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1. Introduction

There is a vast amount of published research on the use of statistical time series
analysis of macroeconomic time series. One important distinction of macroeconomic
time series from the standard time series analysis in other areas has been the mixture
of non-stationarity and measurement errors including apparent seasonality. The
measurement errors in economic times series are often essential in the published
official macro-economic data, but enough attention has not been in the analysis of
non-stationary multivariate time series analysis.

In this regard, Kunitomo and Sato (2017) have developed a new statistical
method called the Separating Information Maximum Likelihood (SIML) estima-
tion for the multivariate non-stationary errors-in-variables models. Earlier and re-
lated literature on the non-stationary economic time series are Engle and Granger
(1987) and Johansen (1995), which have dealt with the econometric modeling of
multivariate non-stationary and stationary time series and developed the notion of
co-integration, but they did not have paid much attention on measurement errors.
The problem discussed by Kunitomo and Sato (2017) is related to their work, but it
has different aspects due to the fact that its main focus was on the non-stationarity,
seasonality and measurement error in the non-stationary errors-in-variables mod-
els. Many economists tend to use the official macro-economic data, but then they
should have taken more attention on the measurement errors and official seasonal
adjustments. There are important consequences by using economic data with the
measurement errors, which are common in many published macro-economic time
series by central governments.

On the other hand, in the literature of statistical time series analysis, the state
space modeling for non-stationary time series has been developed by Akaike (1989)
and Kitagawa (2010) and there have been many applications in many fields including
control engineering and statistical seismology already reported (see Ohtsu, Peng
and Kitagawa (2015) for instance). Their statistical method may look different
from time series econometrics at the first glance. By looking their method carefully
and comparing with the econometric analysis of non-stationary multivariate time
series, the underlying statistical problems are quite similar with respect to the non-
stationarity and measurement errors. Then the study of Kunitomo and Sato (2017)
can be regarded as an investigation of statistical inference problem of state space
modeling, which is related to an earlier work by Chiang, Jiang and Park (2008).

The main purpose of this paper is to compare the the SIML estimation and the
maximum likelihood (ML) estimation, which are two different methods to estimate
the non-stationary errors-in-variables models when there are non-stationary trends
and noise components. In this paper we will report that the Gaussian likelihood
function show some peculiar shape and the computation of the ML estimation can
be unstable in some cases. Also when there are co-integrated relations among trends
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with the rank being smaller than the dimension of observations, there could be an
additional computational problem. On the other hand, the separating information
maximum likelihood (SIML) method gives an alternative way to overcome the un-
derlying difficulty of computation while it has reasonable statistical properties. The
SIML estimation has the asymptotic robust properties under general conditions of
existence of second order moments. We show the asymptotic properties as well as
its finite sample properties of the ML estimation and SIML estimation as well as
simulations.

In Section 2 we will present a general formulation of the problem and give simple
examples to illustrate the problem in this study. Then In Section 3, we will discuss
the simple one-dimensional case and the non-stationary model has the random walk
plus noise and we will develop one common (non-stationary) factor case in multi-
variate errors-in-variables models. Section 4 we investigate the Gaussian likelihood
function and its shape. We give the consistency result of the ML estimation. It
seems to be new although it is not surprising result. In Section 5, we will discuss
some extensions and then present some concluding remarks in Section 6. Some
mathematical derivations will be given in Appendix.

2. The Model

Let yij be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
be a p× 1 vector and Yn = (y

′
i) (= (yij)) be an

n×p matrix of observations and we denote y0 as the initial p×1 vector. We consider
the situation when the underlying non-stationary trends xi (= (xji)) (i = 1, · · · , n)
are not necessarily the same as the observed time series and let v

′
i = (v1i, · · · , vpi)

be the vectors of the noise components, which are independent of xi. Then we use
the additive decomposition form

(2.1) yi = xi + vi (i = 1, · · · , n),

where the trend components xi (i = 1, · · · , n) satisfies

(2.2) ∆xi = (1− L)xi = w
(x)
i

with Lxi = xi−1, ∆ = 1 − L, E(w(x)
i ) = 0, E(w(x)

i w
(x)′

i ) = Σx, and a sequence of
stationary components satisfies vi (i = 1, · · · , n) with E(viv

′
i) = Σv and

(2.3) vi =
∞∑

j=−∞

Cjei−j ,

with absolutely summable coefficients Cj and a sequence of i.i.d. random vectors
with E(ei) = 0, E(eie

′
i) = Σe.

We assume that w
(x)
i and ei are the sequence of i.i.d. random vectors with Σe being
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positive-semi-definite, and the random vectorsw
(x)
i and ei are mutually independent.

When vi = ei, we can interpret that it is a sequence of independent measurement
errors. The present additive decomposition is similar to the one given by Kitagawa
and Gersch (1984) and Kitagawa (2010).

In order to develop the SIML estimation, we first consider the situation when ∆xi

and vi (i = 1, · · · , n) are mutually independent and each of the component vectors
are independently, identically, and normally distributed as Np(0,Σx) and Np(0,Σv),
respectively. We use an n × p matrix Yn = (y

′
i) and consider the distribution of

np× 1 random vector (y
′
1, · · · ,y

′
n)

′
. Given the initial condition y0, we have

(2.4) vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,

where 1
′
n = (1, · · · , 1) and

(2.5) Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.

Then, given the initial condition y0 the conditional maximum likelihood (ML) es-
timator can be defined as the solution of maximizing the conditional log-likelihood
function except a constant as

L∗
n = log |In ⊗Σv +CnC

′

n ⊗Σx|−1/2

−1

2
[vec(Yn − Ȳ0)

′
]
′
[In ⊗Σv +CnC

′

n ⊗Σx]
−1[vec(Yn − Ȳ0)

′
] ,

where

(2.6) Ȳ0 = 1n · y
′

0 .

We use the Kn−transformation that from Yn to Zn (= (z
′

k)) by

(2.7) Zn = Kn

(
Yn − Ȳ0

)
,Kn = PnC

−1
n ,

where

(2.8) C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,
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and

(2.9) Pn = (p
(n)
jk ) , p

(n)
jk =

√
2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
.

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element

dk = 2[1− cos(π(
2k − 1

2n+ 1
))] (k = 1, · · · , n) .

Then the conditional likelihood function given the initial condition is proportional
to

(2.10) Ln =
n∑

k=1

log |a∗knΣv +Σx|−1/2 − 1

2

n∑
k=1

z
′

k[a
∗
knΣv +Σx]

−1zk ,

where

(2.11) a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .

We have used two transformations on the non-stationary time series into the se-
quence of independent random variables zk (k = 1, · · · , n) which follows Np(0,Σx+
a∗knΣv), and the coefficients a∗kn is a dense sample of 4 sin2(x) in (0, π/2) 1.

It may be natural to use zkz
′

k to estimate a∗knΣv + Σx since it is the variance-
covariance matrix of zk. We notice that a∗kn → 0 as n → ∞ for a fixed k. When
k is small, a∗kn is small and we can expect that k = kn depending n is still small
when n is large. However, (1/mn)

∑mn

k=1 a
∗
kn is not small if mn is near to n, which

suggests the condition mn/n → 0 as n → ∞. The separating information maximum
likelihood (SIML) estimator of Σ̂x can be defined by

(2.12) Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .

This estimator of the variance-covariance of non-stationary trends is trying to use
the information on trends in the frequency domain, which corresponds to only the
trend parts without measurement errors from the time series observations. For
Σ̂x, the number of terms mn should be dependent on n. Then we need the order
requirement that mn = O(nα) and 0 < α < 1, which is the first property of the
macro-SIML estimation.

From our construction of the SIML estimation the essential features of estimation
do not depend on the noise terms as long as the noise terms are stationary. It has
been pointed out by Kunitomo and Sato (2017).

1We have used a∗kn, which is slightly different ak in Kunitomo and Sato (2013) and the latter
corresponds to akn = na∗kn.
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3. Simple Cases

3.1 An Illustration

Let yi be the i−th observation of time series for i = 1, · · · , n and yn = (yi) be an
n×1 vector of observations. (y0 is the initial observation.) We consider the situation
when the underlying non-stationary trends xi at i = 1, · · · , n are not necessarily the
same as the observed time series and followed by

(3.1) xi = xi−1 + v
(x)
i

where v
(x)
i are the independent random variables followed by N(0, σ2

x) and x0 is the
initial variable. Let vi are the independent random variables followed by N(0, σ2

v),
which are independent of xi (i = 1, · · · , n). Then we consider the additive model

(3.2) yi = xi + vi (i = 1, · · · , n) .

Then the log-likelihood function is proportional to

(3.3) Ln =
n∑

k=1

log |a∗knσ2
v + σ2

x|−1/2 − 1

2

n∑
k=1

z2k
a∗knσ

2
v + σ2

x

,

where

(3.4) a∗kn = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .

By defining τ = σ2
x/σ

2
v (≥ 0), we rewrite −(1/2)Ln as

(3.5) L1n =
n∑

k=1

[log σ2
v + log(a∗kn + τ)] +

1

σ2
v

n∑
k=1

z2k
a∗kn + τ

.

Since zk ∼ N(0, a∗knσ
2
v +σ2

x) (k = 1, · · · , n), then the maximum likelihood estimator
of σ2

v is given by

(3.6) σ̂2
v.ML =

1

n

n∑
k=1

z2k
a∗kn + τ

and the concentrated (normalized) likelihood function) in this simple case is pro-
portional to

(3.7) L1n(τ) = log[
1

n

n∑
k=1

z2k
a∗kn + τ

] +
1

n

n∑
k=1

log[a∗kn + τ ] + 1 .
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It may not be straightforward to obtain the maximum likelihood estimator of τ
because the likelihood function may not be a simple function. Also Hirotsugu Akaike
(1985) argued that we should impose the restriction 0 < τ ≤ 1 in our setting because
of the usefulness of models. He advocated to estimate the models by using the ABIC
maximization procedure.
On the other hand, we approximate (1.9) as

(3.8) LSI
n =

mn∑
k=1

log |a∗knσ2
v + σ2

x|−1/2 − 1

2

mn∑
k=1

z2k
a∗knσ

2
v + σ2

x

,

and we have some requirement on mn/n = o(1). We notice that a∗kn = o(1) when
k = 1, · · · ,mn and n → ∞. Then the SIML estimator σ2

x can be given by

(3.9) σ̂2
x.SIML =

1

mn

mn∑
k=1

z2k .

However, the macro-SIML estimation of σ2
v is not the same as the original (finance)

SIML estimation because a∗kn = O(1) for k = n−mn+1, · · · , n. One way to estimate
σ2
v is to use the fact that

(3.10) E [ 1
n

n∑
i=1

z2k] = σ2
x + (

1

n

n∑
i=1

a∗kn)σ
2
v −→ σ2

x + 2σ2
v (n → ∞).

It is because a∗kn −→ 0 when kn/n → 0 (n → ∞) and a∗kn → 4 (kn/n → 1, n → ∞).
Then a possible SIML estimator σ2

v can be given by

(3.11) σ̂2
v.SIML(1) =

1

2
[
1

n

n∑
k=1

z2k − σ̂2
x.SIML] ,

with the restriction of the resulting positivity.
For the estimation problem of high-frequency financial data, Kunitomo and Sato
(2013) have suggested to use

(3.12) σ̂2
v.SIML =

1

ln

n∑
k=n−ln

a−1
knz

2
k ,

where akn = na∗kn and ln = o(n) for the hight frequency asymptotics. However,
in the present case of Macro-SIML with a∗kn it is straightforward to show that
1
ln

∑n
k=n−ln+1 a

∗−1
kn → 1/4 as n → ∞, the macro-SIML estimator is given by

(3.13) σ̂2
v.SIML(2) =

1

ln

n∑
k=n−ln+1

a∗−1
kn z2k −

1

4
σ̂2
x.SIML

with the restriction of the resulting positivity.
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3.2 A Non-stationary Common Trend Case

Let yi be the i−th observation of p-dimensional time series for i = 1, · · · , n and
yi = xi + vi. Also let Yn = (y

′
i) be an n × p (p ≥ 1) matrix of observations. We

assume that the vectors xi satisfy

(3.14) xi = xi−1 + πµ∗
i ,

where π is a p × 1 vector, µ∗
i is a sequence of i.i.d. (one-dimensional) random

variables 2 following N(0, σ2
µ) and vi are i.i.d. (p-dimensional) random variables

following Np(0,Σv) with the variance-covariance matrix Σv, which is a non-singular
matrix. We take b = σµπ,A = a∗knΣv and apply the matrix formulas such that for
a positive definite A we have

(3.15) |A+ bb
′ | = |A|[1 + b

′
A−1b]

and

(3.16) [A+ bb
′
]−1 = A−1 −A−1b[1 + b

′
A−1b]−1b

′
A−1

for Σx = bb
′
.

Then the likelihood function Ln is proportional to (−1/2) times

L1n =
n∑

k=1

[
log |a∗knΣv|+ log(1 + a∗−1

kn b
′
Σ−1

v b) + a∗−1
kn z

′

kΣ
−1
v zk −

a∗−1
kn (z

′

kΣ
−1
v b)2

a∗kn + b′Σ−1
v b

]
=

n∑
k=1

log |a∗knΣv|+
n∑

k=1

a∗−1
kn z

′

kΣ
−1
v zk +

n∑
k=1

[
log(1 + a∗−1

kn c)− a∗−1
kn (z

′

kΣ
−1
v b)2

a∗kn + c

]
,

where we set

(3.17) c = σ2
µπ

′
Σ−1

v π .

We need a normalization for the vector π. If we take a simple normalization, the
maximum likelihood estimator of π could be a quite complicated solution of the
likelihood equation even when p = 2. One possible normalization is to take β

′
=

(1,−β
′

2) and then the maximization is not a trivial task.
As an alternative way to solve the present problem is to use the conditions that

E [zkz
′

k] = Σx + o(1) fork = 1, · · · ,mn

and

E [a∗−1
kn zkz

′

k] = Σv +
1

4
Σx + o(1) fork = n+ 1−mn, · · · , n .

2The notation µ∗
i is different from µi and µ∗

i = ∆µi (i = 2, · · · , n) in Kunitomo and Sato (2017).
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The rank of matrix Σx is one while the matrix Σv has a full rank. Then it may be
natural to consider the characteristic equation

(3.18)
[
Σ̂x.SIML − λΣ̂v.SIML

]
β̂SIML = 0 ,

and

(3.19) Σ̂x.SIML =
1

mn

mn∑
k=1

zkz
′

k ,

(3.20) Σ̂v.SIML(1) =
1

2
[
1

n

n∑
k=1

zkz
′

k − Σ̂x.SIML] ,

or

(3.21) Σ̂v.SIML(2) =
1

ln

n∑
k=n+1−ln

a∗−1
kn zkz

′

k −
1

4
Σ̂x.SIML ,

where we have the restrictions of the resulting positive definiteness of the estimated
variance-covariance matrix.
We use the notation that

(3.22) Zn = (z
′

k) = PnC
−1
n

(
Yn − 1nȳ

′

0

)
,

Σ̂v.SIML is a SIML estimator of Σv, and λ is the (scalar) eigen value. Because the
rank of Σx is degenerated and it is one, we need to take the smallest eigenvalue
λ1. We have the β̂SIML, which is called the SIML estimator of β. A simplified
(consistent) estimation may be given by

(3.23) Σ̂x.SIML × β̂SIL = 0 ,

that is,

(3.24) Σ̂x.SIML × [
1

−β̂2.SIL

] = 0 .

We can solve as

(3.25) β̂2.SIL = Σ̂
−1

22x.SIMLΣ̂21x.SIML ,

which can be the least squares estimator for the transformed variables and it is
called the SILS estimator.
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3.3 On Autocorrelations of Noise terms

The main statistical problem of the time series decomposition models in Kunitomo
and Sato (2017) was the estimation of non-stationary trend components and sea-
sonal components. The results do not much depend on the specification of noise
components. When there are autocorrelations in the noise terms as (2.3), the analy-
sis of frequency domain on the underlying errors-in-variables models may give some
insight on the issue.

When the vector sequence of noise terms vi (i = 1, · · · , n) follows the stationary
stochastic process as (2.3), we can represent the spectral density p× p matrix of vi

as

(3.26) fv(λ) =
1

π
(

∞∑
j=−∞

Cje
2iλj)Σe(

∞∑
j=−∞

Cje
−2iλj) (−π

2
≤ λ ≤ π

2
),

where i2 = −1 (see Chapter 7 of Anderson (1971) for instance.)
Then the p × p spectral density matrix of the transformed vector process ∆yi (=
yi − yi−1) can be also represented as

(3.27) f∆y(λ) =
1

π

[
Σx + (1− e2iλ)fv(λ)(1− e−2iλ)

]
.

Since the transformed random vectors zk (k = 1, · · · , n) correspond to the Fourier
transformed vectors of ∆yi (i = 1, · · · , n) except the initial condition y0, it is possi-
ble to estimate the spectral density matrix fv(λ) from the sequence of observations
of zk (k = 1, · · · , n) in principle.

The efficient estimation on fv(λ) could be certainly possible, but we need to
investigate further related problems such as the kernel estimation and the effects
of small sample sizes usually encounterd in analysing macro-economic time series
by the multivariate economic time series, which are quite different from the initial
purrpose of the present investigation,it is beyond scope of this paper and we will
take have another occasion.

4. Gaussian Likelihood Function and Maximum Likelihood
Estimation

It may be natural to think that we could apply the general principle of the maximum
likelihood (ML) method. For the resulting simplicity, we use the case of i.i.d. noises
for the ML estimation. One of interesting aspects of the present problem is the fact
the ML method does not necessary give a satisfactory solution. We illustrate this
problem by using Example 1 in Section 2 of Kunitomo and Sato (2017). We set the
true parameter values as σ2

µ = 0.4, β2 = 1.0 and

Σv =

(
0.45 0.23
0.23 0.4

)
, Σx = σ2

µππ
′
, π =

(
1

−β2

)
.
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Figure 1 : Likelihood Function of β2 (n = 1, 000)

Then we generate a set of simulated observations as a typical example and we have
drawn two Gaussian likelihood functions of β2 in Figures 1-3 when 1, 000, given the
true values for other parameters. We have found that the likelihood function could
have some peculiar forms in some cases as illustrated by Figures 1 and 2. Also
we have found that the Gaussian likelihood function is rather flat with respect to
the correlation coefficient parameter. It seems that these are some of important
consequences in the non-stationary errors-in-variables models.

We have drawn one wrong likelihood function in Figure 4 as an illustration on the
assumption of Gaussian distributions. We generated the random variables followed
by the uniform distribution on [−2,+2]. We have found that the variance-covariance
estimation crucially depends on the assumption of Gaussianity as we had expected.

Now we investigate the analytical properties of the likelihood function in a detail.
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Figure 2 : Likelihood Function of β2 (n = 1, 000)
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Figure 3 : Likelihood Function of ρ (n = 1, 000)
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Figure 4 : Wrong Likelihood Function of ρ (n = 1, 000)

We normalize the Gaussian likelihood function by n and rewrite

L∗
1n =

1

n

n∑
k=1

|a∗knΣv|+
1

n

n∑
k=1

log(1 + a∗−1
kn c)

+
1

n

n∑
k=1

a∗−1
kn tr

[
Σ−1

v (Σv −
1

a∗kn + c
bb

′
)Σ−1

v (zkz
′

k − (a∗knΣv(θ0) + b(θ0)b(θ0)
′
))

]
+
1

n

n∑
k=1

a∗−1
kn tr

[
Σ−1

v (Σv −
1

akn + c
bb

′
)Σ−1

v (a∗knΣv(θ0) + b(θ0)b(θ0)
′
))

]
=

1

n

n∑
k=1

|a∗knΣv|+ L∗
12n + L∗

13n + L∗
14n (say),

where Σv(θ0) andf b(θ0) are evaluated at the true parameter values.
We prepare the next lemma.

Lemma 4.1 : Let a p× p random vector zk follows Np(0,Q). Then for any p× p
matric Ak,

(4.1) E [(tr(Akzkz
′

k))
2] = [tr(AkQ)]2 + 2tr(AkQAkQ) .

By using this lemma, as n −→ ∞ the second term converges to

(4.2) L∗
13n

p−→ 0 .

Then we can establish the next result and the proof is given in Appendix. Although
we expect that the ML estimation under the Gaussian assumption has good asymp-
totic properties, we could not find any proof in the present setting and then decided

13



to give the proof. We can also expect the asymptotic normality of the ML estimator,
but we have omitted its discussion because we need more spaces.

Theorem 4.2 : Assume that vi (i = 1, · · · , n) are a squence of i.i.d. random
vectors and |Σv| ̸= 0. Then under the assumption of Gaussian distributions the
maximum likelihood estimator of β is consistent as n −→ ∞.

Remark 4.1 : It should be noted that in time series econometrics it has been
known that coefficient parameter vector β can be estimated by using the standard
regression method if the observed variables are co-integrated. However, the ML
method and the SIML method estimate not only the coefficient vector consistently,
but also the variance-covariance matrices of trend terms and the noise terms at the
same time. Johansen (1995) had developed the ML method without any noise terms
as well as seasonality. His main interested was the hypothesis testing problem of the
rank condition.

We should mention to the first part of Theorem 4.1 of Kunitomo and Sato (2017)
on the asymptotic property of the SIML estimator under general conditions. They
have given the asymptotic normality of the SIML estimator under general moment
conditions.

Theorem 4.3 (Kunitomo and Sato 2017) : Assume the non-stationary errors-in-
variables model given by (2.1)-(2.3) and |Σv| ̸= 0. Then under the assumption of
existence of fourth order moments the SIML estimator of β is consistent as n −→ ∞.

Although the SIML estimator has asymptotic normality, we have omitted this aspect
in this paper. (See Kunitomo and Sato (2017) for the details.)

5. Simulations

There has not been any simulation result on alternative estimation methods for the
non-stationary time series models with errors-in-variables as far as we know. It
may be because we need a careful treatment of the non-stationarity with errors-in-
variables. However, since there are many situations with macro-economics variables
that we observe the non-stationarity and measurement errors, it is worthwhile to
investigate the related issues by using simulations.

In our simulations of the SIML method, we have set σ2
µ = 1, σ2

v = 0.5, 2 or 4,
β2 = 1.5, n = 80 or 400 and mn = nα with α = 0.6 or 0.7 as the parametrization,
and the number of Monte Carlo repetition is 1,500 in each case. We can summarize
our setting of simulations as

Σx =

(
Σx,11 Σx,12

Σx,12 Σx,22

)
=

(
2.25 1.5
1.5 1

)
, Σv =

(
Σv,11 Σv,12

Σv,12 Σv,22

)
=

(
σ2
v 0
0 σ2

v

)
.
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Among many simulations we have summarize them as Table 1. In Table 1 the
number inside the parentheses are the standard deviation of estimators calculated
by our simulations.

σ2
v α n Σx,11 Σx,12 Σx,22 Σv,11(2) Σv,12(2) Σv,22(2) β2.SIL β2.SIML(2)

0.5

0.6
80

2.263 1.475 1.038 0.495 0.010 0.499 1.420 1.528
(0.904) (0.602) (0.415) (0.445) (0.305) (0.318) (0.114) (0.178)

400
2.239 1.484 1.006 0.512 0.009 0.501 1.475 1.502
(0.542) (0.362) (0.244) (0.283) (0.185) (0.186) (0.038) (0.038)

0.7
80

2.294 1.454 1.086 0.521 0.030 0.496 1.339 1.554
(0.706) (0.469) (0.337) (0.386) (0.250) (0.251) (0.131) (0.269)

400
2.296 1.499 1.044 0.498 0.007 0.494 1.436 1.502
(0.393) (0.263) (0.182) (0.214) (0.137) (0.136) (0.047) (0.054)

2

0.6
80

2.378 1.438 1.163 1.992 0.006 1.922 1.233 1.630
(0.948) (0.617) (0.455) (1.020) (0.699) (0.852) (0.231) (0.810)

400
2.318 1.500 1.060 1.981 0.006 1.991 1.415 1.504
(0.534) (0.352) (0.245) (0.615) (0.411) (0.535) (0.077) (0.082)

0.7
80

2.629 1.452 1.438 1.943 0.032 1.944 1.017 1.701
(0.833) (0.543) (0.471) (0.816) (0.570) (0.709) (0.230) (0.901)

400
2.410 1.479 1.166 1.975 0.007 1.946 1.267 1.514
(0.534) (0.440) (0.287) (0.465) (0.309) (0.407) (0.093) (0.123)

4

0.6
80

2.639 1.469 1.384 3.927 -0.010 3.990 1.072 1.702
(1.040) (0.669) (0.547) (1.837) (1.214) (1.670) (0.296) (1.042)

400
2.377 1.503 1.127 3.933 -0.008 3.965 1.334 1.514
(0.558) (0.368) (0.267) (1.099) (0.727) (1.025) (0.105) (0.132)

0.7
80

3.118 1.457 1.885 3.777 0.065 3.874 0.787 1.846
(1.005) (0.636) (0.630) (1.427) (0.963) (1.311) (0.274) (1.452)

400
2.601 1.483 1.357 3.937 0.010 3.908 1.095 1.519
(0.451) (0.298) (0.249) (0.806) (0.550) (0.727) (0.119) (0.197)

Table 1: Sample mean of estimators

We have done a number of simulations, but the results are similar to Table
1. There are several interesting findings. First, on the effects of sample sizes the
performance of the estimators of the SIML estimation becomes as the sample size
increases as we had expected. Second, when the variances of noises are small,
both the SILS estimator and the SIML estimator give reasonable estimates on the
coefficient parameter, the former is slightly biased toward zero while the latter has
some correction of this bias. Third, when when the variances of noises are not small,
the SILS estimator has a significant bias.

In addition to these simulations we have done a number of simulations when the
underlying distributions are not true and there are some stationary noises instead
of i.i.d. noises. In order to investigate the effects of autocorrelations in the noise
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terms, we consider the V AR2(1) model given by

vi = Φvi−1 + v̄i,

v1 ∼ N(0,Σv), v̄i
i.i.d.∼ N(0, Σ̄v),

vec(Σ̄v) = (I4 − Φ⊗ Φ)vec(Σv),

Φ = diag(0.5, 0.5), Σv =

(
0.4 0.3

√
0.4× 0.45

0.3
√
0.4× 0.45 0.45

)
Then we summarize the simulation results as Table 2. Inside the parentheses in
Table 2 are standard deviation of estimators.

n σ2
x.SIML β2.SIL β2.SIML(2)

β2 = −1.5

100
0.234 -1.154 -1.512
(0.083) (0.275) (0.469)

200
0.225 -1.208 -1.493
(0.065) (0.176) (0.330)

400
0.216 -1.281 -1.497
(0.045) (0.112) (0.175)

β2 = −0.5

100
0.251 -0.258 -0.456
(0.086) (0.161) (0.467)

200
0.221 -0.337 -0.488
(0.052) (0.102) (0.226)

400
0.208 -0.403 -0.494
(0.048) (0.074) (0.121)

β2 = 0.5

100
0.264 0.436 0.601
(0.105) (0.115) (0.345)

200
0.224 0.465 0.572
(0.061) (0.102) (0.242)

400
0.214 0.498 0.552
(0.042) (0.041) (0.113)

β2 = 1.5

100
0.232 1.183 1.714
(0.144) (0.196) (0.773)

200
0.209 1.274 1.585
(0.076) (0.162) (0.507)

400
0.204 1.341 1.509
(0.054) (0.079) (0.147)

Table 2: Sample mean of estimators

As we had expected, the SIML estimation of the non-stationary part does not
depend on the autocorrelation structure of noise terms while the ML estimation
depends on the true structure of the underlying process. Although both the ML
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estimation and the SIML estimation give similar stable results on the coefficient β2

in some cases, the ML estimation has sometimes computational difficulties when the
absolute size of coefficients are large. (It is the case when β2 is relatively large as
|β2| = 1.5 in our simulations.) It may be due to the shape of the likelihood function
becomes some peculiar shapes in such cases 3. But we have omitted the details of a
large number of simulations.

To summarize our simulations, the finite sample performance of the SIML esti-
mation gives reasonable performances as the asymptotic theory has suggested as in
the previous sections.

6. Extensions

There can be several extensions of the problem we have been investigating and the
results obtained by Kunitomno and Sato (2017).

First, for the multivariate non-stationary (economic) time series, there are pos-
sibilities of co-integration in trends. In our framework, it may be interesting to
consider the general case of reduced rank cases when

(6.1) rank[Σx] = q , 1 ≤ q ≤ p ,

where Σx = BB
′
and B is a p× q matrix.

Then the first example of Section 2 corresponds to the case when p = q = 1 and the
second example of Section 3 corresponds to the case when q = 1 < p, p ≥ 2.
In the general case, however, there is a parametrization problem for the p×p matrix
Σx, whose rank is q. We take a normalization as B

′
Σ−1

v B = (diag cii). Then the
algebra of Section 3.2 can be extended by using the matrix formulae such that for a
positive definite A we have

(6.2) |A+BB
′| = |A||Iq +B

′
A−1B]|

and

(6.3) [A+BB
′
]−1 = A−1 −A−1B[Iq +B

′
A−1B]−1B

′
A−1

for Σx = BB
′
.

Theorem 6.1 : Assume 1 ≤ q < p, p ≥ 2 and |Σv| ̸= 0.
(i) Assume that vi (i = 1, · · · , n) are a squence of i.i.d. random vectors and |Σv| ̸=
0. Under the assumptions of Gaussian distributions, the ML estimator of B is
consistent as n −→ ∞.

3We are investigating this computational problem of the ML solutions in non-stationary multi-
dimension cases.
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(ii) Assume the non-stationary errors-in-variables model given by (2.1)-(2.3) and
|Σv| ̸= 0. Under the assumption of existence of fourth order moments, the SIML
estimator of B is consistent as n −→ ∞.

Second, in some cases the second order (or higher order) differencing may be
often appropriate for economic time series. Since the likelihood function can be
complicated in general, we consider the ML estimation and the SIML estimation
when p ≥ 1 and d = 2, where

(6.4) ∆dxi = v
(x)
i ,

E [v(x)
i ] = 0, and E [v(x)

i v
(x)′

i ] = Σx.

We use the Kn−transformation that from the observation matrix Yn to Z
(2)
n (=

(z
(2)′

k )) by

(6.5) Z(2)
n = (z

(2)′

k ) = Kn

(
Yn − Ȳ0

)
,Kn = PnC

−2
n .

Then the separating information maximum likelihood (SIML) estimator of Σ̂x in
this case can be defined by

(6.6) Σ̂x,SIML =
1

mn

mn∑
k=1

z
(2)
k z

(2)′

k .

We prepare the next Lemma.

Lemma 6.2 : Let

(6.7) Kn = (b
(2)
ij ) = PnC

−2
n .

Then for i, i
′
= 1, · · · ,mn, we have

(6.8)
n∑

j=1

b
(2)
ij b

(2)

i′ ,j
= δ(i, i

′
)

[
2 sin(

π

2

2i− 1

2n+ 1
)

]4
+O(

1

n
) .

By using the above lemma, we have the next result, which is an extension of Kunit-
omo and Sato (2017) for the case of d ≥ 1. The result holds for an arbitrary integer
d.

Theorem 6.3 : Assume p ≥ 1, d = 2 and mn/n −→ 0 as n −→ ∞.
(i) Assume that vi (i = 1, · · · , n) are a squence of i.i.d. random vectors and |Σv| ̸= 0.
Under the assumption of Gaussian distributions, the ML estimator of Σx is consis-
tent as n −→ ∞.
(ii) Assume the non-stationary errors-in-variables model given by (2.1)-(2.3) and
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|Σv| ̸= 0. Under the assumption of existence of fourth order moments, the SIML
estimator of Σx is consistent as n −→ ∞.

It should be important to note that the diagonal elements akn (k = 1, · · · , n) should
be modified to

(6.9) a
(2)
kn = [2 sin

π

2n+ 1
(k − 1

2
)]4

in the present case and we need the corresponding bias correction for estimating the
variance-covariance matrix Σv.

Remark 6.1 : The SIML should be a useful tool for the state space modeling of
non-stationary multivariate time series because it does not have any computational
problem and it has an asymptotic robustness. Also it is possible to show that the
asymptotic normality of the SIML estimator under the general condition of (2.3)
with additional arguments ouitlined in Kunitomo and Sato (2017). For instance, the
SIML method may give reasonable estimates not only for the coefficients parameters,
but also the variance-covariance matrices when d = 1 and d = 2 by taking mn

appropriately.

7. Concluding Remarks

In this study, we have reported the asymptotic properties and finite sample prop-
erties of two estimation methods for the non-stationary errors-in-variables models.
We have compared the SIML estimation and the maximum likelihood (ML) estima-
tion when there are non-stationary trends and noise components. We have found
that the Gaussian likelihood function shows some peculiar shape and the compu-
tation of the ML estimation can be unstable in some cases. On the other hand,
the SIML estimation has the asymptotic robust properties under general conditions
of existence of second order moments. We have investigated the conditions for the
good asymptotic properties and the finite sample properties of the ML estimation
and SIML estimation by both the theoretical analysis and simulations. We have
found that the SIML method gives reasonable estimates not only for the coefficients
parameters, but also the variance-covariance matrices when d = 1 and d = 2 by
taking mn appropriately.

There are several possible extensions and discussions. First, it may be interest-
ing to see to what extent the results reported in this paper are still valid when there
are seasonality and stationary components although the issue has been investigated
by Kunitomo and Sato (2017) in a simple setting. Second, there are several impor-
tant issues on modeling the non-stationary trends and noises. Although we have
discussed some of them briefly in Section 6, but we need more investigations. The
determination of the number of non-stationary factors is one of examples, which
is discussed by Kunitomo (2017). Third, there can be many applications of the
methods we have discussed as indicated in Kunitomo and Sato (2017).
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The results of current investigations on these issues will be reported in other
occasions.
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APPENDIX : Mathematical Derivations

In this Appendix, we give some details of the derivations omitted in the previous
sections.

Proof of Lemma 4.1 : When we have zk = (zik) ∼ Np(0,Q), we can use the
relation

(A.1) E [zikzjkzi′kzj′k] = qijqi′j′ + qii′qjj′ + qij′qi′j ,

where Q = (qij). Then it is straightforward to obtain the results.
(Q.E.D.)

Proof of Theorem 4.2 : By using Lemma 4.1, it is possible to obtain the variance
of L∗

13n, which converges to 0 as n −→ ∞. We set

Ak = a∗−1
kn Σ−1

v [Σv −
1

a∗kn + c
bb

′
]Σ−1

v

and
Q0 = a∗knΣv(θ0) + b(θ0)b(θ0)

′
.

Then

tr[AkQ0] = tr(a∗−1
kn Σ−1

v [Σv −
1

a∗kn + c
bb

′
]Σ−1

v [aknΣv(θ0) + b(θ0)b(θ0)
′
]) .

If Q = Q0, then we have
tr(AkQ0) = tr(Ip) = p .

Also we find

= E [
n∑

k=1

trAk(zkz
′

k −Q0)]
2(A.2)

= E [
n∑

k,k′=1

trAk(zkz
′

k −Q0)Ak′ (zk′z
′

k′
−Q0)]

= [
n∑

k=1

E [(z′

kAkzk)
2 − (trAkQ0)

2]

=
n∑

k=1

2tr(AkQ0AkQ0) .

21



If Q = Q0, then it is 2pn.
Next, we investigate the last two terms of L∗

1n in details. After simple abgebra, they
can be reexpressed as

L∗
14 = trΣ−1

v Σ(θ0) +
1

n

n∑
k=1

a∗−1
kn b(θ

′

0)Σ
−1
v b(θ0)

− 1

n

n∑
k=1

1

a∗kn + c
b

′
[Σ−1

v Σ(θ)Σ−1
v + a∗−1

kn Σ−1
v b(θ0)b(θ0)

′
Σ−1

v ]b

= trΣ−1
v Σ(θ0)

+
1

n

n∑
k=1

1

a∗kn(a
∗
kn + c)

[
(a∗kn + c)[b(θ0)

′
Σ−1

v b(θ0)− a∗−1
kn b

′
Σ−1

v Σv(θ0)Σ
−1
v b

−(b
′
Σ−1

v b(θ))2
]

= trΣ−1
v Σ(θ0)

+
1

n

n∑
k=1

1

a∗kn(a
∗
kn + c)

[
b

′
Σ−1

v (Σv −Σv(θ0))Σ
−1
v b(θ0)

+b(θ0)
′
Σ−1

v b(θ0)b
′
Σ−1

v b− (b
′
Σ−1

v b(θ0))
2
]
.

The last term is non-negative because of the Cauchy-Schwarz’s inequality and its
minimum occurs at b = b(θ0) because Σv is positive definite. Then we need to
evaluate the sum of non-degenerate terms as

(A.3)
1

n

n∑
k=1

log |a∗knΣv|+
1

n

n∑
k=1

log[1 + a∗−1
kn b

′
Σ−1

v b]

and

(A.4) trΣ−1
v Σv(θ0) +

1

n

n∑
k=1

b
′
Σ−1

v (Σv −Σv(θ0))Σ
−1
v b

a∗kn + b′Σ−1
v b

.,

By using the inversion formula and its determinant in (3.1) and (3.2), the sum of
above two terms can be written as

1

n

n∑
k=1

log |a∗knΣv + b
′
b|

+
1

n

n∑
k=1

tr[a∗knΣv + b
′
b]−1[a∗knΣv(θ0) + b

′
b] .

By using Lemma 3.2.2 of Anderson (2003), the minimum of each terms occurs at

a∗knΣv + b(θ0)b(θ0)
′
= a∗knΣv(θ0) + b(θ0)b(θ0)

′
,
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that is, Σv = Σv(θ0). Hence the global minimum of the likelihood function occurs
iff b = b(θ0) and Σv = Σv(θ0).
The rest of our arguments for the consistency follows from the general arguments
(see Theorem 4.1.1 of Amemiya (1985), for instance) and we have the result.
(Q.E.D.)

Proof of Lemma 6.2 : We set

θkj =
2π

2n+ 1
(j − 1

2
)(k − 1

2
) ,(A.5)

θk =
2π

2n+ 1
(k − 1

2
) ,(A.6)

and

(A.7) b
(2)
kj =

1√
2n+ 1

[(1− eiθk)2eiθkj + (1− e−iθk)2e−iθkj ]

for j, k = 1, · · · , n. Then

(2n+ 1)
n∑

j=1

[b
(2)
kj ]

2 = (1− eiθk)4
1 + eiθk

1− ei2θk
+ (1− e−iθk)4

1 + e−iθk

1− e−i2θk
+ 2n(1− eiθk)2(1− e−iθk)2

= (1− eiθk)3 + (1− e−iθk)3 + 2n(ei
θk
2 1− e−i

θk
2 )4

= 2n[4 sin2 θk
2
]2 + o(1) .

Also for k ̸= k
′
we find that

(2n+ 1)
n∑

j=1

[b
(2)
kj b

(2)

k′j
]

= (1− eiθk)2(1− e−iθk)2
n∑

j=1

e
i(θkj+θ

k
′
j
)
+ (1− eiθk)2(1− e−iθ

k
′ )2

n∑
j=1

e
i(θkj+θ

k
′
j
)

+(1− e−iθk)2(1− eiθk′ )2
n∑

j=1

e
i(θkj−θ

k
′
j
)
+ (1− e−iθk)2(1− e−iθ

k
′ )2

n∑
j=1

e
−i(θkj+θ

k
′
j
)

= (I) + (II) + (III) + (IV ) (say) .

Then after some algebra, we have

(I) + (IV ) = (−1)[(e−i
θk
2 − ei

θk
2 )2(e−i

θ
k
′

2 − ei
θ
k
′

2 )2]ei
θk+θ

k
′

2 ,

(II) + (III) = (−1)[(e−i
θk
2 − ei

θk
2 )2(e−i

θ
k
′

2 − ei
θ
k
′

2 )2][1− (e−i
(θk−θ

k
′ )

2 + (ei
(θk−θ

k
′ )

2 )] .

Hence we finnally find that

(I)+(II)+(III)+(IV ) = (−1)(e−i
θk
2 −ei

θk
2 )2(e−i

θ
k
′

2 −ei
θ
k
′

2 )2[1−ei
θk−θ

k
′

2 −e−i
θk−θ

k
′

2 +e−i
θk−θ

k
′

2 ]
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and then it is proportional to

(I) + (II) + (III) + (IV ) = 4[sin2 θk
2
][sin2 θk′

2
] + o(1)

when k/n −→ 0 as n → ∞.
(Q.E.D.)
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