid z_{i} \in \mathfrak{n} \text { and } x, z_{i} \text { is a system of parameters of } B \text { for all } 1 \leq i \leq k\right\}
$$

Let $\alpha \in(x, y): \mathfrak{n}^{q}$. Let $z \in F_{q+m}$ and $z^{\prime} \in F_{q}$ and write

$$
\begin{gathered}
z \alpha=u x+v y, \\
z^{\prime} \alpha=u^{\prime} x+v^{\prime} y
\end{gathered}
$$

with $u, v, u^{\prime}, v^{\prime} \in B$. Then $z^{\prime} z \alpha=z^{\prime} u x+z^{\prime} v y=z u^{\prime} x+z v^{\prime} y$, whence $y\left(z^{\prime} v-z v^{\prime}\right) \in(x)$, so that $z^{\prime} v \in(x, z)$, because the sequence x, y is B-regular. Since z^{\prime} is an arbitrary element of F_{k} which generates the ideal \mathfrak{n}^{q}, we have

$$
v \in(x, z): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m}
$$

by Lemma 3.2. Hence $z \alpha=u x+v y \in(x)+\mathfrak{n}^{\ell+m} y$, so that

$$
\alpha \in\left[(x)+\mathfrak{n}^{\ell+m} y\right]: \mathfrak{n}^{q+m},
$$

because z is an arbitrary element of F_{q+m}. Since $y \in \mathfrak{n}^{q+m}$, we then have

$$
y \alpha=\rho x+\tau y
$$

with $\rho \in B$ and $\tau \in \mathfrak{n}^{\ell+m}$. Therefore $\alpha-\tau \in(x)$, so that $\alpha \in(x)+\mathfrak{n}^{\ell+m}$. Thus $(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m}$.
(2) The ideal \mathfrak{n}^{q} is generated by the set

$$
F=\left\{z \in \mathfrak{n}^{q} \mid y, z \text { is a system of parameters in } B\right\}
$$

Let $\alpha \in(x, y): \mathfrak{n}^{q}$ and $z, z^{\prime} \in F$. We write $z \alpha=u x+v y$ and $z^{\prime} \alpha=u^{\prime} x+v^{\prime} y$ with $u, v, u^{\prime}, v^{\prime} \in B$. We want to show $u x \in \mathfrak{n}^{q} x$. Since $z^{\prime} z \alpha=z^{\prime} u x+z^{\prime} v y=z u^{\prime} x+z v^{\prime} y$, we have $x\left(z^{\prime} u-z u^{\prime}\right) \in(y)$, whence $z^{\prime} u \in(z, y)$. Therefore $u \in(z, y): \mathfrak{n}^{q}$, whence $u \in(z)+\mathfrak{n}^{q+m}$, because $(z, y): \mathfrak{n}^{q} \subseteq(z)+\mathfrak{n}^{q+m}$ by assertion (1) (take $x=z$, and $\ell=q)$. Thus $u x \in(z x)+\mathfrak{n}^{q+m} x \subseteq \mathfrak{n}^{q} x$, whence $\mathfrak{n}^{q} .\left[(x, y): \mathfrak{n}^{q}\right] \subseteq \mathfrak{n}^{q} x+(y)$.

We need also the following result to prove Theorem 3.1.

Proposition 3.4. Let (A, \mathfrak{m}) be a Gorenstein local ring with $d=\operatorname{dim} A>0$. Let Q be a parameter ideal in A and $q>0$ an integer. We put $I=Q: \mathfrak{m}^{q}$. Then $I^{3}=Q I^{2}$ and $\mathrm{G}(I)$ is a Cohen-Macaulay ring, if $I \subseteq Q+\mathfrak{m}^{q-1}$ and $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$.

Proof. We have $\mathfrak{m}^{q} I^{i}=\mathfrak{m}^{q} Q^{i}$ and $Q^{i} \cap I^{i+1}=Q^{i} I$ for all $i \geq 1$ (cf. [GMT, Corollary 2.3]). Therefore, since $Q \cap I^{2}=Q I$, we may assume that $I^{2} \nsubseteq Q$. Notice that $\mathfrak{m} I^{2}=\mathfrak{m} I \cdot I \subseteq\left(Q+\mathfrak{m}^{q}\right) \cdot I \subseteq Q$ and we have $I^{2} \subseteq Q: \mathfrak{m}$. Hence $Q: \mathfrak{m}=Q+I^{2}$, because A is a Gorenstein ring. We similarly have $\mathfrak{m} I^{3} \subseteq \mathfrak{m} I \cdot I^{2} \subseteq\left(\mathfrak{m} Q+\mathfrak{m}^{q}\right) \cdot I^{2}=$ $\mathfrak{m} I^{2} \cdot Q+\mathfrak{m}^{q} I^{2} \subseteq Q^{2}$, so that $I^{3} \subseteq Q^{2}: \mathfrak{m}=Q \cdot[Q: \mathfrak{m}]=Q^{2}+Q I^{2}$. Therefore $I^{3}=\left[Q^{2}+Q I^{2}\right] \cap I^{3}=\left[Q^{2} \cap I^{3}\right]+Q I^{2}=Q^{2} I+Q I^{2}=Q I^{2}$. Hence $I^{3}=Q I^{2}$, which implies, because $Q \cap I^{2}=Q I$, that $\mathrm{G}(I)$ is a Cohen-Macaulay ring.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Let $Q=(\bar{x})$ with $x \in \mathfrak{n}$, where \bar{x} denotes the image of x in A. We put $J=(x, y): \mathfrak{n}^{q}$; hence $I=J A$. We have by Proposition 3.3 that $J \subseteq(x)+\mathfrak{n}^{m+1}$ and $\mathfrak{n}^{q} J \subseteq \mathfrak{n}^{q} x+(y)$ (take $\ell=1$). Hence $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$, so that $I \subseteq \bar{Q}$ (cf. [NR]). Let $\alpha \in Q \cap I^{2}$ and write $\alpha=\bar{x} \beta$ with $\beta \in A$. Then, for all $\gamma \in \mathfrak{m}^{q}$, we have $\alpha \gamma=\bar{x} \cdot \beta \gamma \in \mathfrak{m}^{q} I^{2} \subseteq Q^{2}=\left(\bar{x}^{2}\right)$, so that $\beta \gamma \in(\bar{x})=Q$. Therefore $\beta \in Q: \mathfrak{m}^{q}=I$, whence $\alpha=\bar{x} \beta \in Q I$. Thus $Q \cap I^{2}=Q I$, which proves assertion (1).

If $m \geq q-1$, we have $J \subseteq(x)+\mathfrak{n}^{m+1} \subseteq(x)+\mathfrak{n}^{q}$, whence $I \subseteq Q+\mathfrak{m}^{q}$. Therefore $I^{2} \subseteq Q$, so that $I^{2}=Q I$ by assertion (1). Suppose that $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-m}$. We choose the element x so that $x \in \mathfrak{n}^{q-m}$. Then, taking $\ell=q-m$, by Proposition 3.3 (1) we get $J=(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{q}$. Hence $I \subseteq Q+\mathfrak{m}^{q}$. Thus $I^{2}=Q I$. Suppose now that $m>0$ and $Q \subseteq \mathfrak{m}^{q-1}$. To show $I^{2}=Q I$, we may assume by condition (ii) that
$m<q-1$. Then $Q \subseteq \mathfrak{m}^{q-m}$, since $Q \subseteq \mathfrak{m}^{q-1}$ and $m>0$. Hence $I^{2}=Q I$. This proves assertion (2).

Let us consider assertion (3). Suppose that B is a Gorenstein ring and assume that condition (i) is satisfied. We choose the element x so that $x \in \mathfrak{n}^{q-(m+1)}$. Then $J=(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{q-1}$ (take $\ell=q-(m+1)$), whence $I \subseteq Q+\mathfrak{m}^{q-1}$, so that the result follows from Proposition 3.4. Assume that condition (ii) is satisfied. By assertion (2) we may assume that $m<q-1$. Then, since $\mathfrak{m}^{q-1} \subseteq \mathfrak{m}^{q-(m+1)}$, we have $Q \subseteq \mathfrak{m}^{q-(m+1)}$, so that condition (i) is satisfied, whence the result follows. This completes the proof of Theorem 3.1.
4. The case where $A=B / y B$ and B is a Regular local ring

Similarly as in Section 3, we explore quasi-socle ideals in the ring A of the form $A=B / y B$, where (B, \mathfrak{n}) is a regular local ring of dimension 2 and y is a subsystem of parameters in B; hence $\mathrm{v}(A) \leq 2$ and $\min \mathcal{G}(A)=\mathrm{e}(A)-1$ (Proposition 2.7).

Our goal of this time is the following.

Theorem 4.1. Let (B, \mathfrak{n}) be a regular local ring of dimension 2 . Let n, q be integers such that $n>q>0$ and put $m=n-q$. Let $0 \neq y \in \mathfrak{n}^{n}$ and put $A=B / y B$ and $\mathfrak{m}=\mathfrak{n} / y B$. Let Q be a parameter ideal in A and put $I=Q: \mathfrak{m}^{q}$. Then the following assertions hold true.
(1) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q, I \subseteq \bar{Q}$, and $Q \cap I^{2}=Q I$.
(2) $I^{2}=Q I$, if one of the following conditions is satisfied.
(i) $m \geq q$;
(ii) $m<q$ and $Q \subseteq \mathfrak{m}^{q-(m-1)}$.
(3) $I^{3}=Q I^{2}$ and the ring $\mathrm{G}(I)$ is Cohen-Macaulay, if one of the following conditions is satisfied.
(i) $m<q$ and $Q \subseteq \mathfrak{m}^{q-m}$;
(ii) $Q \subseteq \mathfrak{m}^{q-1}$.

Our proof of Theorem 4.1 is, this time, based on the following.

Proposition 4.2. Let (B, \mathfrak{n}) be a regular local ring of dimension 2 and let x, y be a system of parameters of B. Let $q, \ell>0$ and $m \geq 0$ be integers such that $q+1 \geq \ell$ and assume that $x \in \mathfrak{n}^{\ell}$ and $y \in \mathfrak{n}^{q+m}$. Then the following assertions hold true.
(1) $(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m-1}$.
(2) Suppose that $m>0$. Then $\mathfrak{n}^{q} \cdot\left[(x, y): \mathfrak{n}^{q}\right] \subseteq \mathfrak{n}^{q} x+(y)$.

Proof. (1) Enlarging the field B / \mathfrak{n} if necessary, we may assume that the field B / \mathfrak{n} is infinite. Let $\mathrm{G}(\mathfrak{n})=\bigoplus_{n \geq 0} \mathfrak{n}^{n} / \mathfrak{n}^{n+1}$ denote the associated graded ring of B. Then $\mathrm{G}(\mathfrak{n})$ is the polynomial ring with two indeterminates over B / \mathfrak{n}. For each element $0 \neq f \in B$ let $\mathrm{o}_{\mathfrak{n}}(f)=\max \left\{n \in \mathbb{Z} \mid y \in \mathfrak{n}^{n}\right\}$ and let $f^{*}=f \bmod \mathfrak{n}^{\mathfrak{o}_{\mathfrak{n}}(f)+1}$ be the initial form of f; hence f^{*} is $\mathrm{G}(\mathfrak{n})$-regular. For each integer $k>0$, the ideal \mathfrak{n}^{k} is generated by the set $F_{k}=\left\{z \in \mathfrak{n}^{k} \mid z \in \mathfrak{n}^{k} \backslash \mathfrak{n}^{k+1}\right.$ and x^{*}, z^{*} is a homogeneous system of parameters in $\left.\mathrm{G}(\mathfrak{n})\right\}$. Now let $\alpha \in(x, y): \mathfrak{n}^{q}, z \in F_{q+m}$, and $z^{\prime} \in F_{q}$. Then $z \alpha=u x+v y$ and $z^{\prime} \alpha=u^{\prime} x+v^{\prime} y$. for some $u, v, u^{\prime}, v^{\prime} \in B$. Hence, because the sequence x, y is B-regular, comparing two expressions of $z^{\prime} z \alpha$, we get $z^{\prime} v \in(x, z)$, whence $v \in(x, z): \mathfrak{n}^{q}$. Recall now that $(x, z): \mathfrak{n}^{q}=(x, z)+\mathfrak{n}^{\ell^{\prime}}$ with

$$
\begin{aligned}
\ell^{\prime} & =[\mathrm{a}(\mathrm{G}(\mathfrak{n} /(x, z)))+1]-q \\
& =\left[\mathrm{a}\left(\mathrm{G}(\mathfrak{n}) /\left(x^{*}, z^{*}\right)\right)+1\right]-q \\
& \left.=\left[\mathrm{a}(\mathrm{G}(\mathfrak{n}))+\mathrm{o}_{\mathfrak{n}}(x)+\mathrm{o}_{\mathfrak{n}}(z)\right)+1\right]-q \\
& \geq[(-2)+\ell+(q+m)+1]-q=\ell+m-1
\end{aligned}
$$

(cf. [Wat]; see [O, Theorem 1.6] also), where a(*) denotes the a-invariant of the corresponding graded ring ([GW, (3.1.4)]). Therefore

$$
z \alpha=u x+v y \in(x)+(z y)+\mathfrak{n}^{\ell^{\prime}} y \subseteq(x)+\mathfrak{n}^{\ell+m-1} y
$$

because $\ell^{\prime} \geq \ell+m-1$ and $z \in \mathfrak{n}^{q+m}$ with $q \geq \ell-1$. Hence $\alpha \in\left[(x)+\mathfrak{n}^{\ell+m-1} y\right]: \mathfrak{n}^{q+m}$, so that $\alpha y \in(x)+\mathfrak{n}^{\ell+m-1} y$, whence $\alpha \in(x)+\mathfrak{n}^{\ell+m-1}$, since the sequence x, y is B-regular. Thus $(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{\ell+m-1}$.
(2) The ideal \mathfrak{n}^{q} is generated by the set $F=\left\{z \in \mathfrak{n}^{q} \mid y, z\right.$ is a B-regular sequence $\}$. Let $\alpha \in(x, y): \mathfrak{n}^{q}$ and $z, z^{\prime} \in F$. Then $z \alpha=u x+v y$ and $z^{\prime} \alpha=u^{\prime} x+v^{\prime} y$ for some
$u, v, u^{\prime}, v^{\prime} \in B$. We want to show that $z \alpha \in \mathfrak{n}^{q} x+(y)$. Because the sequence y, x is B regular, comparing two expressions of $z^{\prime} z \alpha$, we get $z^{\prime} u \in(z, y)$, whence $u \in(z, y): \mathfrak{n}^{q}$. Notice now that $(z, y): \mathfrak{n}^{q} \subseteq(z)+\mathfrak{n}^{q+m-1}$ by assertion (1) (take $x=z$ and $q=\ell$). Then

$$
z \alpha=u x+v y \in(z x)+\mathfrak{n}^{q+m-1} x+(y) \subseteq \mathfrak{n}^{q} x+(y),
$$

since $m>0$, whence we have $\mathfrak{n}^{q} .\left[(x, y): \mathfrak{n}^{q}\right] \subseteq \mathfrak{n}^{q} x+(y)$.
Our proof of Theorem 4.1 is now similar to that of Theorem 3.1. We briefly note it.
Proof of Theorem 4.1. Let $Q=(\bar{x})$ with $x \in \mathfrak{n}$, where \bar{x} denotes the image of x in A. Let $J=(x, y): \mathfrak{n}^{q}$. Then by Proposition 4.2 that $J \subseteq(x)+\mathfrak{n}^{m}$ and $\mathfrak{n}^{q} J \subseteq \mathfrak{n}^{q} x+(y)$ (take $\ell=1$). Hence $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$, so that $I \subseteq \bar{Q}$. We have $Q \cap I^{2}=Q I$ exactly for the same reason as is in Proof of Theorem 3.1.

To see assertion (2), suppose that $m \geq q$. Then $J \subseteq(x)+\mathfrak{n}^{q}$, whence $I \subseteq Q+\mathfrak{m}^{q}$. Therefore $I^{2} \subseteq Q$, so that $I^{2}=Q I$ by assertion (1). Suppose that $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-m+1}$. We choose the element x so that $x \in \mathfrak{n}^{q-m+1}$. Then, taking $\ell=q-m+1$, by Proposition 4.2 (1) we get $J=(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{q}$. Hence $I \subseteq Q+\mathfrak{m}^{q}$, so that $I^{2} \subseteq Q$, whence $I^{2}=Q I$.

Suppose that condition (i) in assertion (3) is satisfied. We choose the element x so that $x \in \mathfrak{n}^{q-m}$. Then $J=(x, y): \mathfrak{n}^{q} \subseteq(x)+\mathfrak{n}^{q-1}$ (take $\ell=q-m$), whence $I \subseteq Q+\mathfrak{m}^{q-1}$, so that the result follows from Proposition 3.4. Suppose that condition (ii) in assertion (3) is satisfied but $m<q$. Then $Q \subseteq \mathfrak{m}^{q-m}$, since $Q \subseteq \mathfrak{m}^{q-1}$ and $m>0$. Hence the result follows.

Let us give a consequence of Theorem 4.1.
Corollary 4.3. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring with $\operatorname{dim} A=1$ and $\mathrm{v}(A)=$ 2. Let $q>0$ be an integer such that $\mathrm{e}(A)>q>0$ and put $m=\mathrm{e}(A)-q$. Then if $m \geq q-2$, for every parameter ideal Q in A the following assertions hold true, where $I=Q: \mathfrak{m}^{q}$.
(1) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$ and $\mathrm{r}_{Q}(I) \leq 3$.
(2) $q=3$ and Q is a reduction of \mathfrak{m}, if $\mathrm{r}_{Q}(I)=3$.
(3) $\mathrm{G}(I)$ is a Cohen-Macaulay ring.

Proof. Let $e=\mathrm{e}(A)$. Passing to the \mathfrak{m}-adic completion of A, we may assume that $A=B / y B$, where (B, \mathfrak{n}) is a regular local ring of dimension 2 and $0 \neq y \in \mathfrak{n}^{e}$. Hence $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q$ by Theorem 4.1 (1). We must show that $\mathrm{r}_{Q}(I) \leq 3$ and $\mathrm{G}(I)$ is a CohenMacaulay ring. Thanks to Theorem 4.1 (2), we may assume $m<q$ and $Q \nsubseteq \mathfrak{m}^{q-m}$. Hence $m=q-2$ or $m=q-1$. Let $Q=(\bar{x})$ with $x \in \mathfrak{n}$, where $\bar{*}$ denotes the image in A. Then $q-m \neq 1$ since $x \notin \mathfrak{n}^{q-m}$, whence $m=q-2$, that is $e=2 q-2$. Let $\mathfrak{n}=(x, z)$ with $z \in B$ and let $D=B / x B$. Then D is a DVR. Let us write $y D=z^{\ell} D$ with $\ell \geq e>q$ and we have $(x, y): \mathfrak{n}^{q}=(x)+\mathfrak{n}^{\ell-q}$. If $\ell>e$, then $I=Q+\mathfrak{m}^{\ell-q} \subseteq Q+\mathfrak{m}^{e+1-q}=Q+\mathfrak{m}^{q-1}$, so that $I^{2}=Q I$ by Proposition 3.4. Assume that $\ell=e$. Then x^{*}, y^{*} is a homogeneous system of parameters in $\mathrm{G}(\mathfrak{n})$ with $\operatorname{deg} x^{*}=1$ and $\operatorname{deg} y^{*}=e$, so that Q is a reduction of \mathfrak{m} and $I=Q+\mathfrak{m}^{\ell^{\prime}}$ by [Wat], where

$$
\begin{aligned}
\ell^{\prime} & =\mathrm{a}(\mathrm{G}(\mathfrak{m} / Q))+1-q \\
& =\left[\mathrm{a}\left(\mathrm{G}(\mathfrak{n}) /\left(x^{*}, y^{*}\right)\right)+1\right]-q \\
& =[(-2)+(1+e)]+1-q \\
& =e-q \\
& =m .
\end{aligned}
$$

Therefore $\mathrm{r}_{Q}(I)=\left\lceil\frac{q}{m}\right\rceil=\left\lceil\frac{q}{q-2}\right\rceil$, thanks to Theorem 2.3 (1). Hence, if $\mathrm{r}_{Q}(I) \geq 4$, then $\frac{q}{q-2}>3$, so that $q<3$. This is impossible, since $m=q-2>0$. Thus $\mathrm{r}_{Q}(I) \leq 3$. We similarly have $q=3$, if $\mathrm{r}_{Q}(I)=3$.

Let $4 \leq a<b$ be integers such that $\operatorname{GCD}(a, b)=1$ and let

$$
H=\langle a, b\rangle:=\{a \alpha+b \beta \mid 0 \leq \alpha, \beta \in \mathbb{Z}\}
$$

be the numerical semigroup generated by a, b. Let $A=k\left[\left[t^{a}, t^{b}\right]\right](\subseteq k[[t]])$ be the numerical semigroup ring of H and $\mathfrak{m}=\left(t^{a}, t^{b}\right)$ the maximal ideal in A, where $k[[t]]$ is the formal power series ring over a field k. Then

$$
A \cong k[[X, Y]] /\left(X^{b}-Y^{a}\right),
$$

where $B=k[[X, Y]]$ denotes the formal power series ring. Hence, applying Corollaries 2.7 and 4.3 , we get the following.

Corollary 4.4. The following assertions hold true.
(1) $\min \mathcal{G}(A)=a-1 \geq 3$.
(2) Let Q be a parameter ideal in A and put $I=Q: \mathfrak{m}^{3}$. Then $I^{4}=Q I^{3}$ and $\mathrm{G}(I)$ is a Cohen-Macaulay ring.

5. Examples and remarks

Let $n \geq 0$ be an integer and put $a=6 n+5, b=6 n+8$, and $c=9 n+12$. Then $0<a<b<c$ and $\operatorname{GCD}(a, b, c)=1$. Let $A=k\left[\left[t^{a}, t^{b}, t^{c}\right]\right] \subseteq k[[t]]$, where $k[[t]]$ denotes the formal power series ring over a field k. Then

$$
A \cong k[[X, Y, Z]] /\left(Y^{3}-Z^{2}, X^{3 n+4}-Y^{3 n+1} Z\right)
$$

where $k[[X, Y, Z]]$ denotes the formal powers series ring. Let \mathfrak{m} be the maximal ideal in A. Then

$$
\mathrm{G}(\mathfrak{m}) \cong k[X, Y, Z] /\left(Y^{3 n+4}, Y^{3 n+1} Z, Z^{2}\right)
$$

Hence A is a complete intersection with $\operatorname{dim} A=1$, whose associated graded ring $\mathrm{G}(\mathfrak{m})$ is not a Gorenstein ring but Cohen-Macaulay. We put

$$
B=k[[X, Y, Z]] /\left(Y^{3}-Z^{2}\right)
$$

and let y denote the image of $X^{3 n+4}-Y^{3 n+1} Z$ in B. Let $\mathfrak{n}=(X, Y, Z) B$ be the maximal ideal in B. Then B is not a regular local ring and $A=B / y B$. We have $y \in \mathfrak{n}^{3 n+2}$ and y is a subsystem of parameters of B. Therefore by Theorem 3.1 (1), (2), and (3) we have the following.

Example 5.1. Let $0<q \leq 3 n+2$ be an integer and put $m=(3 n+2)-q$. Let Q be a parameter ideal in A and put $I=Q: \mathfrak{m}^{q}$. Then the following assertions hold true.
(1) $\mathfrak{m}^{q} I=\mathfrak{m}^{q} Q, I \subseteq \bar{Q}$, and $Q \cap I^{2}=Q I$. Hence $\mathrm{g}(Q) \geq 3 n+2$.
(2) $I^{2}=Q I$, if one of the following conditions is satisfied.
(i) $m \geq q-1$;
(ii) $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-m}$;
(iii) $m>0$ and $Q \subseteq \mathfrak{m}^{q-1}$.
(3) $I^{3}=Q I^{2}$ and the ring $\mathrm{G}(I)$ is Cohen-Macaulay, if one of the following conditions is satisfied.
(i) $m<q-1$ and $Q \subseteq \mathfrak{m}^{q-(m+1)}$;
(ii) $Q \subseteq \mathfrak{m}^{q-1}$.

Remark 5.2. In Example 5.1 (3) the equality $I^{2}=Q I$ does not necessarily hold true. For example, let $n=0$; hence $\left.A=k\left[t^{5}, t^{8}, t^{12}\right]\right]$. Let $Q=\left(t^{5}\right)$ in A and $I=Q: \mathfrak{m}^{2}$. Then $I=\left(t^{5}, t^{12}, t^{16}\right) \subseteq \bar{Q}$ and $\mathrm{r}_{Q}(I)=2$.

The assumption $y \in \mathfrak{n}^{q}$ in Theorem 3.1 is crucial in order to control quasi-socle ideals $I=Q: \mathfrak{m}^{q}$.

Example 5.3. In Example 5.1 take $n=0$ and look at the local ring $A=k\left[\left[t^{5}, t^{8}, t^{12}\right]\right]$. Hence

$$
A \cong k[[X, Y, Z]] /\left(Y^{3}-Z^{2}, X^{4}-Y Z\right)
$$

Let $0<s \in\langle 5,8,12\rangle:=\{5 \alpha+8 \beta+12 \gamma \mid 0 \leq \alpha, \beta, \gamma \in \mathbb{Z}\}$ and $Q=\left(t^{s}\right)$ in A, monomial parameters. Let us consider the quasi-socle ideal $I=Q: \mathfrak{m}^{3}$. Then we always have $I \subseteq \bar{Q}$, but $\mathrm{G}(I)$ is Cohen-Macaulay (resp. the equality $\mathfrak{m}^{3} I=\mathfrak{m}^{3} Q$ holds true) if and only if $s \in\{5,10,12,15,17\}$ (resp. $s \in\{5,12,17\}$), or equivalently $Q \cap I^{2}=Q I$. Thus the Cohen-Macaulayness in $\mathrm{G}(I)$ is rather wild, as we summarize in the following table.

s	I	$\mathfrak{m}^{3} I=\mathfrak{m}^{3} Q$	$\mathrm{G}(I)$ is CM	$\mathrm{r}_{Q}(I)$
5	$\mathfrak{m}=\left(t^{5}, t^{8}, t^{12}\right)$	Yes	Yes	3
8	$\left(t^{8}, t^{10}, 1^{17}\right)$	No	No	3
10	$\left(t^{10}, t^{12}, t^{13}, t^{16}\right)$	No	Yes	2
12	$\left(t^{12}, t^{15}, t^{18}, t^{21}\right)$	Yes	Yes	1
13	$\left(t^{13}, t^{15}, t^{16}, t^{22}\right)$	No	No	2
15	$\left(t^{15}, t^{17}, t^{18}, t^{21}, t^{24}\right)$	No	Yes	2
16	$\left(t^{16}, t^{18}, t^{22}, t^{25}\right)$	No	No	2
17	$\left(t^{17}, t^{20}, t^{23}, t^{24}, t^{26}\right)$	Yes	Yes	1
18	$\left(t^{18}, t^{20}, t^{21}, t^{24}, t^{27}\right)$	No	No	2
≥ 20	$\left(t^{s}, t^{s+2}, t^{s+3}, t^{s+6}, t^{s+9}\right)$	No	No	2

Remark 5.4. To see that the results of Theorem 4.1 are sharp, the reader may consult [GKM, GKMP] for examples of monomial parameter ideals $Q=\left(t^{s}\right)(0<s \in H)$ in numerical semigroup rings $A=k[[H]]$. See [GKMP, Proposition 10] for the case where $H=\langle a, b\rangle$ with $\operatorname{GCD}(a, b)=1$. Here let us pick up the simplest ones.
(1) The equality $I^{2}=Q I$ does not necessarily hold true. Let $\left.A=k\left[t^{3}, t^{4}\right]\right], Q=$ $\left(t^{3}\right)$, and $I=Q: \mathfrak{m}^{2}$. Then $I=\mathfrak{m} \subseteq \bar{Q}$ and $\mathrm{r}_{Q}(I)=2$.
(2) The reduction number $\mathrm{r}_{Q}(I)$ could be not less than 3 . Let $A=k\left[\left[t^{4}, t^{5}\right]\right], Q=$ $\left(t^{4}\right)$, and $I=Q: \mathfrak{m}^{3}$. Then $I=\mathfrak{m} \subseteq \bar{Q}$ and $\mathrm{r}_{Q}(I)=3$.
(3) The ring $\mathrm{G}(I)$ is not necessarily Cohen-Macaulay. Let $A=k\left[\left[t^{5}, t^{6}\right]\right], Q=\left(t^{11}\right)$, and $I=Q: \mathfrak{m}^{4}$. Then $I=\left(t^{11}, t^{12}, t^{15}\right) \subseteq \bar{Q}$ and $\mathrm{r}_{Q}(I)=3$. However, since $t^{36} \in Q \cap I^{3}$ but $t^{36} \notin Q I^{2}$, we have $Q \cap I^{3} \neq Q I^{2}$, so that $\mathrm{G}(I)$ is not a Cohen-Macaulay ring.

Acknowledgements

The authors are most grateful to Prof. Irena Swanson for her excellent lectures at the seminar of Meiji University and the 30-th Conference on Commutative Algebra in Japan held at Saga. The present research is deep in debt from her inspiring suggestions and discussions.

References

[B] L. Burch, On ideals of finite homological dimension in local rings, Proc. Camb. Phil. Soc., 64 (1968), 941-948.
[CP1] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra, 178 (1995), 224-238.
[CP2] A. Corso and C. Polini, Reduction number of links of irreducible varieties, J. Pure Appl. Algebra, 121 (1997), 29-43.
[CGPU] A. Corso, L. Ghezzhi, C. Polini, and B. Ulrich, Cohen-Macaulayness of special fiber rings, Comm. Algebra, 31 (2003), no. 8, 3713-3734.
[CZ] T. Cortadellas and S. Zarzuela, On the Cohen-Macaulay property of the fiber cone of ideals with reduction number at most one, Commutative algebra, algebraic geometry, and computational methods (Hanoi, 1996), 215-222, Springer, Singapore, 1999.
[GH] S. Goto and F. Hayasaka Finite homological dimension and primes associated to integrally closed ideals, Proc. Amer. Math. Soc., 130 (2002), 3159-3164.
[GKM] S. Goto, S. Kimura, and N. Matsuoka, Quasi-socle ideals in Gorenstein numerical semigroup rings, J. Algebra, 320 (2008) 276-293
[GKMP] S. Goto, S. Kimura, and N. Matsuoka, T. T. Phuong, Quasi-socle ideals in local rings with Gorenstein tangent cones, J. Commutative Algebra, (to appear).
[GMT] S. Goto, N. Matsuoka, and Ryo Takahashi, Quasi-socle ideals in a Gorenstein local ring, J. Pure App. Algebra, 212, (2008) 969-980.
[GSa1] S. Goto and H. Sakurai, The equality $I^{2}=Q I$ in Buchsbaum rings, Rend. Sem. Mat. Univ. Padova, 110 (2003), 25-56.
[GSa2] S. Goto and H. Sakurai, The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan, 56 (2004), 1157-1168.
[GSa3] S. Goto and H. Sakurai, When does the equality $I^{2}=Q I$ hold true in Buchsbaum rings?, Commutative Algebra, 115-139, Lect. Notes Pure Appl. Math., 244, 2006.
[GSh] S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative Algebra (Fairfax, Va., 1979), 201-231, Lecture Notes in Pure and Appl. Math., 68, Dekker, New York, 1982.
[GW] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan, 30(1978), 179-213.
[HS] W. Heinzer, I. Swanson, The Goto numbers of parameter ideals, J. Algebra 321 (2009) 152166.
[I] S. Ikeda, On the Gorensteinness of Rees algebras over local rings, Nagoya Math. J., 102 (1986), 135-154.
[NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145-158.
[O] A. Ooishi, On the Gorenstein property of the associated graded ring and the Rees algebra of an ideal, J. Algebra, 115 (1993), 397-414.
[PU] C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann., 310 (1998), 631-651.
[TI] N. V. Trung and S. Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra, 17 (1989), 2893-2922.
[VV] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya. Math. J., 72 (1978), 93-101.
[Wan] H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z., 256 (2007), 749-756.
[Wat] J. Watanabe, The Dilworth number of Artin Gorenstein rings, Adv. in Math., 76 (1989), 194-199.

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: goto@math.meiji.ac.jp
Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: skimura@math.meiji.ac.jp
Department of Information Technology and Applied Mathematics, Ton Duc Thang University, 98 Ngo Tat To Street, Ward 19, Binh Thanh District, Ho Chi Minh City, Vietnam

E-mail address: sugarphuong@gmail.com
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

E-mail address: hltruong@math.ac.vn

