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1. Introduction

In financial econometrics, several statistical methods have been proposed to esti-

mate the integrated volatility and co-volatility from high-frequency data. The inte-

grated volatility is one type of Brownian functionals and the realized volatility (RV)

estimate has been often used when there does not exist any micro-market noise and

the underlying diffusion process is directly observed. The asymptotic distribution of

the RV estimator depends on the fourth-order integrated Brownian functional and

then we need to estimate the fourth-order integrated moments to make statistical

inference on the integrated volatility when the number of observations increases in a

fixed interval. However, it has been known that the RV estimator is quite sensitive

to the presence of micro-market noise in high-frequency financial data. Then several

statistical methods have been proposed to estimate the integrated volatility and co-

volatility. See Ait-Sahalia and Jacod (2014) for the detail of recent developments of

financial econometrics.

When the micro-market noise cannot be ignored in high-frequency financial data,

Knitomo, Sato and Kurisu (2018) have developed the separating information max-

imum likelihood (SIML) method for estimating the volatility and co-volatilities of

security prices when the underlying processes are the class of diffusion processes.

In this paper we extend the SIML method and develop the Local SIML (LSIML)

estimation method for estimating higher-order Brownian functionals such as the

fourth-order integrated moments, which is a new statistical method. The LSIML

method was originally suggested in Chapter 8 of Kunitomo et al. (2018), but they

did not give its detailed exposition. (To avoid the possible duplication of expla-

nations on the SIML method, we will sometimes refer to the corresponding parts

of Kunitomo, Sato and Kurisu (2018).) The main motivation for developing the

LSIML method is to improve the SIML method and to estimate some Brownian

functionals, which are general than the volatility and co-volatility. The fourth order

integrated moments appear as the asymptotic variance of the limiting distribution

of several estimation methods including the SIML estimation for instance. Because
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the main purpose of this paper it to propose the use of the LSIML method, we shall

try to make our formulation not in the most general case, but concentrate on the

simpler cases.

In this paper, we show that the local SIML method has some desirable asymptotic

properties such as the consistency and asymptotic normality, and more importantly

it may improve the asymptotic order of convergence. It also has reasonable finite

sample properties, which are illustrated by several simulations. Since the LSIML

method is a straightforward extension of the SIML estimation and it is quite simple,

it will be useful in practical applications. Although there could be other methods for

estimating higher-order Brownian functionals, the LSIML method has some merits

such as its simplicity and desirable asymptotic properties.

In Section 2, we discuss the framework of estimation problem by using high-

frequency financial data. In Section 3, we generalize the realized volatility and

explain the method of local estimation in our study. Then in Section 4, we propose

the local SIML method, which is a generalization of the SIML method originally

developed by Kunitomo et. al (2018). In Section 5 we investigate the asymptotic

properties of the local SIML method such as consistency as well as the asymptotic

normality and in Section 6 we discuss the problem of choosing parameters needed in

the LSIML estimation method. In Section 7 we give some finite sample properties

of the LSIML estimation based on a set of Monte Carlo simulations. In Section 8,

we discuss the possible generalizations of our results in more general setting and we

give some concluding remarks in Section 9. Some mathematical details are given in

the Appendix.

2. Estimation of Brownian Functionals

To see the essential feature of the local estimation method in this paper, we first

consider the basic and simple time-varying cases in the univariate case when p = 1

(where p is the dimension). Let

Y (tni ) = X(tni ) + ϵnv(t
n
i ) (i = 1, · · · , n)(2.1)
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be the (one dimensional) observed (log-)price at tni (0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = 1)

and v(tni ) (= vi) be a sequence of i.i.d. random variables with E[vi] = 0 and

E[v2i ] = σ2
v (> 0). We assume that

ϵn =
1

nδ
,(2.2)

where δ (≥ 0) is a constant. When δ = 0, it is the micro-market noise model, while

it is the high-frequency financial model without micro-market noise when δ = +∞.

When 0 < δ < +∞, it corresponds to the small-noise high-frequency model.

The underlying continuous-time Brownian martingale is given by

X(t) = X(0) +
∫ t

0
σsdBs (0 ≤ s ≤ t ≤ 1) ,(2.3)

which is independent of v(tni ), σs is the (instantaneous) volatility function, which

can be deterministic or stochastic time-varying (but it is bounded and continuous

for the simplicity), and Bs is the standard Brownian motion.

Although it may be possible to apply the LSIML method to more general Itô semi-

martingales, we first consider this situation because it gives the essential feature of

the LSIML method in a simple way. (See Section 8 for its possible extensions.) We

assume that when the volatility process is stochastic it has a representation of Ito’s

Brownian semi-martingale as

σt = σ0 +
∫ t

0
µσ
sds+

∫ t

0
ωσ
s dB

σ
s (0 ≤ s ≤ t ≤ 1) ,(2.4)

where µσ
s and ωσ

s are the drift and diffusion coefficients (which are deterministic,

bounded and continuous for the simplicity), and Bσ
s is another Brownian motion,

which may be correlated with Bs. It has been known that many diffusion processes

following the stochastic differential equations have such representation (see Ikeda

and Watanabe (1989)).

When the micro-market noise is present in high-frequency financial data, some ex-

isting literatures such as Barndorff-Nielsen et al. (2008) for instance assume the

independence of Bs and Bσ
s . This problem is related to the stochastic models for

leverage effects in financial economics. We should note that on the LSIML esti-

mation method in this paper at least, we do not need such assumption and the
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Brownian motions can be correlated with the standard filtration.

The main problem of our interest is how to estimate Brownian functionals of the

form

V (g, 2r) =
∫ 1

0
g(s)σ2r

s ds(2.5)

for any positive integer r and a known function g(s) from a set of observations of

Y (tni ) (i = 1, · · · , n). We denote V (2r) = V (g, 2r) when g(s) = 1 (0 ≤ s ≤ 1) for

convenience.

There are important examples of this type of Brownian functionals. An obvious

example is the integrated volatility that corresponds to the case when r = 1.

Example 1 : When r=1, we have the integrated volatility, which is given by

V (2) =
∫ 1

0
σ2
sds .(2.6)

Example 2 : The asymptotic variance of the SIML estimator of integrated volatility

V (4) is given by

2V (4) = 2
∫ 1

0
σ4
sds .(2.7)

It should be noted that the estimation of V (4) with r = 2 is a non-trivial task

for which the SIML estimation cannot be used directly. Although we may have a

known function g(s) (0 ≤ s ≤ 1), it is straight-forward to treat this function in the

estimation method we introduce in this paper. Zhang, L., Per A. Mykland, and Y.

Ait-Sahalia (2005), Jacod, J., Y. L., Per A. Mykland, M. Podolskijc, and M. Vetter

(2009), and Ait-Sahalia and Jacod (2014) discussed some estimation methods of

higher-order Brownian functionals with different g(s) functions, but it seems that

they are more complicated than the method developed herein.

3. Local Estimation for the No-Micro-Market-noise Case

For simplicity, we take tnj −tnj−1 = 1/n (j = 1, · · · , n) and tn0 = 0. We divide (0, 1]

into b(n) sub-intervals and in every interval we allocate c(n)∗ observations. First, we
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consider the sequence c∗(n) such that c∗(n) → ∞ and we can take b(n) → ∞ and

b(n) ∼ n/c∗(n) as n → ∞. A typical choice of observations in each interval would

be c∗(n) = [nγ] (0 < γ < 1), whereupon b(n) ∼ n1−γ. Because there are some extra

observations (n may not be equal to b(n)c∗(n)) and b(n) is a positive integer, we

need to adjust the number of terms in each interval c(n) = c∗(n) + (several terms).

Although there can be finite sample effects, we will ignore the effects of extra terms

in the following development because they are asymptotically negligible and hence

we take b(n)c(n) = n.

When there does not have micro-market noise, we simply use the log-return

process rj = y(tnj ) − y(tnj−1) from the log-price process y(tnj ). We order the data rj

in each sub-intervals and denote rk,(i) (k = 1, · · · , c(n); i = 1, · · · , b(n)).
When p = 1, let the 2r−th moment of rk,(i) in the i-th interval be

M∗
2r,(i) =

c(n)∑
k=1

[rk,(i)]
2r .(3.1)

Then we define the local realized moment (LRM) estimator of V ∗(2r) by

V̂ ∗(2r) =
nr−1

ar

b(n)∑
i=1

M∗
2r,(i)(3.2)

where

ar =
2r!

r! 2r
.(3.3)

When r = 1, it is the realized volatility (RV).

In this construction of the local realized moment (LRM) estimation, we need to

normalize the sample moment due to the scale factor nr−1 and to use the local

Gaussianity of underlying continuous martingales.

For the LRM estimator, we have the next result on the asymptotic properties,

which could be obtained straight-forwardly by extending the standard arguments

developed in the existing literature to the present case. (See Section 3.4 of Ait-

Sahalia and Jacod (2014) on the standard arguments for instance.)

Proposition 1 : Assume that there is no micro-market noise, i.e. ϵn = 0 with

p = 1 and r ≥ 1 in (2.1), (2.3) and (2.4). Also assume that Y (tni ) = X(tni ) and
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σs (0 ≤ s ≤ 1) is bounded.

(i) As n −→ ∞
V̂ ∗(2r)− V (2r)

p−→ 0 .(3.4)

(ii) As n −→ ∞
√
n
[
V̂ ∗(2r)− V (2r)

] L−s→ N [0,W ] ,(3.5)

where L − s means the stable convergence and

W = c∗r

∫ 1

0
[σx(s)]

4r ds ,(3.6)

where c∗r (= a2r/a
2
r − 1) is a positive constant.

4. Local SIML Estimation

We consider the estimation problem of Brownian functionals when we have the

micro-market noise as (2.1), (2.2) and (2.3). We utilize the localization of the

estimation method in Section 3 and divide (0, 1] into b(n) sub-intervals and at every

interval we allocate c(n) observations. We consider the sequence c∗(n) such that

c∗(n) → ∞ and we can take b(n) → ∞ and b(n) ∼ n/c∗(n) as n → ∞. We

choose that the observations in each interval would be c∗(n) = [nγ] (0 < γ < 1),

whereupon b(n) ∼ n1−γ. Because there are some extra observations (n is not equal

to b(n)c∗(n)) and b(n) is a positive integer, we adjust the number of terms in each

interval c(n) = c∗(n) + (several terms) such that n = b(n)c(n).

Then we apply the SIML method developed by Kunitomo et. al (2018) to each

sub-intervals. To use the SIML transformation in each local interval, we set mc =

[c(n)α] (0 < α < 0.5), in the i-th interval (i = 1, · · · , b(n)) and the transformed data

are denoted as zk(i) as the k-th data in the i-th interval Ic(i) (k = 1, · · · , c(n); i =
1, · · · , b(n)). Now we explain the procedure for the general case when p ≥ 1. Here we

follow the notations in Chapter 3 of Kunitomo et al. (2018) for the p−dimensional

stochastic process y(tni ) and in each sub-intervals we transform c(n)× p observation
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matrix Yc(n),(i) to c(n)× p matrix Zn,(i) (= (z
′

k,(i))) (i = 1, · · · , b(n)) by

Zc(n),(i) = h
−1/2
c(n) Pc(n)C

−1
c(n)

(
Yc(n),(i) − Ȳ0,(i)

)
(4.1)

where hc(n) = 1/c(n), c(n)× c(n) matrices

C−1
c(n) =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


,(4.2)

Pc(n) = (pjk) , pjk =

√√√√ 2

c(n) + 1
2

cos

[
2π

2c(n) + 1
(k − 1

2
)(j − 1

2
)

]
.(4.3)

The initial conditions are given by the p× 1 vector y0,(i) and

Ȳ0,(i) = 1c(n) · y
′

0,(i) .(4.4)

Then we have the spectral decomposition

C−1
c(n)C

′−1
c(n) = Pc(n)Dc(n)P

′

c(n) ,(4.5)

whereDc(n) is a diagonal matrix with the k-th element dk = 2
[
1− cos(π( 2k−1

2c(n)+1
))
]
(k =

1, · · · , c(n)). We define

ak,c(n) = c(n)dk = 4c(n) sin2

[
π

2

(
2k − 1

2c(n) + 1

)]
(k = 1, · · · , n) .(4.6)

When p = 1 and for any positive integer r, let the 2r−th moment in the i-th sub-

interval be

Mn
2r,(i) =

1

mc

mc∑
k=1

[zk,(i)]
2r .(4.7)

Then we define the LSIML estimator of V (2r) by

V̂ (2r) =
b(n)r−1

ar

b(n)∑
i=1

Mn
2r,(i)(4.8)

where

ar =
2r!

r! 2r
.(4.9)
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In particular, a1 = 1, a2 = 3 and a3 = 15.

If we take c(n) = n, b(n) = 1 and r = 1, then we have the SIML estimator for

integrated volatility.

In this construction of the LSIML estimator, we need to normalize (4.8) due to the

fact that the scale factor 1/c(n) and we have the local Gaussianity for underlying

continuous martingales.

5. Asymptotic Properties of Local SIML

We consider the case when σs is a time-varying bounded function when p = 1

in this section. First, we illustrate the derivations of asymptotic properties of the

Local-SIML (LSIML) estimator for the cases of r = 1 and r = 2.

(i) The case of r = 1

First, we consider the asymptotic behavior of the quantity (1/mc)
∑mc

k=1 z
2
k,(i). in the

i-th interval Ic(i) = ((i− 1) c(n)
n
, i c(n)

n
] (i = 1, · · · , b(n)), where we take n = b(n)c(n).

By using the analogous arguments as Chapter 5 of Kunitomo et al. (2018) (and

(A.4) in the Appendix of this paper) to the local interval Ic(i) (i = 1, · · · , b(n)), we
need to evaluate the stochastic part as

√
mc

c(n)∑
k,l=1

[cklrk,(i)rl,(i) − δ(k, l)
∫ tnk

tn
k−1

σ2
sds](

n

c(n)
) = Op(1) ,(5.1)

where rk,(i) are hidden returns in the interval (tnk−1, t
n
k ] ∈ Ic(i), t

n
k − tnk−1 = 1/n,

ckl = (2/mc)
∑mc

j=1 skjslj, and sjk = cos
[

2π
2c(n)+1

(j − 1
2
)(k − 1

2
)
]
.

By using Lemma A-3 given in the Appendix (see Chapter 5 of Kunitomo et al.

(2018) also), (1/mc)
∑mc

k=1 z
2
k,(i) ∼ Op((π

2/3)m2
c/c(n)) because when c(n) is large the

bias term of
∑b(n)

i=1 [1/mc]
∑mc

k=1 z
2
k,(i) in each interval is proportional to

1

mc

mc∑
k=1

ak,c(n) = O(
1

mc

× m3
c

c(n)
) = O(

m2
c

c(n)
) .(5.2)

The bias term can be written as asymptotically

ABn = b(n)
π2

3

(mc)
2

c(n)
[ϵn]

2σ2
v(5.3)
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Because the normalizing factor of (5.1) is
√
mcb(n) and then we find that

Var

[
1

mc

mc∑
k=1

z2k,(i) −
∫
s∈((i−1)

c(n)
n

,i
c(n)
n

]
σ2
sds

]
= O(

1

mcb(n)2
)(5.4)

and we can take a positive constant K1 if we assume that σs is a continuous function

of time such that∣∣∣∣∣
∫
s∈((i−1)

c(n)
n

,i
c(n)
n

]
σ2
sds− σ2

(i−1)
c(n)
n

[
c(n)

n
]

∣∣∣∣∣ ≤ K1

∣∣∣∣∣
∫
s∈((i−1)

c(n)
n

,i
c(n)
n

]
[s− (i− 1)

c(n)

n
]ds

∣∣∣∣∣
= Op

(
(
c(n)

n
)2
)

,

which is 1/b(n)2. Then we have the relation thatb(n)∑
i=1

1

mc

mc∑
k=1

z2k,(i)

− ∫ 1

0
σ2
sds

p−→ 0 ,(5.5)

provided that max{ 1
b(n)

, 1
mc

} −→ 0 and

b(n)
(mc)

2

c(n)
[ϵn]

2 −→ 0(5.6)

as n → ∞.

For the asymptotic normality of V̂ (2) without any asymptotic bias term, we use

the fact that the dominant factor of (5.1) is a martingale part (see (A.11) in the

Appendix). A sufficient condition for the asymptotic normality (See Theorem 3.3

of Kunitomo et al. (2018)) would be

√
mcb(n)b(n)

(mc)
2

c(n)
[ϵn]

2 −→ 0 .(5.7)

If we set c(n) = nγ, b(n) = n1−γ and mc = [c(n)]α, then

b(n)
(mc)

2

c(n)
[ϵn]

2 = n1−2γ+2γα−2δ ,(5.8)

and √
mcb(n)b(n)

(mc)
2

c(n)
[ϵn]

2 = n
1−γ
2

+αγ
2
+1−2γ+2γα−2δ = n1−2δ−2γ+ 5

2
αγ .(5.9)

By setting α∗
1 = [2γ + 2δ − 1]/[2γ], and α∗

2 = [5
2
γ + 2δ − 3

3
]/[5

2
γ], we summarize the

result on the asymptotic distribution of the local SIML estimation in the simplest
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case. It is indeed a corollary of Theorem 3 below, but we present the result for the

case of r = 1, which may be useful to understand the more general cases. In the

Appendix, we give some remarks on the derivations of Proposition 2 and the stable

convergence used.

Proposition 2 : When r = 1 and p = 1 in (2.1), (2.2), (2.3) and (2.4). Also assume

that v(tni ) is a sequence of i.i.d. random variables with E[vi] = 0, E[v4i ] < +∞,

σs (0 ≤ s ≤ 1) is bounded, and α∗
1 > 0, α∗

2 > 0.

Then we have the following asymptotic properties of the LSIML estimator.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1}, as n −→ ∞

V̂ (2)− V (2)
p−→ 0 .(5.10)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
1}, as n −→ ∞√

mcb(n)
[
V̂ (2)− V (2)

] L−s→ N [0,W ](5.11)

in the stable convergence sense, where

W = 2
∫ 1

0
[σx(s)]

4 ds .(5.12)

If we take δ = 0.0 and γ = 2/3, then the above condition for consistency implies

0 < α < 1/4.

(ii) The case when r = 2

It may be straight-forward to extend the above arguments in (i) for the case of

r = 1 to the general cases of r ≥ 1. When r = 2, the evaluation of associated terms

becomes more complicated because the main signal part of (1/mc)
∑mc

k=1 z
4
k is given

by
c(n)∑

j1,j2,j3,j4=1

[(
4

√
mc

mc∑
k=1

sk,j1sk,j2sk,j3sk,j4 ]rj1rj2rj3rj4 ,

where sjk = cos θjk and θjk =
2π

2c(n)+1
(j − 1

2
)(k− 1

2
) (j = 1, · · · , c(n); k = 1, · · · ,mc).

There are many terms for its asymptotic variance such as

∑
i1=i2 ̸=i3=i4

∑
j1=j2 ̸=j3=j4

[(
4

mc

mc∑
k=1

s2k,i1s
2
k,i3

][(
4

mc

mc∑
k′=1

s2k′ ,j1s
2
k′ ,j3

]E(r2i1)E(r
2
i3
)E(r2j1)E(r

2
j3
) .
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Then the main bias term comes from the main noise part and in the interval Ic(i) =

((i− 1) c(n)
n
, i c(n)

n
] (i = 1, · · · , b(n)), it becomes

1

mc

mc∑
k=1

c(n)∑
j1,j2,j3,j4=1

bk,j1bk,j2bk,j3bk,j4E[vj1vj2vj3vj4 ] ,

where bkj = (h
−1/2
c(n) Pc(n)C

−1
c(n))kj (k, j = 1, · · · , c(n)).

Hence when r = 2, we have the typical bias term [m4
c/c(n)

2] in each sub-interval

because
1

mc

∑
i1=j1 ̸=i2=j2

b2k,i1b
2
k,i2

=
1

mc

mc∑
k=1

a2k,c(n) = O(
m4

c

c(n)2
) ,(5.13)

where

ak,c(n) = 4c(n) sin2

[
π

2

2k − 1

2c(n) + 1

]
.(5.14)

Then the condition for consistency of the LSIML estimator becomes

b(n)[b(n)
(mc)

4

c(n)2
][ϵn]

4 −→ 0 .(5.15)

If we set c(n) = nγ, b(n) = n1−γ and mc = [c(n)]α, then

b(n)2[
(mc)

4

c(n)2
][ϵn]

4 = n2(1−γ)−2γ+4γα−4δ = n2[1−2γ+2γα−2δ] .(5.16)

The condition for the asymptotic normality without bias becomes√
mcb(n)b(n)

2[
(mc)

4

c(n)2
][ϵn]

4 = n
1−γ+αγ

2
+2(1−2γ)+4γα−4δ .(5.17)

(iii) The general case when r ≥ 1

It is straight-forward to extend the results for p = 1 and r = 2 to more general

cases. For instance, the condition for the bias term becomes

b(n)r−1 × b(n)[
(mc)

2r

c(n)r
][ϵn]

2r = nr(1−γ)−rγ+2rγα−2rδ(5.18)

and√
mcb(n)b(n)

r[
(mc)

2r

c(n)r
][ϵn]

2r = n
1−γ+αγ

2
+r(1−2γ)+2rγα−2rδ = n

1
2
− γ

2
+r(1−2γ)−2rδ+α[(2r+ 1

2
)γ] .

(5.19)
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(See Lemma A-1 in Appendix.) We have a generalization of Propositions 1 and 2

when r ≥ 1 and p = 1 as follows, which is the summary of the asymptotic properties

of the local SIML estimation in this paper. (We give some remarks on the derivation

and stable convergence in the Appendix.)

Theorem 3 : When p = 1 and r ≥ 1 in (2.1), (2.2), (2.3) and (2.4), assume

that v(tni ) is a sequence of i.i.d. random variables with E[vi] = 0, E[v4ri ] < +∞
and σs (0 ≤ s ≤ 1) is bounded. We set α∗

1r = [2γ + 2δ − 1]/[2γ] and α∗
2r =

[(4r + 1)γ − (1 + 2r) + 4rδ]/[(4r + 1)γ]].

Then we have the following asymptotic properties of the LSIML estimator.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1r} ((α∗

1r > 0), as n −→ ∞

V̂ (2r)− V (2r)
p−→ 0 .(5.20)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
2r} (α∗

2r > 0), as n −→ ∞√
mcb(n)

[
V̂ (2r)− V (2r)

] L−s→ N [0,W ] ,(5.21)

where

W = c∗r

∫ 1

0
[σx(s)]

4r ds ,(5.22)

where c∗r (= a2r/a
2
r − 1) is a positive constant.

In particular, when r = 1, c∗1 = 2 and we have Proposition 2. When r = 2 c∗2 =

105/32 − 1. In the general case, c∗r = a2r/a
2
r − 1.

It is because

a2r =
4r!

2r!2r
=

4r!

4r · 2(2r − 1) · · · 2
= (4r − 1)(4r − 3) · · · 1 .

It is interesting to find that the form of the asymptotic variance for the LSIML

estimation is the same as the one for RV when there is no micro-market noise.

6. An Optimal Choice of α and γ

Because the properties of the LSIML estimation method depends crucially on

the choice of c(n) and mc, which are dependent on n, we need to investigate the

asymptotic effects as well as the small-sample effects of their choice.
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As we have derived in the previous section, the asymptotic bias of the LSIML

estimator is proportional to

ABn ∼ [b(n)r−1 × b(n)× m2r
c

c(n)r
][ϵn]

2r(6.1)

and the asymptotic variance is proportional to

AVn ∼ 1

mcb(n)
=

1

n
[c(n)]1−α .(6.2)

Hence when n is large, we can approximate the mean squared error of the LSIML

estimator as

gn = c1
1

n
[c(n)]1−α + c2[b(n)

r × m2r
c

c(n)r
]2[ϵn]

4r ,(6.3)

where c1g and c2g are some constants. If we set c(n) = nγ, b(n) = n1−γ (γ > 0), we

can rewrite

gn = c1
1

n
[c(n)]1−α + c2

[
n2[(1−2γ)r+2rαγ]

]
[ϵn]

4r .(6.4)

Then, by differentiation MSE with respect to α we have the condition that n−1c(n)1−α

is proportional to n2[(1−2γ)r+2rαγ]×n−4rδ. By rearranging the related terms, we have

the next result.

Theorem 4 : When p = 1 and r ≥ 1 in (2.1), (2.2), (2.3) and (2.4), assume that

v(tni ) is a sequence of i.i.d. random variables with E[vi] = 0 and E[v4ri ] < +∞, and

σs (0 ≤ s ≤ 1) is bounded. An optimal choice of mc = [c(n)α] and c(n) = nγ (with

ϵn = n−δ) to minimize MSE when n is large, is given by

−1 + γ(1− α) = 2[(1− 2γ)r + 2rαγ]− 4rδ ,(6.5)

which means the choice as

α∗ =
(4r + 1)γ + 4rδ − 2r − 1

(4r + 1)γ
= 1 +

4rδ − 2r − 1

(4r + 1)γ
.(6.6)

For instance, when δ = 0, α∗ = 1− 3/[5γ] for r = 1 and α∗ = 1− 5/[9γ] for r = 2.

When δ = 0 and we take α∗, then the MSE is proportional to n−1+γ∗(1−α∗
), which is

MSE ∼ n
−2r
4r+1 .(6.7)
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When r = 1, we find that 2r/[4r + 1] = 2/5, which is the same as the asymptotic

order of the SIML estimation. Moreover, when r = 2, we have 2r/[4r + 1] = 4/9.

7. Simulations

As an experimental exercise, we have done some simulation when r = 1 and

r = 2, for the true parameters V (2) and V (4). We note that the variance of the

SIML estimator of integrated volatility corresponds to 2V̂ (4). In our simulations we

set b(n) = [n1−γ], c(n) = [nγ] and the number of replications is 3,000. Also we have

investigated several cases in which the instantaneous volatility function σ2
s is given

by

σ2
s = σ2

0

[
a0 + a1s+ a2s

2
]
,(7.1)

where ai (i = 0, 1, 2) are constants and we have some restrictions such that σs > 0 for

s ∈ [0, 1]. This is a typical time-varying (but deterministic) case and the integrated

volatility V (2) is given by

V (2) =
∫ 1

0
σ2
sds = σx(0)

2
[
a0 +

a1
2

+
a2
3

]
.(7.2)

In this example we have taken several intra-day volatility patterns including the flat

(or constant) volatility, the monotone (decreasing or increasing) movements and the

U-shaped movements.

In the following tables, the true parameter values of V(2) and V(4) are
∫ 1
0 σ2

sds

and
∫ 1
0 σ4

sds, respectively. In Tables, the values of c∗r are 2 and 10.66, respectively.

Table 1 : Estimation of integrated fourth-order functional

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
u = 0.0005, b(n) = 5, c(n) = 521; α = 0.4, γ = 0.795)

n=2,605 V (2) = 2.00 V (4) = 4.0

mean 2.009 4.053

Var 0.134 2.837

AV 0.133 2.843
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Table 2 : Estimation of integrated fourth-order functional

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
u = 0.0005, b(n) = 10, c(n) = 1, 000;

α = 0.33, γ = 0.75)

n=10,000 V (2) = 2.00 V (4) = 4.0

mean 2.013 4.056

Var 0.092 1.973

AV 0.089 1.895

Table 3 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
u = 0.0005, b(n) = 10, c(n) = 1, 000;

α = 0.33, γ = 0.75)

n=10,000 V (2) = 2.00 V (4) = 7.2

mean 2.023 7.167

Var 0.160 15.093

AV 0.160 17.056

Table 4 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
u = 0.0005, b(n) = 40, c(n) = 1, 261;

α = 0.45, γ = 0.66)

n=50,440 V (2) = 2.00 V (4) = 7.2

mean 2.070 7.457

Var 0.016 1.650

AV 0.015 1.599
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Table 5 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
u = 0.0005, b(n) = 18, c(n) = 5, 622;

α = 0.33, γ = 0.75)

n=101,196 V (2) = 2.00 V (4) = 7.2

mean 2.022 7.273

Var 0.049 5.128

AV 0.047 5.016

In the above tables we first confirm that the LSIML method work well for the es-

timation of the integrated volatility. Although there may be some loss of estimation

accuracy when the underlying true stochastic process is known, the LSIML method

gives desirable finite and asymptotic properties. The most important result in our

simulation is the estimation of 2V(4), which is the asymptotic variance of the SIML

estimator of integrated volatility. As we see in Tables, the mean and SD (standard

deviation) have reasonable values.

In order to investigate the asymptotic distribution of the LSIML estimator, we

give some typical empirical distribution of a set of simulated data in Figure 7.1

(r = 1, b(n) = 14, c(n) = 3371) ad Figure 7.2 (r = 2, b(n) = 76, c(n) = 677). (We

have taken a0 = 6.0, a1 = −24.0, a2 = 24.0.) We can confirm that we have the

asymptotic normality of the SIML estimator and the limiting normal distribution

gives a reasonable approximation of the finite sample distribution. Also we found

that when r = 2, we need more sample size to use the limiting normal distribution

as a finite sample approximation in comparison with the case when r = 1.

From our simulations we found that the LSIML estimator of integrated volatility

V(2) and V(4) perform quite well as we expected. The behaviors of the LSIML esti-

mator for higher Brownian functionals as r = 2 are reasonable given the difficulties

of the problem involved.
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Figure 7.1: Normalized Histogram and Normalized Distribution (r = 1)

r=2, n=51452, gamma=0.6, alpha=0.4, bn=76, cn=677
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8. Possible Extensions

There are possible generalizations of our results in the previous sections. Let

Y(tni ) = X(tni ) + ϵnv(t
n
i ) (i = 1, · · · , n)(8.1)

be the (p-dimensional) observed (log-)prices Y(tni ) = (Yj(t
n
i )) at t

n
i (0 = tn0 ≤ tn1 ≤

· · · ≤ tnn = 1) and v(tni ) (= (vj(t
n
i ))) be a sequence of (p × 1) i.i.d. random vectors

with E[v(tni )] = 0 and E[v(tni )v(t
n
i )

′
] = Σv (> 0).

As the underlying continuous-time process, it is straight-forward to consider the

class of multi-dimensional diffusion processes. As the theory of continuous-time

stochastic processes X(tni ) = (Xj(t
n
i )), a more general form of the SDE for the

p-dimensional continuous-time stochastic processes is given by

dX = µtdt+ σtdBt ,(8.2)

which has been called the diffusion-type continuous process, where µ(s) is the p× 1

drift vector, σ(s) is the p × q1 diffusion matrix, and Bt is the q1 × 1 Brownian

motions. It also has the representation as

X(t) = X(0) +
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dBs ,(8.3)

where the first term is an integration in the sense of Riemann while the second term

is an Itô’s stochastic integration with respect to the Brownian motion Bt (q1 × 1

vector).

A detailed theory of stochastic differential equation (SDE) and stochastic integration

has been explained by Ikeda and Watanabe (1989). When the volatility parameters

are stochastic, the volatility process σ(t) = (σij(t)) is stochastic it is a diffusion type

process as

σij(t) = σij(0) +
∫ t

0
µσ
ij(s)ds+

∫ t

0
ωσ

ij(s)dB
σ
s (0 ≤ s ≤ t ≤ 1) ,(8.4)

where µij(s) is the drift coefficient, ωω
ij(s) is 1 × q2 diffusion coefficients and Bσ

s is

another q2 × 1 Brownian motion vector, which may be correlated with Bs.
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An an example of the estimation problem, we take p × p variance-covariance

(or the integrated volatility) matrix Σx =
∫ 1
0 σsσ

′
sds, which is the same as V(2) =

(Vgh(2)) in our notation. In this case, the terms (1/mc)
∑mc

k=1[zk,(i)]
2 and the asymp-

totic variance 2
∫ 1
0 [σx(s)]

4 ds in Section 5 are replaced by

V̂ (g, h; 2) =
b(n)∑
i=1

1

mc

mc∑
k=1

[zgk,(i)zhk,(i)](8.5)

and ∫ 1

0

[
σ(x)
gg (s)σ

(x)
hh (s) + (σ

(x)
gh (s))

2
]
ds ,(8.6)

where

Σx =
∫ 1

0
Σx(s)ds =

 σ(x)
gg σ

(x)
gh

σ
(x)
gh σ

(x)
hh

 .

The most important fact is that both the SIML method and the local-SIML method

are simple and it is straightforward to use them when the dimension p of underlying

processes is large. This aspect is quite different from other methods proposed in the

past. Recently, Kunitomo (2018) has considered a statistical procedure to detect the

number of factors of the hidden covariation rx when it is substantially less than the

dimension p, for instance. We expect that under a set of regularity conditions, we

have the results on the asymptotic properties of the local SIML estimator in more

general settings.

9. Concluding Remarks

In this paper we have developed the Local SIML (LSIML) method for estimating

higher-order Brownian functionals, which is a new statistical method. We extend

the separating information maximum likelihood (SIML) method, which was pro-

posed by Kunitomo, Sato and Kurisu (2018). The main motivation of LSIML is

to estimate higher order Brownian functionals including the integrated volatility

and co-volatility when we have micro-market noise by using high-frequency finan-

cial data. We have shown that the local SIML method has desirable asymptotic

properties such as the consistency and asymptotic normality, and it also has reason-

able finite sample properties, which are illustrated by several simulations. Although
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there could be other methods for estimating higher-order Brownian functionals, the

LSIML method is simple and it has desirable asymptotic properties. Hence it should

be useful for practical situations.
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APPENDIX : Mathematical Derivations of Theorems

In this Appendix, we give some details of the derivations of the results in Section

5. Since we have used the stable convergence in Proposition 2 and Theorem 3 and

it may not be standard in statistics literature, we will give a discussion how we can

apply the basic arguments to our situation at the end of this Appendix.

We first give two lemmas.

Lemma A-1 : Let r be any positive integer. Then

1

mc

mc∑
k=1

ark,c(n) ∼ (
π2r

2r + 1
)
m2r

c

c(n)r
(A.1)

as c(n),mc → ∞ and mc/c(n) → 0.

Proof of Lemma A-1 : Since mc/c(n) → 0 as n → ∞ and sin x ∼ x when x is

small, we can evaluate

1

mc

mc∑
k=1

ark,c(n) = [π]2r
m2r

c

c(n)r

[
1

mc

mc∑
k=1

(
k

mc

)2r + o(1)

]

=
π2r

2r + 1

[
m2r

c

c(n)r
+ o(1)

]
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because
1

mc

mc∑
k=1

(
k

mc

)2r −
∫ 1

0
x2rdx = o(1) .

(QED)

Lemma A-2 : Let

bkj =
√
c(n)[pkj − pk,j+1] =

2
√
c(n)√

2c(n) + 1
cos θkj −

2
√
c(n)√

2c(n) + 1
cos θk,j+1(A.2)

for k = 1, · · · , c(n); j = 1, · · · , c(n)− 1 and

bk,c(n) =
2
√
c(n)√

2c(n) + 1
cos θj,c(n) ,

where θkj =
2π

2c(n)+1
(k − 1/2)(j − 1/2).

Then
c(n)∑
j=1

[bkj]
2 = [1 +O(

1

c(n)
)]ak,c(n) ,

and
c(n)∑
j=1

[bkj]
4 = [

3

2c(n)
+ o(

1

c(n)
)][ak,c(n)]

2 ,

Proof of Lemma A-2 :

2c(n) + 1

c(n)

c(n)−1∑
j=1

[bkj]
2 =

c(n)−1∑
j=1

[(1− eiθk)eiθkj ]2 +
c(n)−1∑
j=1

[(1− e−iθk)e−iθkj ]2

+2(c(n)− 1)(1− eiθk)(1− e−iθk) ,

where θk = [2π/(2c(n) + 1](k − 1/2) (k = 1, · · · , c(n)).
Then we use the relation

c(n)−1∑
j=1

[eiθkj ]2 = eiθk
1− ei(4π/(2c(n)+1))(k−1/2)n

1− e2iθk

= e−iθkj
1 + eiθk

1− e2iθk

because we have

ei(4π/(2c(n)+1)(k−1/2)n = ei(π/(2c(n)+1)(2k−1)(2n+1−1) = −e−iθk
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and eiθkn + e−iθkn = eiπ(k−1/2)[e−iθk + eiθn ] = 2 sin θk = 4 sin(θk/2) cos(θk/2).

Hence by arranging each terms and use the relation

(1− eiθk)(1− e−iθk) = (e−i
θk
2 − ei

θk
2 )(ei

θk
2 − e−i

θk
2 ) ,

we have the result. By using the similar but tedious arguments for the fourth-powers,

after some calculations we find that

[2c(n) + 1]2

c(n)2

c(n)−1∑
j=1

[bkj]
4 =

c(n)−1∑
j=1

[bkj]
4[eiθkj(1− eiθk) + e−iθkj(1− e−iθk)]4

= [6c(n) +O(1)]× 42 sin4 θk
2

.

(Q.E.D.)

An Outline of Derivations of Proposition 2 and Theorem 3 :

We illustrate our derivations of the results in Section 5 when p = 1 and r = 2. (The

derivations of the case of r = 1 in Proposition 2 can be quite similar, but much

simpler than the present case.) Although it is possible to extend the derivations,

the notations become rather complicated and the essential arguments are the same.

(Basically, we extend the arguments in Chapter 5 of Kunitomo et. al (2018).)

We first consider the case when σ2
s = σ2

x (0 ≤ s ≤ 1) (a constant volatility).

Then we apply the method for this basic case to the time-varying volatility case and

the stochastic case as in Chapter 5 of Kunitomo et. al (2018).

With the transformation (4.1) in the set Ic(i) = ((i − 1) c(n)
n
, i c(n)

n
], we set zk,(i) =

z
(1)
k,(i) + z

(2)
k,(i), where z

(1)
k,(i) and z

(2)
k,(i) correspond to the k−th elements of Z

(1)
c(n),(i) =

h
−1/2
c(n) Pc(n)C

−1
c(n)(Xc(n),(i)−ȳ0,(i)) and Z

(2)
c(n),(i) = h

−1/2
c(n) Pc(n)C

−1
c(n)Vc(n),(i) (Vc(n),(i) is the

noise vector in Ic(i) (i = 1, · · · , b(n))), respectively. Then we have E[Z
(1)
c(n),(i)] = 0,

E[Z
(2)
c(n),(i)] = 0 and

E[Z
(1)
c(n),(i)Z

(1)′

c(n),(i)] = σxIc(n) ,E[Z
(1)
c(n),(i)Z

(1)′

c(n),(i)] = σ2
vh

−1
c(n)Dc(n) ,(A.3)

where Dc(n) = diag(dk) (k ∈ Ic(i)).

In Ic(i) we write z
(2)
k,(i) =

∑c(n)
j=1 bkjvj(i), vj(i) are noise terms in Ic(i) (i = 1, · · · , b(n))
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and bkj are the corresponding coefficients of h
−1/2
c(n) Pc(n)C

−1
c(n). Also we have

z
(1)
k,(i) =

√√√√ 4c(n)

2c(n) + 1

c(n)∑
j=1

skjrj,(i) ,(A.4)

skj = cos θkj and θkj = (2π/(2mc+1))(k−1/2)(j−1/2) (j, k = 1, · · · , c(n)). Then we

can represent (1/mc)
∑mc

k=1[z
(1)
k,(i)]

2 =
∑c(n)

j,j′=1
c∗
jj′
rj,(i)rj′ ,(i), and c∗

j,j′
= [2c(n)/(2c(n)+

1)]cj,j′ .

Lemma A-3 : When p = 1 and r = 1, we have the asymptotic bias term as (5.3).

Proof of Lemma A-3 : By using the transformation (4.1), the dominant term of

the variance of the noise terms in each interval Ic(i) is given by (1/mc)
∑mc

k=1 ak,c(n).

By using Lemma A-1, we can evaluate the dominant asymptotic bias as b(n) ×
(1/mc)

∑mc
k=1 ak,c(n), which is given by (5.2). (These arguments are essentially the

same as those in Lemma 5.3 and its proof in Chapter 5 of Kunitomo et al. (2018).)

(Q.E.D.)

When r ≥ 2, the evaluation of each term becomes more complicated, but the essen-

tial procedure is the same as the case of r = 1. We illustrate the typical derivation

when r = 2 in the following. In our derivations of the results we make an extensive

use of the decomposition of the local sample moments as

1

mn

mn∑
k=1

[
z4k,(i) − E(z4k,(i))

]
(A.5)

=
1

mc

mc∑
k=1

{
[(z

(1)
k,(i))

4 − E((z
(1)
k,(i))

4)]

+[E(z
(2)4
k,(i))] + 6[E(z

(1)2
k,(i)z

(2)2
k,(i))] + [z

(2)4
k,(i) − E(z

(2)4
k,(i))]

+4[z
(1)
k,(i)z

(2)3
k,(i) + z

(1)3
k,(i)z

(2)
k,(i)] + 6[z

(1)2
k,(i)z

(2)2
k,(i) − E(z

(1)2
k,(i)z

(2)2
k,(i)]

}
.

By using Lemma A.2 and the boundedness of moments, we evaluate E((z
(1)
k,(i))

4) as

E[
c(n)∑
j=1

bkjv(t
c(n)
j )]4 = E[

c(n)∑
j=1

b4kjv
4
j +

∑
j ̸=j′

b2kjb
2
kj′v

2
j v

2
j′ ](A.6)

=
c(n)∑
j=1

b4kj[E(v
4
j )− (E(v2j ))

2) +
c(n)∑

j,j′=1

b2kjb
2
kj′E(v

2
j )E(v

2
j′ )]
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= [a2k,c(n) +O(
1

c(n)
)]M4 ,

where M4 = E[v(t
c(n)
1 )]4 .

By using the similar arguments, it is straight-forward to show that the asymptotic

bias term is negligible for r = 2 when

b(n)
b(n)∑
i=1

1

mc

mc∑
k=1

E[z
(2)4
k,(i)] −→ 0 .

Because of Lemma A-1 with r = 2, we have the condition (i) in Proposition 2.

For the consistency of the LSIML estimator, we need a set of sufficient conditions

such that

b(n)
b(n)∑
i=1

1

mc

mc∑
k=1

[z
(2)4
k,(i) − E(z

(2)4
k,(i)]

p−→ 0 ,

b(n)
b(n)∑
i=1

1

mc

mc∑
k=1

[z
(1)
k,(i)z

(2)3
k,(i) + z

(1)
k,(i)z

(2)
k,(i)]

p−→ 0 ,

and

b(n)
b(n)∑
i=1

1

mc

mc∑
k=1

[z
(1)2
k,(i)z

(2)2
k,(i) − E(z

(1)2
k,(i)z

(2)2
k,(i))]

p−→ 0 .

The evaluations of each terms are straight-forward, but it is tedious to evaluate the

corresponding orders. For instance, we find that

b(n)
b(n)∑
i=1

E[z
(1)2
k,(i)z

(2)2
k,(i)] = O(b(n)2

c(n)

n
× m2

c

c(n)
× ϵ2n) = O(n1−2γ+2γα−2δ)(A.7)

because of Lemma A-1 and E[r2j ] = O(1/n).

Hence under the conditions in Proposition 2 are sufficient for that each term ex-

cept the leading term in the decomposition (A.5) are negligible and hence they are

sufficient for the consistency. The above arguments can be used when the diffusion

coefficient σs (0 ≤ s ≤ 1) is time varying and stochastic, we have the result in

Proposition 2.

We also consider the conditions that each term except the first term in the de-

composition (A.5) of the normalized LSIML estimator are asymptotically negligible
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when n −→ ∞ √
b(n)3

mc

b(n)∑
i=1

mc∑
k=1

E[z
(2)4
k,(i)] −→ 0 ,

√
b(n)3

mc

b(n)∑
i=1

mc∑
k=1

[z
(2)4
k,(i) − E(z

(2)4
k,(i)]

p−→ 0 ,

√
b(n)3

mc

b(n)∑
i=1

mc∑
k=1

[z
(1)
k,(i)z

(2)3
k,(i) + z

(1)3
k,(i)z

(2)
k,(i)]

p−→ 0 ,

and √
b(n)3

mc

b(n)∑
i=1

mc∑
k=1

[z
(1)2
k,(i)z

(2)2
k,(i) − E(z

(1)2
k,(i)z

(2)2
k,(i)]

p−→ 0 .

We use a set of sufficient condition that the above convergence results hold when

n → ∞ in Proposition 2 and Theorem 3 when r = 2. Then in order to show the

asymptotic normality of the local SIML estimator, we write the main term of the

above decomposition as√
b(n)3

mc

b(n)∑
i=1

mn∑
k=1

[
z
(1)4
k,(i) − E(z

(1)4
k,(i))

]

=

√
b(n)3

mc

b(n)∑
i=1

mn∑
k=1

c(n)∑
j1,j2,j3,j4=1

sk,j1sk,j2sk,j3sk,j4 [rj1(i)rj2(i)rj3(i)rj4(i)

−E[rj1(i)rj2(i)rj3(i)rj4(i)]] .

The conditions in Proposition 2 are sufficient for that each term except the leading

term in the decomposition (A.5) are negligible. By applying the CLT for discretized

stochastic processes and using the stable-convergence in the present case, we have

the asymptotic normality.

For the asymptotic normality, we need to apply the martingale CLT for stochastic

processes. (See the remarks on stable convergence below.) In each interval Ic(i) , i =

1, · · · , c(n) we can decompose
∑c(n)

k=1[z
4
k,(i) −E(z4k,(i))] as the martingale part Mn

i and

the remaining parts. Because the stochastic order of the remaining parts is small

than the martingale part, they can be stochastically ignored as we used in Chapter 5

of Kunitomo et al. (2018)) for the case r = 1. Then we can use the martingale CLT

to the sum of matringales Sn =
∑b(n)

i=1 M
n
i and we have the asymptotic normality by

taking the appropriate normalizing factor to the martingale part.
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In the general case of stochastic volatility, we need the stable-convergence be-

cause the limiting terms as
∫ 1
0 σ2r

s ds are stochastic. Since we are considering higher

order Brownian motions of the form (2.5) under (2.4) and the dominant terms are

martingale differences, it is possible to show the stable-convergence. (See some dis-

cussion on the stable convergence below.)

On Stable Convergence in Proposition 2 and Theorem 3 :

We give an outline of the underlying arguments of stable convergences in Proposi-

tion 2 and Theorem 3. We consider the case when µσ
s and ωσ

s in (2.3) and (2.4) are

bounded and continuous with p = r = 1 and b(n) = 1. Then we denote c(n) = n and

mc = mn as in Kunitomo et al. (2018). (mn → ∞ and mn = O(nα) (0 < α < .4).)

By using Itô’s formula, we can represent

σ4
t = σ4

0 +
∫ t

0
µσ∗
s ds+

∫ t

0
ωσ∗
s dBσ

s (0 ≤ s ≤ t ≤ 1) ,(A.8)

where µσ∗
s and ωσ∗

s are the drift and diffusion coefficients and Bσ
s is Brownian motion,

which may be correlated with Bs.

For 0 = tn0 < tn1 < · · · < tnn = 1 we write

V (4) = σ4
0 +

n∑
j=1

[
∫ tnj

tnj−1

(
∫ t

0
µσ∗
s ds)dt+

∫ tnj

tnj−1

(
∫ t

0
ωσ∗
s dBσ

s )dt] ,(A.9)

and where the last term of V (4) becomes the sum of

V n
i =

∫ tni

tni−1

(
∫ 1

s
dt)ωσ∗

s dBσ
s (i = 1, · · · , n).(A.10)

By using the standard arguments, we can show that the effects of drift terms are

negligible as n → ∞. By using the arguments in Chapter 5 of Kunitomo et al.

(2018), the leading martingale term of the SIML estimator is

Un =
n∑

j=2

Un
j ,(A.11)

where Un
j = [

∑j−1
i=1 2

√
mncijri]rj, cij = (2/mn)

∑mn
k=1 skiskj and sij = cos

[
2π

2c(n)+1
(i− 1

2
)(j − 1

2
)
]

(i, j = 1, · · · , n).
Then we can evaluate the conditional expectations as

W n
j = E[Un

j V
n
j |Fj−1,n] = [

j−1∑
i=1

2
√
mcijri]

∫ tnj

tnj−1

σs(1− s)ωσ∗
s ds ,(A.12)
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where Fj−1,n is the σ−field generated at tnj−1 (j = 1, · · · , n). We notice that for

any j (j = 1, · · · , n)
∫ tnj
tnj−1

σs(1− s)ωσ∗
s ds = Op(1/n), which can be approximated as

[σ(tnj−1)(1− tnj−1)ω
σ∗(tnj−1)][B(tnj )−B(tnj−1)] with the error order being O(1/n2). By

using (A.5) with t = tnj−1 for each j, σ(tnj−1) can be further represented as the sum

of drift terms and Brownian motion parts given Fi−1,n for tnj−1 > tni−1 (j = 1, · · · , n).
By re-writing the sum of conditional expectations as

n∑
j=2

W n
j =

n−1∑
i=1

[
n∑

j=i+1

√
mncij

∫ tnj

tnj−1

σs(1− s)ωσ∗
s ds]ri ,(A.13)

it is possible to show that as n −→ ∞
n∑

j=2

W n
j

p−→ 0 .(A.14)

In order to show this convergence, we use several facts that the function σs(1−s)ωσ∗
s

is bounded and continuous, σs is a Brownian semi-martingale with (2.4) for any s,

and rnj =
∫ tnj
tnj−1

σsdBs can be approximated by r∗nj = σ(tnj−1)(B(tnj ) − B(tnj−1)) with

errors order being O(1/n2). We also have the representation for i ̸= j

cij =
1

2mn

[
sin π

2n+1
(i+ j − 1)mn

sin π
2n+1

(i+ j − 1)
+

sin π
2n+1

(i− j)mn

sin π
2n+1

(i− j)
](A.15)

(see Section 3.2 and Lemma 5.2 of Kunitomo et al. (2018)). By using Lemma 5.1

(for l > 0
∑m

k=1 2 cos(2π/(2n+1))(k− 1/2)l = sin l(2πm/(2n+1)/ sin l(π/(2n+1)),

we find that as n → +∞

1

n

n∑
j=1

sin π
2n+1

mj

sin π
2n+1

j
∼ O(1) .(A.16)

We have the last relation because for any positive integer N

∫ π

−π

sin(N + 1
2
α)

2π sin 1
2
α

dα = 1(A.17)

(see (3.2.7) of Brillinger (1980) on this relation and Chapter 5 of Kunitomo et al.

(2018) on several properties of cij (i, j = 1, · · · , n) and other quantities appeared in

the SIML estimation method.)

By using the lengthy arguments, it is possible to show that the martingale Un and
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the martingale part of V (4) are asymptotically uncorrelated.

Finally, by using the convergence of each terms and applying Theorem 2.2.15 of

Jacod and Protter (2012) to the martingale parts, we have the stable convergence

for a sequence of random variables. (The derivation of the CLT for the main term

in the normalized SIML estimator, Un, has been given in Chapter 5 of Kunitomo

et al. (2018).) Since the normalized SIML estimator and V (4) (=
∫ 1
0 σ4

sds) (and

higher order Brownian functionals) are uncorrelated in the asymptotic sense, we

have the stable convergence of the martingale Un to the limiting normal random

variable given
∫ 1
0 [σx(s)]

4ds such that as n −→ ∞

√
mn

[
V̂ (2)− V (2)

] L−s→ N [0,W ] ,(A.18)

where

W = 2
∫ 1

0
[σx(s)]

4 ds .(A.19)

It is tedious, but straight-forward to extend the above arguments to more general

cases. (See Jacod ad Protter (2012), and Hausler and Luschgy (2015) for the details

of stable convergence.)

When r = 2 and p = 1 the essential derivations are parallel to the case r = 1,

but with substantial notational complications. For instance, instead of (A.11) we

need to evaluate

Un
j = (

4√
m
)

∑
0<i1<i2<i3<j

(
m∑
k=1

skjsk,i1sk,i2sk,i3)ri1ri2ri3 ]rj ,(A.20)

By using similar arguments on trigonometric functions (addition theorem) and

(A.16), it is possible to show (A.14) and then we have the stable convergence as

consequence in the present case. (An important fact is that there are only n terms

when i = j (i, j = 1, · · · , n), while there are O(n2) terms when i ̸= j (i, j = 1, · · ·) in
(A.15), which are dominant asymptotically. In (A.20), there are O(n3) terms when

j− i1 = i2− i3 (i1, i2, i3, j = 1, · · · , n) for instance while there are O(n4) other terms

in (A.15), which are dominant asymptotically.) In more general cases, it is tedious

to write the corresponding notations, but the essential arguments are the same.
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