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Heat convection equation with nonhomogeneous
boundary condition
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Abstract.
We consider the stationary heat convection equations and the time peri-

odic heat convection equations (Boussinesq approximation) with non-homo-
geneous boundary condition, and obtain the existence result similar to the
Navier-Stokes equations’ case.

The boundary value for the fluid velocity should satisfy so-called general
outflow condition (GOC). For the 2 or 3 dimensional bounded domain, the
existence of the solution can be shown if the boundary condition satisfies the
stringent outflow condition (SOC). Similarly to the Navier-Stokes equations,
we obtain the existence result for the 2 dimensional symmetric domain and
symmetric data with the boundary value satisfying only (GOC).
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1 Introduction

Let Ω be a bounded domain of Rn (n = 2, 3). The boundary ∂Ω consists of
N + 1 smooth connected components Γ0, Γ1, · · · , ΓN where N ≥ 1, Ω being
inside of Γ0.

Firstly, we consider the stationary motion of heat convection of incom-
pressible viscous fluid governed by the Boussinesq approximation.





ν∆v − (v · ∇)v −∇p + ηgθ + f1 = 0 in Ω
div v = 0 in Ω

κ∆θ − (v · ∇)θ + f2 = 0 in Ω
(1.1)
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From now on, we call this equation “Boussinesq equation” in short. The
boundary condition is:

v(x) = β0(x) and θ(x) = γ0(x) on ∂Ω.(1.2)

Here v = v(x) is the fluid velocity, p = p(x) is the pressure, θ = θ(x) is
the temperature. fi = fi(x) (i = 1, 2) are external forces, g is the gravi-
tational constant vector, and ν(kinematic viscosity), η(coefficient of volume
expansion), κ (thermal conductivity) are positive constants. β0 = β0(x) and
γ0 = γ0(x) are given functions defined on ∂Ω.

We consider also time dependent problem. Let T > 0.




∂v

∂t
= ν∆v − (v · ∇)v −∇p + ηgθ + f1 in Ω× (0, T )

div v = 0 in Ω× (0, T )
∂θ

∂t
= κ∆θ − (v · ∇)θ + f2 in Ω× (0, T )

(1.3)

The boundary condition is:

v(x, t) = β0(x, t) and θ(x, t) = γ0(x, t) on ∂Ω× (0, T ).(1.4)

Periodicity condition is:

v(x, 0) = v(x, T ) and θ(x, 0) = θ(x, T ) in Ω.(1.5)

Here v = v(x, t) is the fluid velocity, p = p(x, t) is the pressure, θ = θ(x, t)
is the temperature. fi = fi(x, t) (i = 1, 2) are external forces. g, ν, η, κ
are as above. β0 = β0(x, t) and γ0 = γ0(x, t) are given functions defined on
∂Ω× [0, T ].

According to the Gauss Theorem, the boundary value β0 should satisfy

(GOC)

∫

∂Ω

β0 · ndσ =
N∑

k=0

∫

Γk

β0 · ndσ = 0

If N ≥ 1, the condition

(SOC)

∫

Γk

β0 · ndσ = 0 (∀k = 0, 1, · · · , N)

is stronger than (GOC).
It is well known that if β0 enjoys the condition (SOC), then the existence

of stationary solution to the Navier-Stokes equations can be shown. See
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Hopf[2], [3], Ladyzhenskaya[10], Fujita[4], Galdi[6]. If the boundary value
satsifies only (GOC), the existence results for stationary Navier-Stokes prob-
lem are partly known (Amick[1], Fujita[5], Morimoto[15]). In order to solve
the nonstationary problem, we need no condition about the boundary value
except (GOC) because we can use the Gronwall inequality. But, for the time
periodic problem, we can not apply the Gronwall inequality and it is known
only partial answer (Morimoto[16]).

In this note, we report that the similar results are obtained for the Boussi-
nesq equations, without smallness condition for the data.

There are several results concerning the Boussinesq equation. As for
the stationary problem, in our previous works [12] and [13], we treated the
problem where the boundary of the domain is simply connected, the bound-
ary condition for the velocity is Dirichlet zero, and that for the temper-
ature is mixed one. As for the periodic problem, for cylindrical domain
(2 ≤ n ≤ 4), f1 = 0, f2 = 0 and the Dirichlet zero boundary condition
for v but Dirichlet-Neumann condition for θ, Morimoto[14] showed the ex-
istence of weak periodic solutions under smallness condition for η. For the
noncylindrical domain, Ōeda[17] showed the existence of strong periodic so-
lutions for n = 3, f1 = 0, f2 = 0 under some smallness condition for the data,
and Inoue-Ôtani[8] also obtained strong periodic solutions for n = 2, 3 under
some smallness conditon for the data.

2 Notation and results

We assume the following for the domain.

(A0) Let Ω ⊂ Rn(n = 2, 3) be a bounded domain. The boundary ∂Ω is
smooth and consists of N + 1 connected components Γ0, Γ1, · · · , ΓN . Ω is
inside of Γ0.

In order to state our results exactly, we need the following function spaces.
C∞

0 (Ω) and L2(Ω) are as usual. H1(Ω) is a usual Sobolev space.
The inner product and the norm of L2(Ω)n are denoted by (·, ·) and ‖ · ‖.
C∞

0,σ(Ω) = {u ∈ C∞
0 (Ω)n; divu = 0 in Ω}

H = H(Ω) is the closure of C∞
0,σ(Ω) in L2(Ω)n and

H1
σ(Ω) = {u ∈ H1(Ω)n; divu = 0 in Ω}

V = V (Ω) is the closure of C∞
0,σ(Ω) in H1(Ω)n.

V ′ is the dual space of V .
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Since Ω is bounded, we use the Dirichlet norm ‖∇u‖ for u ∈ V , which is
equivalent to the (H1)n norm.

Theorem 2.1 Suppose (A0) and
(A1) β0(x) ∈ H1/2(∂Ω) satisfies

(SOC)

∫

Γk

β0 · ndσ = 0 (0 ≤ k ≤ N)

where n is the unit outward normal vector to ∂Ω.
(A2) γ0 ∈ H1/2(∂Ω)
(A3) f1 ∈ V ′, f2 ∈ H−1(Ω).

Then, there exist v, θ such that

v − b0 ∈ V (Ω), θ − ϑ0 ∈ H1
0 (Ω)

for some extension b0, ϑ0 of β0, γ0 and satisfy the equations

ν(∇v,∇ϕ) + ((v · ∇)v, ϕ)− η(gθ, ϕ)− V ′ < f1, ϕ >V = 0 (∀ϕ ∈ V (Ω))(2.1)

κ(∇θ,∇ψ) + ((v · ∇)θ, ψ)− H−1 < f2, ψ >H1
0
= 0 (∀ψ ∈ H1

0 (Ω)).(2.2)

Next we consider the (GOC) case. We obtain an existence result for two
dimensional case assuming the symmetry.

(A0)s Let Ω ⊂ R2 be a bounded domain symmetric with respect to the x2-
axis. The boundary ∂Ω consists of N + 1 connected components Γk(0 ≤ k ≤
N) and every Γk intersects the x2-axis.

A two dimensional vector function u = (u1, u2) is called symmetric with
respect to the x2-axis or symmetric in short if and only if u1(x1, x2) is odd
in x1 and u2(x1, x2) is even in x1, that is,

u1(−x1, x2) = −u1(x1, x2), u2(−x1, x2) = u2(x1, x2).

Symmetric function spaces:

Hs = Hs(Ω) = {u ∈ H(Ω); u is symmetric with respect to the x2-axis }
V s = V s(Ω) = {u ∈ V (Ω) ; u is symmetric with respect to the x2-axis }
L2,e = L2,e(Ω) = {θ ∈ L2(Ω); θ(x1, x2) is an even scalar function of x1}
H1,e = H1,e(Ω) = H1(Ω) ∩ L2,e(Ω)

H1,e
0 = H1,e

0 (Ω) = H1
0 (Ω) ∩ L2,e(Ω)

Now we state our results with symmetry.
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Theorem 2.2 Suppose (A0)s and
(A1)s β0 ∈ H1/2(∂Ω) is symmetric and satisfies

(GOC)

∫

∂Ω

β0 · ndσ =
N∑

k=0

∫

Γk

β0 · ndσ = 0

where n is the unit outward normal vector to ∂Ω.
(A2)s γ0 ∈ H1/2(∂Ω) is an even function of x1.
(A3)s f1 ∈ (V s)′, f2 ∈ (H1,e

0 (Ω))′

(A4)s g is a symmetric constant vector.
Then, there exist v, θ such that

v − b0 ∈ V s(Ω), θ − ϑ0 ∈ H1,e
0 (Ω)

for some extension b0, ϑ0 of β0, γ0 and satisfy the equations

ν(∇v,∇ϕ)+((v·∇)v, ϕ)−η(gθ, ϕ)−(V s)′ < f1, ϕ >V s= 0 (∀ϕ ∈ V s(Ω))(2.3)

κ(∇θ,∇ψ) + ((v · ∇)θ, ψ)− (H1,e
0 )′ < f2, ψ >H1,e

0
= 0 (∀ψ ∈ H1,e

0 (Ω)).(2.4)

Now we show the results for periodic problems. We use the following
notation.

Lp(0, T ; X) = {u : [0, T ] → X;

∫ T

0

‖u(t)‖p
Xdt < ∞}(1 ≤ p < ∞)

L∞(0, T ; X) = {u : [0, T ] → X; ess sup
t∈[0,T]

‖u(t)‖X < ∞}

C1([0, T ]; X) = {u : [0, T ] → X; continuous}

C1
π([0, T ]; X) = {u ∈ C1([0, T ]; X); u(·, 0) = u(·, T )}

where X is a Banach space.

Theorem 2.3 Suppose (A0) and
(A1)π β0(x, t) ∈ C1

π([0, T ]; H1/2(∂Ω)) satisfies

(SOC)

∫

Γk

β0 · ndσ = 0 (0 ≤ k ≤ N)
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where n is the unit outward normal vector to ∂Ω
(A2)π γ0 ∈ C1

π([0, T ]; H1/2(∂Ω))
(A3)π f1 ∈ L2(0, T ; V ′), f2 ∈ L2(0, T ; H−1(Ω)).
Then, there exist periodic functions v and θ of period T such that

v − b0 ∈ L2(0, T ; V ) ∩ L∞(0, T ; H)

θ − ϑ0 ∈ L2(0, T ; H1
0 (Ω)) ∩ L∞(0, T ; L2(Ω))

for some extensions b0, ϑ0 of the boundary values β0, γ0, and satisfying the
equations

d

dt
(v, ϕ) = −ν(∇v,∇ϕ)− ((v · ∇)v, ϕ) + η(gθ, ϕ) + V ′ < f1, ϕ >V(2.5)

(∀ϕ ∈ V ),

d

dt
(θ, ψ) = −κ(∇θ,∇ψ)−((v·∇)θ, ψ)+H−1 < f2, ψ >H1

0
(∀ψ ∈ H1

0 (Ω)).(2.6)

As for the uniqueness, we obtain the following result.

Theorem 2.4 If the periodic solution is small, then it is unique.

If the boundary value β0 satisfies only (GOC), we assume the symmetry
and obtain the existence of periodic solutions.

Theorem 2.5 Suppose (A0)s and
(A1)s

π β0 ∈ C1
π([0, T ]; H1/2(∂Ω)) is symmetric and satisfies

(GOC)

∫

∂Ω

β0 · ndσ =
N∑

k=0

∫

Γk

β0 · ndσ = 0

where n is the unit outward normal vector to ∂Ω
(A2)s

π γ0 ∈ C1
π([0, T ]; H1/2(∂Ω)) is an even function of x1

(A3)s
π f1 ∈ L2(0, T ; (V s)′), f2 ∈ L2(0, T ; (H1,e

0 (Ω))′)
(A4)s

π g is a symmetric constant vector.
Then, there exist periodic functions v and θ of period T such that

v − b0 ∈ L2(0, T ; V s) ∩ L∞(0, T ; Hs)

θ − ϑ0 ∈ L2(0, T ; H1,e
0 (Ω)) ∩ L∞(0, T ; L2,e(Ω))
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for some extensions b0, ϑ0 of the boundary values β0, γ0, and satisfying the
equations

d

dt
(v, ϕ) = −ν(∇v,∇ϕ)− ((v · ∇)v, ϕ) + η(gθ, ϕ) + (V s)′ < f1, ϕ >V s(2.7)

(∀ϕ ∈ V s),

d

dt
(θ, ψ) = −κ(∇θ,∇ψ)− ((v · ∇)θ, ψ) + (H1,e

0 )′ < f2, ψ >H1,e
0

(2.8)

(∀ψ ∈ H1,e
0 (Ω)).

3 Preliminary

We need extension of the boundary values β0. It is classical if β0 does
not depend on t and satisfies (SOC). See, e.g., Fujita[5]. For (GOC) case,
see Fujita[4]. The following lemmas are time depending case, and due to
Kobayashi[9]

Lemma 3.1 Suppose β0 satisfies (A1)π. Then for every ε > 0, there exits a
function b0 ∈ C1

π([0, T ]; H1
σ(Ω)) such that

b0(x, t) = β0(x, t) (∀x ∈ ∂Ω, ∀t ∈ [0, T ])

(L) |((u · ∇)b0, u)| ≤ ε‖∇u‖2 (∀u ∈ V, ∀t ∈ [0, T ]).

Lemma 3.2 Assume (A0)s holds and β0 satisfies (A1)s
π. Then, for every

ε > 0, there exists a symmetric function b0 ∈ C1
π([0, T ]; H1

σ(Ω)) such that

b0(x, t) = β0(x, t) (∀x ∈ ∂Ω, ∀t ∈ [0, T ])

(LF ) |((u · ∇)b0, u)| ≤ ε‖∇u‖2 (∀u ∈ V s,∀t ∈ [0, T ]).

As for γ0, we have the following results easily.

Lemma 3.3 Suppose γ0 satisfies (A2)π. Then, for every ε > 0, there exists
ϑ0 ∈ C1

π([0, T ]; H1(Ω)) satisfying

ϑ0(x, t) = γ0(x, t) (∀x ∈ ∂Ω, ∀t ∈ [0, T ])

|((u · ∇)ϑ0, ϑ)| ≤ ε‖∇u‖‖∇ϑ‖ (∀u ∈ V, ∀ϑ ∈ H1
0 , ∀t ∈ [0, T ]).
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Lemma 3.4 Suppose (A0)s holds and γ0 satisfies (A2)s
π. Then, for every

ε > 0, there exists ϑ0 ∈ C1
π([0, T ]; H1,e(Ω)) satisfying

ϑ0(x, t) = γ0(x, t) (∀x ∈ ∂Ω, ∀t ∈ [0, T ])

|((u · ∇)ϑ0, ϑ)| ≤ ε‖∇u‖ ‖∇ϑ‖ (∀u ∈ V s,∀ϑ ∈ H1,e
0 ,∀t ∈ [0, T ]).

Lemma 3.5 (For the proof, see, e.g.,Temam[19]) Let

u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), ϑ ∈ L2(0, T ; H1
0 (Ω)) ∩ L∞(0, T ; L2(Ω)).

Then

(u · ∇)u ∈ Lp(0, T ; V ′), (u · ∇)ϑ ∈ Lp(0, T ; H−1(Ω))

where p = 2 for n = 2 and p = 4/3 for n = 3. More precisely,

‖(u · ∇)u‖L2(0,T ;V ′) ≤ c‖u‖L∞(0,T ;H)‖u‖L2(0,T ;V ),

‖(u · ∇)ϑ‖L2(0,T ;H−1) ≤ {‖u‖L∞(0,T ;H)‖u‖L2(0,T ;V )‖ϑ‖L∞(0,T ;L2)‖ϑ‖L2(0,T ;H1)}1/2

for n = 2, and

‖(u · ∇)u‖L4/3(0,T ;V ′) ≤ c‖u‖1/2
L∞(0,T ;H)‖u‖3/2

L2(0,T ;V )

‖(u · ∇)ϑ‖L4/3(0,T ;H−1) ≤ ‖u‖1/4
L∞(0,T ;H)‖u‖3/4

L2(0,T ;V )‖ϑ‖1/4

L∞(0,T ;L2)‖ϑ‖3/4

L2(0,T ;H1)

for n = 3.

Lemma 3.6 (Theorem 5.1 [11] p.58) Let B0, B, B1 be three Banach spaces,
B0, B1 reflexive, B0 ⊂ B ⊂ B1 with injection bounded and canonical injection
B0 ⊂ B compact. Put

W = {v ∈ Lp0(0, T ; B0); v
′ ∈ Lp1(0, T ; B1)} (1 < p0, p1 < ∞).

Then the injection W ⊂ Lp0(0, T ; B) is compact.
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4 Proof of Theorem2.1

Let ε1, ε2 be arbitrary positive number and choose b0(resp. ϑ0) as in Lemma
3.1(resp. Lemma 3.3) for ε = ε1(resp. ε = ε2) respectively. Put v = u + b0,
θ = ϑ + ϑ0. Then the equations (2.1) and (2.2) are rewritten as follows.

ν(∇u,∇ϕ) + ((u · ∇)u, ϕ) + ((u · ∇)b0, ϕ) + ((b0 · ∇)u, ϕ)− η(gϑ, ϕ)(4.1)

= L1(ϕ) (∀ϕ ∈ V (Ω))

κ(∇ϑ,∇ψ) + ((u · ∇)ϑ, ψ) + ((u · ∇)ϑ0, ψ) + ((b0 · ∇)ϑ, ψ)(4.2)

= L2(ψ) (∀ψ ∈ H1
0 (Ω)).

where L1(ϕ) (resp. L2(ψ)) is defined for ϕ ∈ V (resp. ψ ∈ H1
0 ) as follows.

L1(ϕ) = −ν(∇b0,∇ϕ)− ((b0 · ∇)b0, ϕ) + η(gϑ0, ϕ) + V ′ < f1, ϕ >V(4.3)

L2(ψ) = −κ(∇ϑ0,∇ψ)− ((b0 · ∇)ϑ0, ψ) + H−1 < f2, ψ >H1
0

.(4.4)

Let ϕ = u in (4.1), ψ = ϑ in (4.2).

ν‖∇u‖2 + ((u · ∇)b0, u)− η(gϑ, u) = L1(u)(4.5)

κ‖∇ϑ‖2 + ((u · ∇)ϑ0, ϑ) = L2(ϑ)(4.6)

Since L1 (resp. L2) is a continuous linear functional on V (resp. H1
0 ), we

obtain, using Lemma 3.1, Lemma 3.3,

(ν − ε1)‖∇u‖2 ≤ η|g|‖u‖‖ϑ‖+ ‖L1‖‖∇u‖(4.7)

κ‖∇ϑ‖2 ≤ ε2‖∇u‖‖∇ϑ‖+ ‖L2‖‖∇ϑ‖(4.8)

If we choose ε1, ε2 sufficiently small, we can find some positive constants
M1,M2 such that

‖∇u‖ ≤ M1, ‖∇ϑ‖ ≤ M2

hold and we get the existence of u ∈ V (Ω) and ϑ ∈ H1
0 (Ω) satisfying (4.1),

(4.2) and Theorem 2.1 is porved.
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5 Proof of Theorem2.2

Lemma 3.2 is crucial for the proof of Theorem2.2. Let ε1, ε2 be arbitrary
positive numbers and choose b0(resp. ϑ0) as in Lemma 3.2 (resp. Lemma
3.4) for ε = ε1(resp. ε = ε2) respectively. Then, we have only to repeat the
process in the preceding section, in the symmetric spaces V s(Ω) and H1,e

0 (Ω)
using Lemma 3.2, Lemma 3.4 and omit the details.

6 Proof of Theorem2.3

Let ε1, ε2 be arbitrary positive numbers and choose b0(resp. ϑ0) as in Lemma
3.1 (resp. Lemma 3.3) for ε = ε1(resp. ε = ε2) respectively.

Suppose v and θ satisfy (2.5), (2.6), and v−b0 ∈ L2(0, T ; V )∩L∞(0, T ; H),
θ − ϑ0 ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(0, T ; L2(Ω)).
Put v = u + b0 and θ = ϑ + ϑ0. Then, u and ϑ satisfy

d

dt
(u, ϕ) = −ν(∇u,∇ϕ)− ((u · ∇)u, ϕ)− ((u · ∇)b0, ϕ)(6.1)

−((b0 · ∇)u, ϕ) + η(gϑ, ϕ) + L1(ϕ) (∀ϕ ∈ V (Ω))

d

dt
(ϑ, ψ) = −κ(∇ϑ,∇ψ)− ((u · ∇)ϑ, ψ)− ((u · ∇)ϑ0, ψ)(6.2)

−((b0 · ∇)ϑ, ψ) + L2(ψ) (∀ψ ∈ H1
0 (Ω))

where

L1(ϕ) = −ν(∇b0,∇ϕ)− ((b0 · ∇)b0, ϕ) + η(gϑ0, ϕ)− (∂tb0, ϕ) + V ′ < f1, ϕ >V

L2(ψ) = −κ(∇ϑ0,∇ψ)− ((b0 · ∇)ϑ0, ψ)− (∂tϑ0, ψ) + H−1 < f2, ψ >H1
0

We look for periodic solutions u and ϑ to (6.1) and (6.2).
Let {ϕm}∞m=1 ⊂ V (Ω) be eigenfunctions of the Stokes operator, that is,

(∇ϕm,∇w) = λm(ϕm, w) (∀w ∈ V (Ω)).

After orthonormalizing them and using the same symbol, we can consider
they are a complete ortho-normal basis of H(Ω).

Let {ψm}∞m=1 ⊂ H1
0 (Ω) be eigenfunctions of the Laplace operator,

(∇ψm,∇ψ) = µm(ψm, ψ) (∀ψ ∈ H1
0 (Ω)).
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They can be considered as a complete ortho-normal basis of L2(Ω). We use
Galerkin method.

Let us look for functions

u(m)(x, t) =
m∑

k=1

f
(m)
k (t)ϕk(x), ϑ(m)(x, t) =

m∑

k=1

g
(m)
k (t)ψk(x)

satisfying the following system of ordinary differential equations:

d

dt
(u(m), ϕj) = −ν(∇u(m),∇ϕj)−((u(m) ·∇)u(m), ϕj)−((u(m) ·∇)b0, ϕj)(6.3)

−((b0 · ∇)u(m), ϕj) + η(gϑ(m), ϕj) + L1(ϕj) (1 ≤ j ≤ m)

d

dt
(ϑ(m), ψj) = −κ(∇ϑ(m),∇ψj)−((u(m) ·∇)ϑ(m), ψj)−((u(m) ·∇)ϑ0, ψj)(6.4)

−((b0 · ∇)ϑ(m), ψj) + L2(ψj) (1 ≤ j ≤ m)
and the initial condition

u(m)(0) = um0 ∈ [ϕ1, ϕ2, · · · , ϕm], ϑ(m)(0) = ϑm0 ∈ [ψ1, ψ2, · · · , ψm].(6.5)

It is easy to show the local existence in time of solution to (6.3), (6.4) with
the initial condition (6.5). Next we show an a priori estimate of the solutions.

1

2

d

dt
‖u(m)‖2 = −ν‖∇u(m)(t)‖2 − ((u(m) · ∇)b0, u

(m))(6.6)

+η(gϑ(m), u(m)) + L1(u
(m))

1

2

d

dt
‖ϑ(m)‖2 = −κ‖∇ϑ(m)(t)‖2 − ((u(m) · ∇)ϑ0, ϑ

(m)) + L2(ϑ
(m))(6.7)

According to our choice, b0 and ϑ0 satisfy the following inequalities

|((u · ∇)b0, u)| ≤ ε1‖∇u‖2 (∀u ∈ V (Ω), ∀t ∈ [0, T ])(6.8)

|((u·∇)ϑ0, ϑ)| ≤ ε2‖∇u‖ ‖∇ϑ‖ (∀u ∈ V (Ω), ∀ϑ ∈ H1
0 (Ω), ∀t ∈ [0, T ]).(6.9)

Use Poincaré’s inequality:

‖u‖ ≤ c0‖∇u‖ (u ∈ H1
0 (Ω))
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and Hölder’s inequality to estimate (6.6), and we obtain

d

dt
‖u(m)‖2 + 2(ν − Cε1)‖∇u(m)‖2 ≤ η2|g|2

2ε1

‖ϑ(m)‖2 + C1(t).(6.10)

where |g| is the length of the vector g, C is a constant depending only on Ω
and

C1(t) =
1

2ε1

{
ν2‖∇b0‖2 + ‖b0‖4

L4(Ω) + η2|g|2‖ϑ0‖2 + ‖∂tb0‖2 + ‖f1‖2
V ′

}

We estimate (6.7) similarly and obtain,

d

dt
‖ϑ(m)‖2 + 2(κ− Cε2)‖∇ϑ(m)‖2 ≤ ε2‖∇u(m)‖2 + C2(t)(6.11)

where C is a constant depending only on Ω and

C2(t) =
1

2ε2

{‖b0‖2
L4‖ϑ0‖2

L4 + κ2‖∇ϑ0‖2 + ‖∂tϑ0‖2 + ‖f2‖2
H−1

}
.

Choose ε1 > 0, ε2 > 0 so small that ν − Cε1 > 0 and κ− Cε2 > 0 hold true.
We fix ε1. Put

α = 2(ν − Cε1), β =
η2|g|2
2ε1

, γ = 2(κ− Cε2)

Then α, β, γ are positive constants and the inequalities

d

dt
‖u(m)‖2 + α‖∇u(m)‖2 ≤ β‖ϑ(m)‖2 + C1(t),(6.12)

d

dt
‖ϑ(m)‖2 + γ‖∇ϑ(m)‖2 ≤ ε2‖∇u(m)‖2 + C2(t)(6.13)

hold true. According to our assumptions, C1 and C2 belong to L1(0, T ) and
are independent of m. Integrating (6.12), we have

‖u(m)(t)‖2 + α

∫ t

0

‖∇u(m)(s)‖2ds(6.14)

≤ ‖um0‖2 + β

∫ t

0

‖ϑ(m)(s)‖2ds +

∫ t

0

C1(s)ds

12



Therefore
∫ t

0

‖∇u(m)(s)‖2ds ≤ 1

α

{
‖um0‖2 + β

∫ t

0

‖ϑ(m)(s)‖2ds +

∫ t

0

C1(s)ds

}
(6.15)

≤ 1

α

{
‖um0‖2 + βc2

0

∫ t

0

‖∇ϑ(m)(s)‖2ds +

∫ t

0

C1(s)ds

}

After integrating (6.13), we use (6.15) and obtain

‖ϑ(m)(t)‖2 + (γ − βc2
0

α
ε2)

∫ t

0

‖∇ϑ(m)(s)‖2ds ≤ M1 (∀t ∈ [0, T ])(6.16)

where

M1 = ‖ϑm0‖2 +
ε2

α

{
‖um0‖2 +

∫ T

0

C1(s)ds

}
+

∫ T

0

C2(s)ds.

We can choose, if necessary, ε2 so small that γ− βc20
α

ε2 > 0 holds true. Then,
integrating (6.16), we obtain

∫ t

0

‖ϑ(m)(s)‖2ds ≤ M1T

Applying this estimate for the right hand side of (6.14), we find

‖u(m)(t)‖2 + α

∫ t

0

‖∇u(m)(s)‖2ds ≤ ‖um0‖2 + βTM1 +

∫ T

0

C1(s)ds(6.17)

(∀t ∈ [0, T ]).
Estimates (6.16) and (6.17) yield the global existence in time of solutions

of (6.3), (6.4), (6.5).
Using (6.16) for the right hand side of (6.12), we obtain

d

dt
‖u(m)‖2 + α‖∇u(m)‖2 ≤ βM1 + C1(t).

Put α′ = αc−2
0 where c0 is the constant appearing in Poincaré’s inequality.

Then the above inequality is transformed to

d

dt
‖u(m)‖2 + α′‖u(m)‖2 ≤ β‖ϑm0‖2 +

βε2

α
‖um0‖2 + M2 + C1(t)

13



where

M2 =
βε2

α

∫ T

0

C1(t)dt + β

∫ T

0

C2(t)dt.

Therefore

d

dt

{
eα′t‖u(m)‖2

}
≤ eα′t

{
β‖ϑm0‖2 +

βε2

α
‖um0‖2 + M2 + C1(t)

}
.

Integrating the both side,

eα′t‖u(m)(t)‖2

≤ ‖um0‖2 +
eα′t − 1

α′

{
β‖ϑm0‖2 +

βε2

α
‖um0‖2 + M2

}
+

∫ t

0

eα′sC1(s)ds.

Therefore

‖u(m)(T )‖2 ≤ e−α′T‖um0‖2 +
1− e−α′T

α′
β

{
‖ϑm0‖2 +

ε2

α
‖um0‖2

}
+ C3(6.18)

where

C3 =
1− e−α′T

α′
M2 +

∫ T

0

C1(t)dt.

Put γ′ = γc−2
0 . From (6.13), we have

d

dt
‖ϑ(m)‖2 + γ′‖ϑ(m)‖2 ≤ ε2‖∇u(m)‖2 + C2(t).

Therefore

d

dt

{
eγ′t‖ϑ(m)‖2

}
≤ eγ′t(ε2‖∇u(m)‖2 + C2(t)).

Integrating this inequality from 0 to T , and using (6.17), we obtain

‖ϑ(m)(T )‖2(6.19)

≤ e−γ′T‖ϑm0‖2 +
ε2

α

{
α + βTε2

α
‖um0‖2 + βT‖ϑm0‖2 + D2

}
+

∫ T

0

C2(t)dt

14



where

D2 = (1 +
βTε2

α
)

∫ T

0

C1(t)dt + βT

∫ T

0

C2(t)dt.

Put

C4 =
D2ε2

α
+

∫ T

0

C2(t)dt.

Consider the following system of linear equations for X1, X2.
(

1− βε2

αα′

)
X1 − β

α′
X2 =

C3

1− e−α′T(6.20)

−(α + βTε2)ε2

α2
X1 +

(
1− e−γ′T − βTε2

α

)
X2 = C4(6.21)

Let us choose once again ε2 sufficiently small, if necessary, and the equations
(6.20) (6.21) have a pair of unique positive solutions {X1, X2}. Note that
X1, X2 do not depend on m. Put R1 =

√
X1, R2 =

√
X2

Suppose ‖um0‖ ≤ R1 and ‖ϑm0‖ ≤ R2. Then, from the estimates (6.18)
and (6.19), we can derive easily ‖u(m)(T )‖ ≤ R1 and ‖ϑ(m)(T )‖ ≤ R2. Let
u(m)(t) and ϑ(m)(t) be such solution to (6.3), (6.4) with (6.5). Let us define
an operator in R2m as

T : (um0, ϑm0) → (u(m)(T ), ϑ(m)(T ))

Put

K = {(ξ1, ξ2, · · · , ξm, η1, η2, · · · , ηm) ∈ R2m;
m∑

k=1

ξ2
k ≤ R2

1,

m∑

k=1

η2
k ≤ R2

2}

Then K is a compact convex subset of R2m and T is a continuous operator
from K to K. Brouwer’s fixed point theorem assures that there exists a fixed
point of the operator T in K. We denote the fixed point by (um0, ϑm0)

Let {u(m)(t), ϑ(m)(t)} be the solution to (6.3), (6.4),(6.5), with the initial
value {um0, ϑm0}. Then {u(m)(t), ϑ(m)(t)} is a periodic solution of (6.3) and
(6.4). Since the initial values {um0}m ⊂ H and {ϑm0}m ⊂ L2 are bounded,
it is shown easily from (6.16) and (6.17) that

{u(m)(t)}m : bounded sequence in L2(0, T ; V ) ∩ L∞(0, T ; H)(6.22)
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{ϑ(m)(t)}m : bounded sequence in L2(0, T ; H1
0 (Ω)) ∩ L∞(0, T ; L2(Ω)).(6.23)

Moreover, it follows from our choice of the basis and Lemma 3.5 that
{

d

dt
u(m)

}

m

: bounded sequence in Lp(0, T ; V ′)(6.24)

and
{

d

dt
ϑ(m)

}

m

: bounded sequence in Lp(0, T ; H−1(Ω))(6.25)

where p = 2 if n = 2, and p = 4/3 if n = 3.
Now we use Lemma 3.6 for B0 = V, B = H,B1 = V ′ and p0 = p1 = 2(n =

2) or p0 = p1 = 4/3(n = 3). Taking an appropriate converging subsequence
from {u(m), ϑ(m)}, we obtain periodic functions u and ϑ such that

u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), ϑ ∈ L2(0, T ; H1
0 (Ω)) ∩ L∞(0, T ; L2(Ω))

satisfying (6.1), (6.2) and Theorem 2.3 is proved.

7 Proof of Theorem2.4

We give here an outline of the proof of Theorem 2.4.
Let vi, ϑi(i = 1, 2) be two solutions. Put v = v1−v2 and ϑ = ϑ1−ϑ2. After

similar calculation to the existence proof, we find the following inequalities
hold.

d

dt
‖v‖2 + α‖∇v‖2 ≤ β‖ϑ‖2(7.1)

d

dt
‖ϑ‖2 + γ‖∇ϑ‖2 ≤ δ‖∇v‖2(7.2)

where

α = ν − 2c max
0≤t≤T

‖v1(t)‖L4

β =
η2|g|2
Cν

γ = 2(κ− c max
0≤t≤T

‖ϑ1(t)‖L4)

16



δ =
c

4
max
0≤t≤T

‖ϑ1(t)‖L4 .

Here the constant c depends only on Ω and Cν depends only on ν.
Put α′ = αc−2

0 , γ′ = γc−2
0 where c0 is the Poincaré constant. After tedious

calculation, we obtain

‖v(t)‖2 ≤ {e−α′t +
βδ

αα′
(1− e−α′t)}‖v(0)‖2 +

β

α′
(1− e−α′t)‖ϑ(0)‖2,(7.3)

‖ϑ(t)‖2 ≤ δ

α
(
βδT

α
+ 1)‖v(0)‖2 + (e−γ′t +

βδT

α
)‖ϑ(0)‖2.(7.4)

Put t = T in (7.3) and (7.4), and use the relations v(0) = v(T ) and ϑ(0) =
ϑ(T ), then we have

(1− βδ

αα′
)‖v(0)‖2 − β

α′
‖ϑ(0)‖2 ≤ 0,(7.5)

− δ

α
(
βδT

α
+ 1)‖v(0)‖2 + {1− e−γ′T − βδT

α
}‖ϑ(0)‖2 ≤ 0.(7.6)

Therefore, if max
0≤t≤T

‖v1(t)‖L4 and max
0≤t≤T

‖ϑ1(t)‖L4 are sufficiently small, we

have ‖v(0)‖ = ‖ϑ(0)‖ = 0. According to the estimates (7.3) (7.4), we obtain
‖v(t)‖ = ‖ϑ(t)‖ = 0.

Remark 7.1 Our equations contain external forces f1, f2 depending on time
variable. Therefore, small periodic solutions, if they exist, are not stationary
solutions.

8 Proof of Theorem 2.5

We give here a sketch of the proof of Theorem 2.5. As in the proof of Theorem
2.2, Lemma 3.2 is crucial to prove this theorem.

Let {ϕs
m}∞m=1 ⊂ V s(Ω) be eigenfunctions of the Stokes operator in V s(Ω),

that is,

(∇ϕs
m,∇w) = λs

m(ϕs
m, w) (∀w ∈ V s(Ω)).
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After orthonormalizing them and using the same symbol, we can consider
they are a complete ortho-normal basis of Hs(Ω) (C.f. [16]). Let {ψs

m}∞m=1 ⊂
H1,e

0 (Ω) be eigenfunctions of the Laplace operator in H1,e
0 (Ω), that is,

(∇ψs
m,∇ψ) = µs

m(ψs
m, ψ) (∀ψ ∈ H1,e

0 (Ω)).

They can be considered as a complete ortho-normal basis of L2,e(Ω). We use
Galerkin method.

Let ε1 and ε2 be arbitrary positive numbers. According to (A0)s and
(A1)s

π, we can find b0 satisfying the following inequality (Lemma 3.2)

|((u · ∇)b0, u)| ≤ ε1‖∇u‖2 (∀u ∈ V s(Ω), ∀t ∈ [0, T ])(8.1)

and, (A2)s
π allows us to choose ϑ0 satisfying the inequality (Lemma 3.4)

|((u·∇)ϑ0, ϑ)| ≤ ε2‖∇u‖ ‖∇ϑ‖ (∀u ∈ V s(Ω), ∀ϑ ∈ H1,e
0 (Ω), ∀t ∈ [0, T ]).(8.2)

Using (8.1) and (8.2), we obtain a periodic solution {u(m), ϑ(m)} to (6.3)
and (6.4) with ϕj = ϕs

j , ψj = ψs
j (1 ≤ ∀j ≤ m). Furthermore,

{u(m)}m : bounded sequence in L2(0, T ; V s) ∩ L∞(0, T ; Hs)

{ϑ(m)}m : bounded sequence in ∈ L2(0, T ; H1,e
0 ) ∩ L∞(0, T ; L2,e)

{
d

dt
u(m)

}

m

: bounded sequence in L2(0, T ; (V s)′)

{
d

dt
ϑ(m)

}

m

: bounded sequence in L2(0, T ; (H1,e
0 )′(Ω))

Now we use Lemma 3.6 for B0 = V s, B = Hs, B1 = (V s)′ and p0 = p1 = 2.
Choosing a subsequence from {u(m), ϑ(m)} appropriately, the limit functions
{u, ϑ} are periodic and satisfy (6.1), (6.2) for all ϕ ∈ V s and ψ ∈ H1,e

0 , and
Theorem 2.5 is proved.
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