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STANDARD 2D CRYSTALLINE PATTERNS AND
RATIONAL POINTS IN COMPLEX QUADRICS

TOSHIKAZU SUNADA

Abstract. A certain Diophantine problem and 2D crystallography are
linked through the notion of standard realizations which was introduced
originally in the study of random walks. In the discussion, a complex
projective quadric defined over Q is associated with a finite graph. “Ra-
tional points” on this quadric turns out to be related to standard re-
alizations of 2D crystal structures. In the last section, it is observed
that the number of rational points which correspond to periodic tilings
is finite.

1. Introduction

The standard crystalline pattern is a synonym of the standard realization
(or canonical placement) of a crystal structure introduced in [6] which gives
the most symmetric crystalline shape among all possible realizations, and is
characterized uniquely (up to similar transformations) as a minimizer of a
certain energy functional.

Figure 1. Typical 2D standard realizations

Figure 1 exhibits some of 2D examples which are familiar to scientists; the
square lattice, honeycomb (regular hexagonal lattice), equilateral triangular
lattice, and regular kagome lattice. In the 3D case, Diamond, Lonsdaleite1,
and the nets associated with the face-centered and body-centered lattices
give standard crystalline patterns. This notion, via the elementary theory
of homology and covering spaces, offers an effective method in a systematic

1This carbon allotrope, formed when meteorites containing graphite strike the earth, is
named in honor of crystallographer Kathleen Lonsdale, also referred to as the hexagonal
diamond.
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2 TOSHIKAZU SUNADA

enumeration and design of crystal structures (see [12])2. Remarkably, it
shows up in asymptotic behaviors of simple random walks ([8]), and is also
related to a combinatorial analogue of Abel-Jacobi maps ([13]).

The aim of this paper is to observe another interesting aspect of standard
realizations; specifically we establish a link between standard 2-dimensional
crystalline patterns and “rational points” of certain complex quadrics de-
fined over Q. A rational point we mean here is a point in a complex projec-
tive space each of whose homogeneous coordinate is represented by a number
in an imaginary quadratic field. For instance, the regular kagome lattice (the
lower right in Fig. 1) corresponds to the Q(

√−3)-rational point
[1 +

√−3)
2

,
1−√−3

2
,−1,

1 +
√−3
2

,
1−√−3

2
,−1

]

(or its complex conjugate) of the 2-dimensional projective quadric defined
over Q

{[z1, z2, z3, z4, z5, z6] ∈ P 5(C); z1
2 + · · ·+ z6

2 = 0,

z1 + z6 = z3 + z4, z2 + z4 = z1 + z5, z3 + z5 = z2 + z6},
which is biregular (over Q) to

{[w1, w2, w3, w4] ∈ P 3(C)| 3w1
2 + 2w2

2 + 2w3
2 + 3w4

2

−2w1w2 − 4w1w4 − 2w1w3 + 2w2w4 + 2w3w4 = 0}.
The way to give this correspondence is not ad hoc. Indeed there is a

systematic procedure to associate a complex projective quadrics Q(X0) de-
fined over Q with a finite graph X0, which is an interesting object for its own
sake. In our setting, X0 turns up as the quotient graph by the translational
action of a lattice group on the crystal structure. The point corresponding
to the standard crystalline pattern is obtained by taking the intersection of
this quadric and a certain (projective) line. It is also observed that every
rational point on the quadric yields a standard 2D crystalline pattern.

Incidentally all the examples given in Fig. 1 happen to be derived from
tilings of plane. As a matter of fact, it is rather rare to find tilings among
standard 2D crystalline patterns; namely as will be proved in the last section,
there are only finitely many rational points on Q(X0) which correspond to
tilings.

2. Standard realizations

We first review some basic results about standard realizations (see [13]
for the terminology used in the present article).

A graph is represented by an ordered pair X = (V,E) of the set of vertices
V and the set of all directed edges E (note that each edge has just two
directions, which are to be expressed by arrows). For an directed edge e, we
denote by o(e) the origin, and by t(e) the terminus. The inversed edge of
e is denoted by e. With these notations, we have o(e) = t(e), t(e) = o(e).

2Crystallographers proposed a similar idea in [2], [3], [4], [5]
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We also use the notation Ex for the set of directed edges e with o(e) = x.
Throughout, the degree degx = |Ex| is assumed to be greater than or equal
to three for every vertex x.

The network associated with a d-dimensional crystal is identified with
a periodic realization of a d-dimensional topological crystal (an infinite-fold
covering graph) X = (V, E) over a finite graph X0 = (V0, E0) whose covering
transformation group is a free abelian group L of rank d (d = 2 or 3 when we
are handling a network associated with a real crystal). Theory of covering
spaces tells us that there is a subgroup H (called a vanishing subgroup) such
that H1(X0,Z)/H = L (note that H is a direct summand of H1(X0,Z)).
Actually the topological crystal X is the quotient graph of the maximal
abelian covering graph Xab

0 over X0 modulo H. We call Xab
0 the maximal

topological crystal over X0. We denote by µ : H1(X0,Z) −→ L the canonical
homomorphism.

Precisely speaking, a periodic realization is a piecewise linear map Φ :
X −→ Rd satisfying

Φ(σx) = Φ(x) + ρ(σ) (σ ∈ L),

where ρ : L −→ Rd is an injective homomorphism whose image is a lattice
in Rd.3 We call ρ (resp. ρ(L)) the period homomorphism (resp. the period
lattice) for Φ.

By putting v(e) = Φ
(
t(e)

) − Φ
(
o(e)

)
(e ∈ E), we obtain a L-invariant

function v on E which we may identify with a 1-cochain v ∈ C1(X,Rd) with
values in Rd. Since v determines completely Φ (up to parallel translations),
we shall call v the building cochain4 of Φ. One can check that if we identify
the cohomology class [v] ∈ H1(X0,Rd) with a homomorphism of H1(X0,Z)
into Rd (the duality of cohomology and homology), then [v] = ρ ◦ µ. In
particular, Ker [v] = H and Image [v] = ρ(L).

Lemma 2.1. ([12]) Giving a periodic realization of a topological crystal over
X0 is equivalent to giving a 1-cochain v ∈ C1(X0,Rd) such that the image
of the homomorphism [v] : H1(X0,Z) −→ Rd is a lattice in Rd.

Among all periodic realizations of X, there is a “standard” one which is
characterized uniquely (up to similar transformations) by the following two
conditions:

(1) (Harmonicity)
∑

e∈E0x

v(e) = 0 (x ∈ V0), (2.1)

3The network constructed in this way could be “degenerate” in the sense that different
vertices of X are realized as one points, or different edges overlap in Rd. But we shall not
exclude these possibilities.

4In [12], [13], the term “building block” is used. The idea to describe crystal structures
by using finite graphs together with vector labeling is due to [1]
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(2) (Tight-frame condition5) There exists a positive constant c such
that ∑

e∈E0

〈x,v(e)〉v(e) = cx (x ∈ Rd). (2.2)

In the coordinate form, (2.2) is written as
∑

e∈E0

vi(e)vj(e) = cδij ,

where v = t
(
v1(e), . . . , vd(e)

)
. In particular
∑

e∈E0

‖v(e)‖2 = cd. (2.3)

(2.2) is also equivalent to
∑

e∈E0

〈x,v(e)〉2 = c‖x‖2.

The constant c does not play a role since we are considering similarity
classes of realizations; later we handle the case c = 2.

Proposition 2.1. ([6], [9])
(1) The standard realization is the unique minimizer, up to similar trans-

formations, of the energy6

E(Φ) = vol
(
Rd/ρ(L)

)−2/d
∑

e∈E0

‖v(e)‖2.

(2) Let Φ : X −→ Rd be the standard realization. Then there exists a ho-
momorphism κ of the automorphism group Aut(X) of X into the congruence
group M(d) of Rd such that

(a) when we write κ(g) =
(
A(g), b(g)

) ∈ O(d)× Rd, we have

Φ(gx) = A(g)Φ(x) + b(g) (x ∈ V ),

(b) the image κ
(
Aut(X)

)
is a crystallographic group.

Remark Equation (2.1) says that the cochain v is “harmonic” in the sense
that δv = 0 where δ : C1(X0,Rd) −→ C1(X0,Rd) is the adjoint of the
coboundary operator d : C0(X0,Rd) −→ C1(X0,Rd) with respect to the nat-
ural inner products in Ci(X0,Rd). Using a discrete analogue of the Hodge–
Kodaira theorem, one can prove that the correspondence v ∈ Ker δ 7→
[v] ∈ H1(X0,Rd) is a linear isomorphism (hence dimKer δ = db1(X0) where
b1(X0) is the first Betti number of X0). Thus given ρ, there is a unique
harmonic cochain v with [v] = ρ ◦ µ. A realization satisfying (2.1) is said
to be a harmonic realization [6] (or an equilibrium placement [2]), which is
characterized as a minimizer of E when ρ is fixed.

5The term “tight frame” is the terminology in wavelet analysis.
6The energy defined here is similarity-invariant.
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3. Albanese tori

The building cochain v for the standard realization of X with c = 2 in
Eq. (2.2) is explicitly constructed in the following way ([13]).

First we provide H1(X0,R) with a natural inner product (which allows
us to identify H1(X0,R) with the Euclidean space Rb, b = b1(X0)). For this
sake, we start with an inner product on C1(X0,R).

For e, e′ ∈ E0, we set

〈e, e′〉 =





1 (e′ = e)
−1 (e′ = e)
0 (otherwise)

,

which extends to an inner product on C1(X0,R) in a natural manner. Re-
stricting this inner product to the subspace H1(X0,R) (= Ker

(
∂ : C1(X0,

R) −→ C0(X0, R)
)
), we get an Euclidean structure on H1(X0,R).

Let Pab : C1(X0,R) −→ H1(X0,R) be the orthogonal projection, and
put vab(e) = Pab(e), regarding each edge as a 1-chain. Note that [vab] :
H1(X0,Z) −→ H1(X0,R) coincides with the injection. One can check that
vab is the building cochain of the standard realization of the maximal topo-
logical crystal Xab

0 (with c = 2).
Let X be a topological crystal over X0 corresponding to a vanishing sub-

group H of H1(X0,Z). Let HR be the subspace of H1(X0,R) spanned by
H, and H⊥

R the orthogonal complement of HR in H1(X0,R):

H1(X0,R) = HR ⊕H⊥
R .

Then dim H⊥
R = rank L = d. By choosing an orthonormal basis of H⊥

R , we
identify H⊥

R with the Euclidean space Rd.
Let P : H1(X0,R) −→ H⊥

R = Rd be the orthogonal projection. If we
put v(e) = P

(
vab(e)

)
, then we find that v gives the building cochain of the

standard realization of X (with c = 2). As shown in [13], one may reduce
the construction of v to an elementary computation of matrices.

We now consider two flat tori

A(X0) = H1(X0,R)/H1(X0,Z),

A(X0,H) = Rd/Image [v],

which, in view of analogy with classical algebraic geometry, are called the
Albanese torus of X0 and the generalized Albanese torus of (X0,H), respec-
tively. The projection P induces the exact sequence

0 −→ HR/H −→ A(X0)
p−→ A(X0,H) −→ 0, (3.1)

In the following proposition, κ(X0) denotes the tree number of X0, the
number of spanning trees in X0.

Proposition 3.1. (1) ([7]) vol
(
A(X0)

)
= κ(X0)1/2.

(2) vol
(
A(X0,H)

)
= κ(X0)1/2/vol(HR/H).
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The second claim is a consequence of the exact sequence (3.1).
The volume vol(HR/H) is computed as

vol(HR/H) = det(〈αi, αj〉)1/2,

where {α1, . . . , αb−d} is a Z-basis of H. Putting I(H) = det(αi ·αj), we shall
call I(H) the intersection determinant for H, which is evidently a positive
integer. We thus have the following formula.

vol
(
A(X0,H)

)
= κ(X0)1/2I(H)−1/2,

and hence, appealing to (2.3), we obtain

min
Φ

E(Φ) = 2dκ(X0)−1/dI(H)1/d, (3.2)

where Φ runs over all periodic realizations of X.

4. Complex quadrics associated with finite
graphs

We now embark on a new enterprise. We confine ourselves to 2D standard
realizations.

Let X0 = (V0, E0) be a finite connected graph such that b1(X0) is greater
than or equal to 2. Put

H = {z ∈ C1(X0,C)|
∑

e∈E0x

z(e) = 0 (x ∈ V0)}.

This is nothing but the space of harmonic cochains (we identify R2 with C),
so we find

dimCH = b1(X0)

(see Remark at the end of Sect. 2). We denote by P(H) the projective space
associated with H; that is, P(H) is the orbit space (H\{0})/C× by the
natural action of the multiplicative group C× = C\{0}. For z 6= 0(∈ H), we
use the notation 〈z〉 ∈ P(H) for the orbit containing z. It should be noted
that an orientation-preserving similar transformation in R2 is identified with
the multiplication by a non-zero complex number.

Lemma 4.1. A cochain z ∈ C1(X0,C) = C1(X0,R2) satisfies the tight-
frame condition if and only if

∑

e∈E0

z(e)2 = 0.

Proof Put z(e) = a(e) + b(e)
√−1, and x = t(x, y). Then

∑

e∈E0

〈z(e),x〉2 =
( ∑

e∈E0

a(e)2
)
x2 + 2

( ∑

e∈E0

a(e)b(e)
)
xy +

( ∑

e∈E0

b(e)2
)
y2.

Thus z satisfies the tight-frame condition if and only if
∑

e∈E0

a(e)2 =
∑

e∈E0

b(e)2,
∑

e∈E0

a(e)b(e) = 0.
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Since ∑

e∈E0

z(e)2 =
∑

e∈E0

(
a(e)2 − b(e)2 + 2

√−1a(e)b(e)
)
,

we get the claim. 2

In view of this lemma, it is natural to consider the quadric defined by

Q(X0) =
{
〈z〉 ∈ P(H)

∣∣ ∑

e∈E0

z(e)2 = 0
}

Let H(⊂ H1(X0,Z)) be a vanishing subgroup such that rankH1(X0,Z)/H =
2. We consider the subspace of H defined by

WH = {z ∈ H| [z](α) = 0 (α ∈ H)}
(remember that the cohomology class [z] is identified with a homomorphism
of H1(X0,Z) into C). Clearly dimCW = 2 so that LH = P(WH) is a
(projective) line in P(H).

Let zH ∈ H be the building cochain of the standard realization of X
corresponding to H which was constructed in the previous section. We fix a
complex structure on H⊥

R , and identify H⊥
R with C. It is evident that both

zH and its complex conjugate zH belong to WH .

Lemma 4.2. WH is spanned by zH and zH .

Proof It is enough to check that zH and zH are linearly independent over
C. If zH = wzH for some w ∈ C, then

∑

e∈E0

|zH(e)|2 = w
∑

e∈E0

zH(e)2 = 0

so that zH = 0, thereby a contradiction. 2

The following theorem tells us that the standard realization of the 2D
topological crystal over X0 associated with the vanishing group is obtained
as intersection of the quadric Q(X0) and the line LH .

Theorem 4.1. Q(X0) ∩ LH = {〈zH〉, 〈zH〉}.

Figure 2. Quadric and line
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Proof We only have to check that the line LH is not contained in Q(X0).
But this follows immediately from

∑
e∈E0

|zH(e)|2 6= 0 and
∑

e∈E0

(
azH(e) + bzH(e)

)2 = 2ab
∑

e∈E0

|zH(e)|2 (a, b ∈ C).

2

To give a coordinate form of Q(X0), choose an orientation Eo
0 = (e1, . . . , eN )

of X0, and put

Ein
0x = {e ∈ E0

0 | t(e) = x},
Eout

0x = {e ∈ E0
0 | o(e) = x}.

Then Q(X0) is identified with
{

[z1, . . . , zN ] ∈ PN−1(C)| z1
2 + · · ·+ z2

N = 0,
∑

i;ei∈Ein
0x

zi =
∑

j;ej∈Eout
0x

zj (x ∈ V0)
}

.

via the correspondence z 7→ (z1, . . . , zN ) given by zi = z(ei). Note the
equation ∑

i;ei∈Ein
0x

zi =
∑

j;ej∈Eout
0x

zj (4.1)

is equivalent to
∑

e∈E0x

z(e) = 0, and is a complex version of Kirchhoff’s law in

the theory of electric circuits stating that the amount of in-coming currents
at a node is equal to the amount of out-going current.

Proposition 4.1. Q(X0) is (biregular over Q to) a non-singular quadric
defined over Q of dimension b1(X0)− 2.

Proof Put

W =
{

t(z1, . . . , zN )|
∑

i;ei∈Ein
0x

zi =
∑

j;ej∈Eout
0x

zj (x ∈ V0)
}

,

which is a coordinate form of H. One can find a N×b matrix A = (aij) with
rational entries such that the correspondence t(w1, . . . , wb) 7→ t(z1, . . . , zN )
given by zi =

∑b
j=1 aijwj is a linear isomorphism of Cb onto W . Then

F (w1, . . . , wb) =
N∑

i=1

( b∑

j=1

aijwj

)2

is obviously a positive definite quadratic form. Thus the quadric

Q = {[w1, . . . , wb] ∈ P b−1(C)| F (w1, . . . , wb) = 0}
is non-singular, and is biregular (over Q) to Q(X0). 2
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To describe {〈zH〉, 〈zH〉} in the coordinate form, let α1, . . . , αb−2 be a free
Z-basis of the vanishing subgroup H. Write

αi =
N∑

j=1

aijej (i = 1, . . . , b− 2).

with aij ∈ Z. Then

WH =
{

t(z1, . . . , zN )
∣∣

N∑

j=1

aijzj = 0 (i = 1, . . . , b− 2)
}

.

We thus have

Theorem 4.2.

{〈zH〉, 〈zH〉} =
{

[z1, . . . , zN ] ∈ PN−1(C)| z1
2 + · · ·+ z2

N = 0,
∑

i;ei∈Ein
0x

zi =
∑

j;ej∈Eout
0x

zj (x ∈ V0),

N∑

j=1

aijzj = 0 (i = 1, . . . , b− 2)
}

.

5. Rational points

From the previous theorem, it follows that zH and zH are obtained by
solving a quadratic equation of the form az1

2 +bz1z2 +cz2
2 = 0 (a, b, c ∈ Q).

Hence we conclude that there exists a positive square free integer D such that
{〈zH〉, 〈zH〉} ⊂ PN−1

(
Q(
√−D)

)
. The following lemma will give another

proof for this fact.

Lemma 5.1. Suppose that {z1, . . . , zN} satisfies z1
2 + · · · + z2

N = 0. Then
{z1, . . . , zN} generates a lattice in C if and only if there exists a positive
square free integer D such that [z1, . . . , zN ] ∈ PN−1

(
Q(
√−D)

)
.

Proof The proof is fairly elementary. Suppose that {z1, . . . , zN} generates
a lattice whose Z-basis w1, w2. Then there exist integers ai, bi such that
zi = aiw1 + biw2. Substituting this for z1

2 + · · ·+ z2
N = 0, we get

( N∑

i=1

a2
i

)
w2

1 + 2
( N∑

i=1

aibi

)
w1w2 +

( N∑

i=1

b2
i

)
w2

2 = 0

so that

w2

w1
=
−∑N

i=1 aibi ±
√(∑N

i=1 aibi

)2
−

( ∑N
i=1 a2

i

)(∑N
i=1 b2

i

)

∑N
i=1 b2

i

.
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If we denote by D the square free part of the positive integer
( N∑

i=1

a2
i

)( N∑

i=1

b2
i

)
−

( N∑

i=1

aibi

)2
,

then x := w2/w1 ∈ Q(
√−D). Thus (if z1 6= 0),

zi

z1
=

ai + bix

a1 + b1x
∈ Q(

√
−D).

Therefore

[z1, . . . , zN ] = [1, z2/z1, . . . , zN/z1] ∈ PN−1
(
Q(
√
−D)

)
.

Conversely suppose that [z1, . . . , zN ] ∈ PN−1
(
Q(
√−D)

)
. One may as-

sume zi ∈ Q(
√−D) without loss of generality. One may also assume z1, z2

are linearly independent over R; otherwise every zi is a real scalar multiple
of some z; say, zi = ciz, ci ∈ R, and hence 0 = (c2

1 + · · ·+ c2
N )|z|2; thereby

leading to a contradiction. Obviously there are rational numbers αi, βi such
that zi = αiz1 + βiz2 (i = 3, . . . , N). This implies that {z1, . . . , zN} gen-
erates a lattice in C (which is commensurable to the lattice generated by
z1, z2. 2

Theorem 5.1. (1) Let z ∈ C1(X0,C) be the building cochain of the standard
realization of a 2D topological crystal over X0. Then [z1, . . . , zN ] ∈ Q(X0)∩
PN−1

(
Q(
√−D)

)
. Conversely, for [z1, . . . , zN ] ∈ Q(X0)∩PN−1

(
Q(
√−D)

)
,

put

z(e) =

{
zi (e = ei)
−zi (e = ei).

Then z is the building cochain of the standard realization of a 2D topological
crystal.

(2) The set
Q(X0) ∩

⋃

D

PN−1
(
Q(
√
−D)

)

is identified with the family of all similarity classes of standard realizations
of 2-dimensional topological crystals over X0.

It suffices to prove that for

[z1, . . . , zN ] ∈ Q(X0) ∩ PN−1
(
Q(
√
−D)

)
,

the rank of the image of [z] : H1(X0,Z) −→ C is equal to two (note that
Image [z] is a subgroup of the lattice generated by {z1, . . . , zN}). If the rank
is one, then {z1, . . . , zN} gives rise to 1-dimensional (harmonic) realization,
and hence every zi must be a real scalar multiple of some z; thereby a
contradiction. 2

We have interest in the description of D in terms of X0 and H. Consider
the standard realization associated with

[z1, . . . , zN ] ∈ Q(X0) ∩ PN−1
(
Q(
√
−D)

)
.
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One may assume zi ∈ Q(
√−D). Let T = Zw1 + Zw2 be the period lattice.

Writing wi = ai + bi

√−D ∈ Q(
√−D), we observe that the energy of the

standard realization associated with [z1, . . . , zN ] is computed as

2vol(C/T )−1(|z1|2 + · · ·+ |zN |2) =
4

|w1w2 − w2w1|(|z1|2 + · · ·+ |zN |2)

=
2

|a1b2 − a2b1|
√

D
(|z1|2 + · · ·+ |zN |2).

On the other hand, in view of (3.2), this is equal to

4κ(X0)−1/2I(H)1/2.

Since |z1|2 + · · ·+ |zN |2 ∈ Q, we have

Proposition 5.1. D is equal to the square free part of κ(X0)I(H).

The following proposition is shown in a routine way.

Proposition 5.2. If Q(X0) has a Q(
√−D)-rational point, then Q(X0) ∩

PN−1
(
Q(
√−D)

)
is dense in Q(X0).

6. Examples

We shall illustrate several examples.

(1) The square lattice and the honeycomb have a special feature in the
sense that they correspond to rational points of “0-dimensional” quadrics;
say:

In the case of the square lattice

{[z1, z2] ∈ P 1(C); z1
2 + z2

2 = 0} = [1,±√−1].

In the case of the honeycomb

{[z1, z2, z3] ∈ P 2(C); z1
2 + z2

2 + z3
2 = 0, z1 + z2 + z3 = 0}

=
[
1,
−1±√−3

2
,
−1∓√−3

2

]
.

(2) The regular kagome lattice, which is, as an abstract graph, a topolog-
ical crystal over the graph depicted in Fig. 3, corresponds to the Q(

√−3)-
rational points

[1±√−3)
2

,
1∓√−3

2
,−1,

1±√−3
2

,
1∓√−3

2
,−1

]

of the 2-dimensional projective quadric defined over Q

{[z1, z2, z3, z4, z5, z6] ∈ P 5(C); z1
2 + · · ·+ z6

2 = 0,

z1 + z6 = z3 + z4, z2 + z4 = z1 + z5, z3 + z5 = z2 + z6}
(the vanishing subgroup is H = Z(e1 + e2 + e3) + Z(e4 + e5 + e6)).
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Figure 3. Example

(3) The equilateral triangular lattice, which is, as an abstract graph, a
topological crystal over the 3-bouquet graph B3, corresponds to theQ(

√−3)-
rational points [

1,
−1±√−3

2
,
−1∓√−3

2

]

of the quadric

{[z1, z2, z3] ∈ P 2(C); z1
2 + z2

2 + z3
2 = 0}

(the vanishing group is Z(e1 + e2 + e3); the orientation being illustrated in
Fig. 4).

(4) The 2D crystal lattice in Fig.4, which is also a topological crystal over
B3 as an abstract graph, corresponds to Q(

√−6)-rational points

[3±√−6,−3±√−6,∓√−6]

of the quadric

{[z1, z2, z3] ∈ P 2(C)| z1
2 + z2

2 + z3
2 = 0}

(the vanishing groups is H = Z(e1 + e2 + 2e3)).

Figure 4. Example

(5) The 2D crystal lattice in Fig.5 corresponds to Q(
√−1)-rational points

[
1,
−1±√−1

2
,−1±√−1

2
,±√−1,

−1±√−1
2

,
1±√−1

2

]
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of the quadric

{[z1, . . . , z6] ∈ P 5(C); z1
2 + · · ·+ z6

2 = 0, z1 + z2 + z3 = 0,

z3 + z4 = z5, z1 + z5 = z6, z2 + z6 = z4}
(the vanishing group is H = Z(−e2 + e3 + e5 + e6)).

Figure 5. Example

This crystalline pattern is observed when we look at the K4 crystal (dia-
mond twin) toward an suitable direction (see [10], [13]).

(6) Figure 6 is the so-called dice lattice. This corresponds to Q(
√−3)-

rational points
[
1,
−1±√−3

2
,
−1∓√−3

2
,−1,

1±√−3
2

,
1∓√−3

2

]

of the quadric

{[z1, . . . , z6] ∈ P 5(C)| z1
2 + · · ·+ z6

2 = 0, z1 + z2 + z3 = 0, z4 + z5 + z6 = 0}
(the vanishing groups is H = Z(e1 + e3 + e4 + e5) + Z(e5 + e6 + e3 + e2)).

Figure 6. Example
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(7) Figure 7 is a tiling of pentagons with picturesque properties that
has become known as the Cairo pentagon7. Its 1-skeleton is the standard
realization of a topological crystal over the finite graph drawn on the right,
which corresponds to Q(

√−1))-rational points
[
− 1∓

√−1
2

,
1
2
∓√−1, 1±

√−1
2

,−1
2
±√−1,∓√−1,

1,−1
2
∓√−1,−1±

√−1
2

,−1±
√−1

2
,−1

2
∓
√−1

2

]

of the quadric

{[z1, . . . , z10] ∈ P 9(C)| z1
2 + · · ·+ z10

2 = 0, z1 = z5 + z9, z2 = z6 + z10,

z1 + z2 + z3 + z4 = 0, z4 + z6 + z7 = 0, z3 + z5 + z8 = 0,

z9 + z10 = z7 + z8}.

Figure 7. Example

7. Tilings

In general, a periodic tiling, symbolically written as (T,L), is a tessellation
of figures (tiles) in the plane R2 which is periodic with respect to the trans-
lational action by a lattice group L. Two tiles D and D′ in (T,L) are said to
be equivalent if D′ = D + σ for some σ ∈ L. We denote by fT,L the number
of equivalence classes of tiles, and let D1, . . . , DfT,L

be representatives of
equivalence classes, which we call fundamental tiles8 of (T, L).

7It is given its name because several streets in Cairo are paved in this design (strictly
speaking, it is a bit distorted). This is also called Macmahon’s net, mcm, and a 4-fold
pentille (J. H. Conway).

8Some of fundamental tiles can be congruent. For instance, fundamental tiles of the
equilateral lattice with respect to the maximal periodic lattice are two congruent equilat-
eral triangles.
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Figure 8 is the picture of the tiling we find on a street pavement in Za-
kopane, Poland9. This tiling has three fundamental tiles depicted on the
right.

Figure 8. A tiling and its fundamental tiles

As for topological shapes of tilings, we have

Theorem 7.1. For any natural number f , there are only finitely many
homeomorphic classes of tilings (T, L) such that fT,L = f . Here we say that
two tilings (T1, L1) and (T2, L2) are homemorphic if there is a homemor-
phism ϕ : R2 −→ R2 and an isomorphism ψ : L1 −→ L2 satisfying

(1) ϕ(x + σ) = ϕ(x) + ψ(σ), (x ∈ R2, σ ∈ L1),
(2) ϕ(T1) = T2.

The following theorem is deduced from the proof of this theorem.

Theorem 7.2. There are only finitely many 2D topological crystals over
X0 whose standard realizations yield tilings. In other words, there are only
finitely many rational points in Q(X0) which correspond to tilings.

Let X be the 1-skeleton of a given periodic tiling (T, L), and consider the
quotient graph X0 = X/L. Then X as an abstract graph is a 2D topological
crystal over X0 (the net X is not necessarily a crystal net since the edges
are allowed to be curved). We shall say that (T,L) is a tiling with the base
graph X0. Denote by ω : X −→ X0 the covering map. Note that the degree
of any vertex (node) x in X0 is greater than or equal to 3.

The covering map π of R2 onto the the 2-dimensional torus R2/L induces
a cellular decomposition of R2/L. The 1-skeleton of this cellular decom-
position is just the finite graph X0 realized in R2/L (conversely, a cellular
decomposition of the torus yields a tiling).

The proof of Theorem 7.1 is divided into 4 steps each of which is fairly
elementary.

(1) The number of 2-cells in R2/L is equal to f = fT,L, which coincides
with v− e (= b1(X0)− 1), where v (resp. e) is the number of vertices (resp.
edges) in X0. This is because v − e + f is the Euler number of the torus so
that v − e + f = 0.

9From Wikipedia.
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(2) Let D1, . . . , Db−1 (b = b1(X0)) be fundamental tiles. Then π(D1), . . . ,
π(Db−1) are all 2-cells in the torus. Topologically Di is identified with a
polygon with ki sides where ki is the number of vertices on Di. If we put
NT,L = max{k1, . . . , kb−1}, then NT,L ≤ 2e.

To show this, let Di is a tile having NT,L edges on ∂Di. If NT,L > 2e,
then there exist at least three edges in ∂Di which are mapped to an edge in
X0 by ω. This should not happen since the torus is non-singular. Therefore
we get the claim.

(3) For a fixed integer b ≥ 0, there are only finitely many finite graphs X0

(up to isomorphisms) such that deg x ≥ 3 for all vertex x and b1(X0) = b.
Indeed,

3v ≤
∑

x

deg x = 2e,

so 3v ≤ 2e and v ≤ 2(b−1) (use v−e = 1−b), and also e ≤ 3b−3. Therefore
the number of vertices and edges is bounded.

(4) Given a finite graph X0 and polygonal 2-cells Di with ki sides (i =
1, . . . , f , there are only finitely many ways to attach Di’s to X0 to make a
cell complex whose underlying space is the torus (more generally a closed
surface).

Putting altogether, we complete the proof of Theorem 7.1. Theorem 7.2
is also a consequence of (1), (2), (4) since if a 2D topological crystal X over
X0 yields a tiling (T, L), then fT,L = b1(X0)− 1 and NT,L ≤ 6

(
b1(X0)− 1

)
.

We shall go a bit further. Let H be the vanishing group for the 2D
topological crystal X over X0 which corresponds to a tiling (T, L).

Lemma 7.1. If we put ci = ∂Di and give the counter-clockwise orientation
on ci, then ω(cb−1) = −(ω(c1) + · · ·+ ω(cb−2)), and ω(c1), . . . , ω(cb−2) form
a Z-basis of H.

To prove the last assertion, let c be a closed path in X0 whose homology
class is in H. The (any) lifting ĉ of c in X is also closed. As a 1-chain, we
may write

ĉ =
b−1∑

i=1

ni∂Di,

where ni denotes the winding number of ĉ around a interior point of Di.
Thus

c = ω(ĉ) =
b−1∑

i=1

niω(ci),

which implies that H is generated by ω(c1), . . . , ω(cb−2).
Next suppose that

b−2∑

i=1

miω(ci) = 0 (mi ∈ Z).
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Expressing the left hand side as a 1-chain, and taking a look at the coeffi-
cients of directed edges in X0, we find that if ω(ci) and ω(cj) share an edge,
then mi = mj , and that if ω(ci) and ω(cb−1) share an edge, then mi = 0,
from which it follows that m1 = · · · = mb−2 = 0. Thus we conclude that
ω(c1), . . . , ω(cb−2) comprise a Z-basis of H.

It is an interesting problem to list all homeomorphic classes of tilings
(T,L) with fT,L = f . To handle this problem (not yet having been solved
completely), it may be useful to introduce the notion of height of vanishing
groups as follows10.

Take an orientation of X0 and define the norm ‖α‖1 of a 1-chain α =∑

e∈Eo
0

aee by setting

‖α‖1 =
∑

e∈Eo
0

|ae|,

where Eo
0 is the set of directed edges for the orientation (it should be noted

that ‖α‖1 does not depend on the choice of an orientation). For a subset S =
{α1, . . . , αb−2} of H1(X0,Z) which forms a Z-basis of a vanishing subgroup,
we put

h(S) = max(‖α1‖1, . . . , ‖αb−2‖1),

and define the height of H by h(H) = minS h(S), where S runs over all
Z-bases of H. Consider two sets

R1 = {S| h(S) ≤ h}, R2 = {H| h(H) ≤ h}.
Certainly R1 is a finite set. The correspondence S 7→ H (generated by S)
yields a surjective map of R1 onto R2. Thus we get:

Theorem 7.3. There are only a finite number of vanishing subgroups H of
the homology group H1(X0,Z) such that

(1) rank H1(X0,Z)/H = 2,

(2) h(H) ≤ h.

Suppose now that X0 is the base graph for a tiling (T,L), and let H be
the vanishing group corresponding to the topological crystal X associated
with (T, L). Then, using the notations above, we have

‖ω(ci)‖1 ≤ ki ≤ NT,L

so that h(H) ≤ NT,L ≤ 6
(
b1(X0)− 1

)
(this gives another proof of Theorem

7.2). Thus in order to list homeomorphic classes of tiling (T,L) with fT,L =
f , we first enumerate finite graphs X0 with b1(X0) = f +1, and then for such
X0, we enumerate vanishing groups H ⊂ H1(X0,Z) such that h(H) ≤ 6f
and check whether X = Xab

0 /H gives a tiling or not.

10This notion is introduced for topological crystal of arbitrary dimension ([13]).
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