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Abstract
We investigate a new filtering method to estimate the hidden states of random
variables and to handle multiple non-stationary time series data. It is use-
ful for analyzing small sample non-stationary macro-economic time series in
particular and the method is based on the separating information maximum
likelihood (SIML) developed by Kunitomo, Sato and Kurisu (2018), Kunitomo
and Sato (2017) for estimating the non-stationary errors-in-variables models
and Nishimura, Sato and Takahashi (2019) for a financial application. We gen-
eralize the previous results to solve the filtering problem of hidden random
variables of trend and seasonality, which gives a useful method of handling
macro-economic time series. We develop the asymptotic theory based on
the frequency domain for non-stationary time series. We apply our filtering
method to analyze quarterly and monthly macro-consumption data in Japan.
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1. Introduction

There has been a vast amount of published research on the use of statistical time
series analysis of macro-economic time series. One important feature of macroeco-
nomic time series, which is different from the standard time series analysis, is the fact
that the observed time series is an apparent mixture of non-stationary components
and stationary components. The second feature is the fact that the measurement
errors in economic time series play important roles because macro-economic data are
usually constructed from various sources including sample surveys in major official
statistics while the statistical time series analysis often ignored measurement errors.
There is yet third important issue that the sample size of macro-economic data is
rather small and we have 120, say, time series observations for each series when we
have quarterly data over 30 years. The quarterly GDP series, which is the most
important data in Japanese macro-economy for instance, has been published since
1994 by the cabinet office of Japan. Since the sample size is small, it is important to
use an appropriate statistical procedure to extract information on trend and noise
(or measurement error) components in a systematic way from data. Since the sam-
ple size is small, it is important to use an appropriate statistical procedure to extract
information on trend and noise (or measurement error) components in a systematic
way from data. Some of these aspects have been discussed by Morgenstern (1950),
Granger and Newbold (1977), and Nerlove, Grether and Carvalho (1995) for in-
stance. See https://www.esri.cao.go.jp/index-e.html for the official macro-economic
(GDP) data published by Cabinet Office of Japanese Government.

In this study we will investigate a new filtering procedure to estimate the hid-
den states of random variables, which were non-stationary, and to handle multiple
time series data including small sample economic time series of macro-economic
variables. Kunitomo and Sato (2017), and Kunitomo, Sato and Kurisu (2018) have
developed the separating information maximum likelihood (SIML) method for es-
timating the non-stationary errors-in-variables models. They have discussed the
asymptotic properties and finite sample properties of the estimation of unknown
parameters in the statistical models. We utilize their results to solve the filtering
problem of hidden random variables and the resulting method leads to a powerful
new method of handling macro-economic time series.

Earlier and related literature on the non-stationary economic time series analysis
are Engle and Granger (1987) and Johansen (1995), which dealt with multivariate
non-stationary and stationary time series and developed the notion of co-integration
without measurement errors. The problem of our interest is related to their work,
but it has different aspects and our focus is on the non-stationarity and measurement
error in the non-stationary errors-in-variable models. Also in econometric literature
the issue of identification of parametric models and the issue of estimation when
the true parameters are around the boundary points have been discussed. There
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are some recent econometric studies on time series in the frequency domain such as
Baxter and King (1999), and Muller and Watson (2018). In this respect, the present
study on the non-stationary errors-in-variables models may give some interpretation
on their methods.

In the statistical multivariate analysis, there is also some literature on the errors-
in-variables models as Anderson (1984, 2003) and Fuller (1987), but they considered
the multivariate cases of independent observations and the underlying situation is
different from ours.

Kitagawa (2010) has discussed the standard statistical filtering methods already
known including the Kalman-filtering and the particle-filtering methods. Since (i)
these methods depend on the underlying distributions such as the Gaussian distri-
butions for the Kalman-filtering and (ii) the procedure essentially depends on the
dimension of state variables, there may be some difficulty to extend to the high-
dimension cases even when it is fixed, say 10. On the other hand, we expect that
our method has some merits when we need to handle small sample economic times
series with non-stationarity and seasonality with many variables because our method
does not depend on the specific distributions as well as the dimension of the under-
lying random variables. See Kunitomo, Awaya and Kurisu (2017) for a comparison
of small sample properties of the ML and SIML estimation methods for the errors-
in-variables models and Nishimura et al. (2019) for an application of financial data
smoothing. The most important feature of the present procedure is that it may be
applicable to small sample time series data. Also it seems that our new method has
a solid mathematical and statistical foundation based on the spectral decomposition
of stochastic processes. As an illustrative application, we use our filtering method
to analyze quarterly and monthly macro-consumption data in Japan.

In Section 2 we give some macro-economic data, which have motivated the
present study. In Section 3 we define the non-stationary errors-in-variables model.
and the SIML method. Then in Section 4 we introduce the SIML filtering method.
Then in Section 5, we discuss the statistical foundation of the method and in Section
6 we propose a method of choosing the numbers of terms, which is based on pre-
diction, and we give some numerical examples based on a set of simulations. Some
empirical examples on macro-consumption data in Japan will be given in Section 7
and concluding remarks are given in Section 8. Some mathematical derivations of
our results will be in Appendix.

2. Two Illustrative Examples

As an illustrative example, we plot the graph of two macro-economic time series in
Japan : quarterly (real) consumption and quarterly (real) GDP (1994Q1-2018Q2) as
Figure 2.1. It looks like a simple example of linear regression appeared in the under-
graduate textbooks. However, if we draw the time series sequences of these (original
and seasonally unadjusted) macro-data published by the Cabinet office of Japanese
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Government as Figure 2.1, then we find that the situation is not so simple as it
looks in Figure 2.1. In two time series data, there are clearly trends components,
seasonal components, noise components, and possibly business cycle components.
Although many economists usually use the seasonally adjusted (published) data,
which were constructed by using the X-12-ARIMA program, the effects of filtering
of the program are often unknown. The X-12-ARIMA program uses the univariate
ARIMA and reg-ARIMA models and the DECOMP program, which was developed
by Kitagawa (2010) and it is a possible choice particularly in Japan, uses the uni-
variate AR model and Kalman filtering. Since each time series are handled by using
different filtering procedures (that is, different reg-ARIMA models for instance), it
may cause a fundamental problem in their interpretation when the focus of interest
is on the relationships among different non-stationary data in particular.

Figure 2.3 gives three different macro-consumption data (2002 January - 2016
December), which are observed as monthly time series and widely used by economists
in Japan to judge the current macro-business condition in Japan. The first series
is Kakei-Chosa (the data from monthly consumer-survey), the second one is Shohi-
Douko (the data from monthly retail), and the third one is DaiSanji-Sangyo (the
index data on commerce). The data construction processes are different and quite
complex, and each data reflect different aspects of macro-consumption. Since they
show the similar movements, but there are some different aspects of trends and
seasonal at the same time. Then we need to unify the monthly consumption series
because we want to judge the business condition by just observing these data for
evaluating the state of Japanese macro-economy and making macro-economic policy.
Many economists in both central governments and private sectors usually use the
seasonally adjusted data, which were constructed from the quarterly or monthly
(original) time series and by using the univariate X-12-ARIMA seasonal adjustment
program. Thus it is important to construct the monthly consumption index, which
is consistent with the published quarterly macro-consumption data.

These two empirical examples and related issues motivated us to develop the
multivariate non-stationary errors-in-variables models and the filtering method for
the hidden state variables with measurement errors.

3. The Non-Stationary Errors-in-Variables Model and SIML

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
be a p× 1 vector and Yn = (y

′
i) (= (yij)) be an

n×pmatrix of observations and denote y0 as the initial p×1 vector. We estimate the
model when the underlying non-stationary trends x

′
i(= (x1i, · · · , xpi)) (i = 1, · · · , n),

but we have the vector of noise component v
′
i = (v1i, · · · , vpi), which are independent

of xi. We use the non-stationary errors-in-variables representation

(3.1) yi = xi + vi (i = 1, · · · , n),
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where xi (i = 1, · · · , n) are a sequence of non-stationary I(1) process which satisfy

(3.2) ∆xi = (1− L)xi = v
(x)
i ,

with the lag-operator Lxi = xi−1, ∆ = 1− L,

(3.3) w
(x)
i =

∞∑
j=0

C
(x)
j e

(x)
i−j ,

and e
(x)
i is a a sequence of i.i.d. random vectors with E(e

(x)
i ) = 0 and E(e

(x)
i e

(x)′

i ) =

Σ(x)
e (positive-semi-definite). The coefficients matrices C

(x)
j (= c

(x)
kl (j)) are abso-

lutely summable such that
∑∞

j=0 ∥C
(x)
j ∥ < ∞, where ∥C(x)

j ∥ = maxk,l=1,··· ,p |c(x)kl (j)|
and C

(x)
j = (c

(x)
kl (j)).

The random vectors vi (i = 1, · · · , n) are a sequence of stationary I(0) process with

(3.4) vi =
∞∑
j=0

C
(v)
j e

(v)
i−j ,

where the coefficient matrices C
(v)
j are absolutely summable (

∑∞
j=0 ∥C

(v)
j ∥ < ∞,

where ∥C(v)
j ∥ = maxk,l=1,··· ,p |c(v)kl (j)| and C

(v)
j = (c

(v)
kl (j))) and e

(v)
i are a sequence of

i.i.d. random vectors with E(e
(v)
i ) = 0, E(e

(v)
i e

(v)′

i ) = Σ(v)
e (non-negative definite).

Let f∆x(µ) and fv(µ) be the spectral density (p × p) matrices of ∆xi and vi

(i = 1, · · · , n) as

(3.5) f∆x(µ) = (
∞∑
j=0

C
(x)
j e2πiµj)Σ(x)

e (
∞∑
j=0

C
(x)′

j e−2πiµj), (−1

2
≤ µ ≤ 1

2
)

and

(3.6) fv(µ) = (
∞∑
j=0

C
(v)
j e2πiµj)Σ(v)

e (
∞∑
j=0

C
(v)′

j e−2πiµj), (−1

2
≤ µ ≤ 1

2
)

where we set C
(x)
0 = C

(v)
0 = Ip and i2 = −1 (see Chapter 7 of Anderson (1971) for

instance.)
Then the spectral density matrix of the transformed vector process ∆yi (= yi−yi−1)
is

(3.7) f∆y(µ) = f∆x(µ) + (1− e2iµ)fv(µ)(1− e−2iµ)

and we have the key relation at the zero-frequency such that

(3.8) f∆y(0) = f∆x(0) .
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We denote the long-run variance-covariance matrices of the trend components and
the stationary components for g, h = 1, · · · , p as

(3.9) Ωx = f∆x(0) (= (ω
(x)
gh )) ,

and

(3.10) Ωv = fv(0) = (ω
(v)
gh ) .

When each pair of vectors ∆xi and vi are independently, identically, and nor-
mally distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv), respectively, and we have
the observations of an n × p matrix Yn = (y

′
i) and set the np × 1 random vector

(y
′
1, · · · ,y

′
n)

′
. Given the initial condition y0, we have

(3.11) vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,

where 1
′
n = (1, · · · , 1) and

(3.12) Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.

We return to consider the general case of (2.1)-(2.4) and use the Kn−transformation
that from Yn to Zn (= (z

′

k)) by

(3.13) Zn = Kn

(
Yn − Ȳ0

)
,Kn = PnC

−1
n ,

where

(3.14) C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,

and

(3.15) Pn = (p
(n)
jk ) , p

(n)
jk =

√
2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
.

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) and we write

(3.16) a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .
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Then the separating information maximum likelihood (SIML) estimator of Σ̂x when

w
(x)
i are i.i.d. vectors can be defined by

(3.17) Gm = Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k ,

where we set m = mn = [nα] (0 < α < 1).
The estimation of the variance-covariance matrix Σv when vi are i.i.d. vectors have
been discussed by Kunitomo and Sato (2017). Some consistent estimators of Σv

have been developed.

4. The SIML Filtering Method

4.1 The Basic Filtering

We consider the general filtering procedure based on the Kn−transformation (3.13).
Because the elements of the resulting n×p random matrix Zn by this transformation
take real values in the frequency domain, it is easy to interpret their roles. We
consider the inversion of a transformation of orthogonal frequency processes. Let an
n× p matrix

(4.1) X̂n = CnP
′

nQnPnC
−1
n (Yn − Ȳ0)

and

(4.2) Zn = PnC
−1
n (Yn − Ȳ0) .

The stochastic process Zn are the orthogonal decomposition of the original time
series Yn and Qn is an n × n filtering matrix. We give explicit forms of useful
examples including the trend filtering procedure and the seasonal filtering procedure
for macro-time series. Although we can interpret the existing filtering procedures
within our general framework, first it is useful to give linear filtering procedures.

(i) General Linear Filtering : Let an n× n diagonal matrix

(4.3) Qn =
n∑

i=1

wi,neie
′

i

and ei = (0, · · · , 1, · · · )′ (i = 1, · · · , n) are the unit vectors and wi,n (i = 1, · · · , n)
are some non-negative constants. The trivial case is when we take wi,n = 1 (i =
1, · · · ), we have the identity matrix. There are several useful linear filtering cases
and we will give two cases as the trend filtering and the seasonal filtering by choosing
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wi,n = 1 or 0 for some i′s.

(ii) Trend Filtering : Let an m×n choice matrix Jm = (Im,O), and let also n×p
matrix

(4.4) X̂n = CnP
′

nJ
′

mJmPnC
−1
n (Yn − Ȳ0)

and and an n× n matrix

(4.5) Qn = PnJ
′

mJmPn .

We will construct an estimator of n×p hidden state matrixXn in the lower frequency
parts by using the inverse transformation of Zn by deleting the estimated noise parts.
(See Nishimura, Sato and Takahashi (2019) as an example.) For this purpose, let
the [m+ (n−m)]× [m+ (n−m)] partitioned matrix

Pn =

(
P11 P12

P21 P22

)
and

(4.6) PnJ
′

mJmPn =

(
P

′
11

P
′
12

)
(P11,P12) = In −

(
P

′
21

P
′
22

)
(P21,P22) .

After some calculations (see the Appendix), the (j, j
′
)-th element ofQn = PnJ

′
mJmPn (=

(qj,j′ )) is given by

qj,j =
2m

2n+ 1
+

1

2n+ 1

[
sin 2mπ

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(4.7)

qi,j′ =
1

2n+ 1

[
sin 2mπ

2n+1
(j + j

′ − 1)

sin π
2n+1

(j + j ′ − 1)
+

sin 2mπ
2n+1

(j − j
′
)

sin π
2n+1

(j − j ′)

]
(j ̸= J

′
) .

We evaluate MSE of X̂n(n× p) and then in the simple case

E [tr(X̂n −Xn)
′
(X̂n −Xn)](4.8)

= tr(Σv)tr[JmPnC
′

nCnP
′

nJ
′

m × JmPnC
−1
n C

′−1
n P

′

nJ
′

m]

+tr(Σx)tr[J
∗
mPnC

′

nCnP
′

nJ
∗′
m × J∗

mPnC
−1
n C

′−1
n P

′

nJ
∗′
m] ,

where Jm = (Im,O) (m× n matrix) and J∗
m = (O, In−m) ((n−m)× n matrix).

(iii) Seasonality Filtering : We consider the filtering based on theKn−transformation
in (3.13). We consider the inversion of some frequency parts of the random matrix
Zn. The leading example is the seasonal frequency in the discrete time series and
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we take s (> 1) being a positive integer. Let an m2 × [m1 +m2 + (n −m1 −m2)]
choice matrix Jm1,m2,n = (O, Im2 ,O), and let also n× p matrix

(4.9) X̂n = CnP
′

nJ
′

m1,m2,n
Jm1,m2,nPnC

−1
n (Yn − Ȳ0)

and an n× n matrix

(4.10) Qn = PnJ
′

m1,m2,n
Jm1,m2,nPn .

As an example, when we have the seasonal frequency s (> 1), we can take m1 =
[2n/s] − [m/2] and m2 = m. For instance, we take s = 4 for quarterly data and
s = 12 for monthly data. After some calculations, the (j, j

′
)-th elemnt of Qn =

PnJ
′
m1,m2,n

Jm1,m2,nPn (= (qj,j′ )) is given by

qj,j =
2m2

2n+ 1
+

1

2n+ 1

[
sin 2(m1+m2)π

2n+1
(2j − 1)− sin 2(m1)π

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(4.11)

qi,j′ =
1

2n+ 1

[
sin 2(m11+m2)π

2n+1
(j + j

′ − 1)− sin 2(m1)π
2n+1

(j + j
′ − 1)

sin π
2n+1

(j + j ′ − 1)

+
sin 2(m1+m2)π

2n+1
(j − j

′
)− sin 2(m1)π

2n+1
(j − j

′
)

sin π
2n+1

(j − j ′)

]
(j ̸= j

′
) .

We note that when m1 = 0 and m2 = m, the resulting formula become to those in
the basic case.
We evaluate MSE of Ŝn, which is X̂ (n× p) and then in the simple case

E [tr(Ŝn − Sn)
′
(Ŝn − Sn)]

= tr(Σv)tr[Jm1,m2,nPnC
′

nCnP
′

nJ
′

m1,m2,n
× Jm1,m2,nPnC

−1
n C

′−1
n P

′

nJ
′

m1,m2,n
]

+tr(Σx)tr[J
∗
m1,m2,n

PnC
′

nCnP
′

nJ
∗′
m1,m2,n

× J∗
m1,m2,n

PnC
−1
n C

′−1
n P

′

nJ
∗′
m1,m2,n

] ,

where Jm1,m2,n = (O, Im2 ,O) (m2 × n matrix) and an (n−m2)× n matrix

J∗
m1,m2,n

=

[
Im1 O O
O O In−m1−m2

]
.

(iv) Non-linear Filtering : The method of filtering procedure based on (4.1) and
(4.2) is simple, but very general. There can be several extensions and a combination
of trend filtering and seasonal filtering is such an example, which can be written as
(4.3) for instance. There can be possible extensions of the linear filtering procedures
to non-linear filtering procedures based on (4.1) and (4.2) and other filtering methods
in the existing literature can be interpreted as special cases of (4.3).
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4.2 An Extended Errors-in-Variables Model

Now we will consider the meaning of the SIML filtering. For this purpose we extend
the basic model of (3.1) by adding seasonal components and investigate the additive
decomposition model

(4.12) yi = xi + si + vi (i = 1, · · · , n),

where we take positive integers s (s > 1), N , and n = sN for the resulting simplicity
and arguments and si (i = 1, · · · , n) are a sequence of non-stationary process which
satisfy

(4.13) ∆si = (1− L)si = v
(s)
i ,

where

(4.14) v
(s)
i =

∞∑
j=0

C
(s)
sj e

(s)
i−sj ,

and e
(s)
i is a a sequence of i.i.d. random vectors with E(e

(s)
i ) = 0 and E(e

(s)
i e

(s)′

i ) =
Σ(s)

e (non-negative definite).
Let f∆x(µ), f∆s(µ), and fv(µ) be the spectral density (p × p) matrices of ∆xi, ∆si
and vi (i = 1, · · · , n) as

(4.15) f∆x(µ) = (
∞∑
j=0

C
(x)
j e2πiµj)Σ(x)

e (
∞∑
j=0

C
(x)′

j e−2πiµj) (−1

2
≤ µ ≤ 1

2
) ,

(4.16) f∆s(µ) = (
∞∑
j=0

C
(s)
sj e

2πiµsj)Σ(s)
e (

∞∑
j=0

C
(s)′

sj e−2πiµsj) (−1

2
≤ µ ≤ 1

2
) ,

and

(4.17) fv(µ) = (
∞∑
j=0

C
(v)
j e2πiµj)Σ(v)

e (
∞∑
j=0

C
(v)′

j e−2πiµj) (−1

2
≤ µ ≤ 1

2
)

where we set C
(x)
0 = C

(s)
0 = C

(v)
0 = Ip as normalizations and i2 = −1 (see Chapter

7 of Anderson (1971) for instance.)
Then the p× p spectral density matrix of the transformed vector process, which are
observable, the spectral density of the difference series ∆yi (= yi − yi−1) can be
represented as

(4.18) f∆y(µ) = f∆x(µ) + f∆s(µ) + (1− e2πiµ)fv(µ)(1− e−2πiµ) .
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We denote the long-run variance-covariance matrices of the trend components and
the stationary components for g, h = 1, · · · , p as

(4.19) Ωx = f∆x(0) (= (ω
(x)
gh )) , Ωs = f∆s(

1

s
) (= (ω

(s)
gh )) ,

and

(4.20) Ωv = fv(0) = (ω
(v)
gh ) .

5. A Statistical Foundation

At the first glance, the SIML filtering procedure might be seen as an ad-hoc statistical
procedure without any mathematical foundation. However, on the contrary, there
is a rather solid statistical foundation.
Let θjk =

2π
2n+1

(j − 1
2
)(k − 1

2
) ,

p
(n)
jk =

1√
2n+ 1

(eiθjk + e−iθjk)

and we write

(5.1) ∆λz
(n)(λ

(n)
k ) =

n∑
j=1

p
(n)
jk r

(n)
j , r

(n)
j = yj − yj−1 ,

which is actually (the real-valued) Fourier-transformation. Then ∆λz
(n)(λ

(n)
k ) (k =

1, · · · , n) are the (real-valued) Fourier-transformation of data at the frequency λ
(n)
k (=

(k− 1/2)/(2n+1)), which is a (real-part of) estimate of the orthogonal incremental
process z(λ).

For the development of statistical inferences, we have the next result by using
the CLT (central limit theorem) for discrete and (ergodic) stationary time series.
See the Appendix for the derivations.

Theorem 5.1 : Let rj (j = 1, · · · , n) be an ergodic stationary stochastic process
with Γ(h) = E(rjr

′

j−h) and

(5.2)
∞∑
h=0

∥Γ(h)∥ < ∞ .

(i) Let ∆λz
(n)(λ

(n)
k ) =

∑n
j=1 p

(n)
jk r

(n)
j and r

(n)
j be an ergodic stationary sequence with

E [rj] = 0 and the (symmetrized real) spectral density matrix

(5.3) fSR(λ) = Γ(0) +
∞∑
h=1

cos(2πhλ)[Γ(h) + Γ(−h)] ,
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is the positive definite and bounded (real-valued and symmetrized) spectral matrix.

Also assume that λ
(n)
k → s, λ

(n)

k′
→ t and 0 < s < t < 1

2
.

Then as n −→ ∞

(5.4)

[
∆λz

(n)(λ
(n)
k )

∆λz
(n)(λ

(n)

k′
)

]
w−→ N2p

[
0, [

fSR(s) 0
0 fSR(t)

]

]
.

(ii) Let Zn(t) − Zn(s) = 1√
n

∑[tn]
k=[sn]

∑n
j=1 p

(n)
jk r

(n)
j for 0 < s < t < 1. Then as

n −→ ∞

(5.5) Zn(t)− Zn(s)
w−→ Np [0, FSR(t)− FSR(s)] ,

where FSR(t) is the p× p (symetrized real) spectral distribution matrix

(5.6) FSR(t) =

∫ t

0

fSR(λ)dλ .

This theorem covers the basic model with (3.1)-(3.4) and the extended model
with (4.12)-(4.14) with the moment conditions because ∆yi are stationary in these
cases. The spectral density in the basic model is given by (3.7) while the spectral
density in the extended model is given by (4.18). We immediately find that the long-
run variance-covariance matrix of hidden states in the basic model can be estimated
by (3.17).

Since the asymptotic variance-covariance matrix of the orthogonal random vec-
tors ∆λz

(n)(λ
(n)
k ) is the (symmetrized real) spectral density matrix, it should be

estimated consistently. Although there can be many ways to solve the problem, it
may be natural to use the estimation method as (3.17) at the zero frequency.
The SIML estimator of fSR(t) (0 < 1

2
) can be defined by

(5.7) Gm(t) =
1

mn

[2nt]+[mn
2

]∑
k=[2nt]−[mn

2
]+1

(∆tz
(n)
k (λ

(n)
k ))(∆tz

(n)
k (λ

(n)
k ))

′
.

Then we have the next result.

Theorem 5.2 : Let rj (j = 1, · · · , n) be an ergodic stationary stochastic process
with Γ(h) = E(rjr

′

j−h) with (5.2) and (5.3). Assume the fourth order moment
conditions supj≥1 [∥rj∥4] < +∞. Assume (3.1)-(3.4) and in (5.7) we set mn =
[nα] (0 < α < 1). Then for any t ∈ (0, 1

2
), as n −→ ∞

(5.8) Gm(t)
p−→ fSR(t) .
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Furthermore, it is possible to show the asymptotic normality of the SIML estimator
under the condition that 0 < α < 0.8. (Kunitomo and Sato (2017) have discussed
the case of t = 0.) Furthermore, it may be possible to develop the consistent
estimation of spectral components of non-stationary time series in the form of (4.7).

In the traditional statistical time series analysis for a stationary discrete (vec-
tor) process r∗k with the spectral distribution F, it has been known that there
exists a right-continuous orthogonal increment (vector, complex-valued) process
z∗(λ) (−1/2 ≤ λ ≤ 1/2) such that

(5.9) r∗k =

∫
(−1/2,1/2]

ei2πkνdz∗(ν) (k = 1, · · · , n).

(The topic here goes back to Doob (1953), but see Hannan (1971) or Brockwell and
Davis (1990).) The trend component and seasonal component of (real-valued) time
series in our setting can be defined by

(5.10) r
(u)
k =

∫
(0,1/2]

cos(2πkν)w(u, ν)z(ν) (k = 1, · · · , n)

for u = x or u = s, where w(u, ν) is the indicator function of some frequencies
around zero (for trend) and seasonal frequency (for seasonality), respectively, and
z(ν) 0 < ν ≤ 1/2 is the right-continuous orthogonal increment (real-valued) process,
which is the limiting continuous process of discrete time series.

Since z(ν) is not observed with finite data, the (real-valued) estimate of r
(u)
k (i.e.

the hidden components of rk) from data can be represented as

(5.11) r
(u,n)
k =

∫
(0,1/2]

cos(2πkν)wn(u, ν)dz
(n)(ν) (

k − 1

2n
< ν ≤ k

2n
, k = 1, · · · , n),

where wn(u, ν) is a measurable function and z(n)(ν) is the estimated orthogonal
process at the frequency ν ∈ [0, 1/2] from data where we have abused some notations
such as z(n)(0) = 0. Hence the ln-th component of (4.1) with (4.2) and (4.3) could
be approximated and written as

(5.12) x̂
(u,n)
ln

=
ln∑
k=1

[∫
(0,1/2]

cos(2πkν)wn(u, ν) dz
(n)(ν)

]
,

when we take ln = [t n] (0 < t < 1) and choose the kernel function w(u, ν) appropri-
ately in the frequency domain. Hence these representations could be interpreted as
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the (real) Fourier inverse of Kn− transformation of finite observations of time series
in (5.1).

From this interpretation, we find that there may be an interesting representation
problem of (discrete time and continuous time) stationary processes and orthogonal
incremental stochastic processes, which is closely related to the method of data
analysis we are investigating.

6 Prediction and Model Selection

6.1 Prediction

The prediction problem can be solved as follows. For the simplicity, we consider the
h−period ahead prediction of yj (j = n+ h, h ≥ 1) given the information available

at j = n. It is natural to use the incremental vectors r
(n)
n+s (s ≥ 1) available at

j = n. Then by using the orthogonal processes and ignoring the sampling errors of
estimating them (that is n should be large enough), we have an expression of the
prediction error as

(6.13) e(h) =
h∑

j=1

rj =

∫ 1/2

−1/2

[e−i(n+1)ν + · · ·+ e−i(n+h)ν ]w(u, ν)z̃(dν) .

Hence the prediction MSE is given as

(6.14) E [e(h)e′
(h)] =

∫ 1/2

−1/2

[
sin hν

s

sin ν
2

]2

w(u, ν)f(ν)dν ,

where f(ν) is the p× p spectral density matrix for rj. When h = 1 and w(u, ν) = 1
for ν ∈ (−1/2, 1/2), we have the familiar expression of one-period prediction MSE
in time series analysis as

(6.15) E [e(1)e′
(1)] =

∫ 1/2

−1/2

f(ν)dν = E [rn+1r
′

n+1] ,

which corresponds the variance-covariance matrix of innovation vector at j = n.
When p = 1, we find that

(6.16)

∫ 1/2

−1/2

f(ν)dν ≥ exp

[∫ 1/2

−1/2

log[f(ν)]dν

]
,

which is the lower bound of the one-step ahead prediction. (See Chapter 3 of Hannan
(1070).) Therefore the prediction MSE of our predictor is slightly greater than the
lower bond of prediction MSE. When the spectral density is flat, two prediction
MSE are the same.
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6.2 Model Selection

When we have estimates of the state variables xi (i = 1, · · · , n), the estimates of
noise components are v̂i = yi − x̂i (i = 1, . . . , n). Then an estimated MSE of the
one-step ahead prediction errors based on the SIML-smoothing or filtering is given
by

(6.17) PMSEn(h) = E [(yn+h − yn)(yn+h − yn)
′|Fn] ,

where Fn is the σ−field (information) available at n.
Then one may try to minimize the estimated h-step prediction MSE by choosing an
appropriate m. It may be reasonable to choose h = 2, 3 for the estimation of trend
while h = 4, 8 for the estimation of seasonal from our limited experiments.

6.3 Numerical Experiments

We have done several Monte Carlo experiments on the problem of choosing an
appropriate m. For this purpose, we first use the simple model of trend plus noise
model, xi = xi−1 + ut and yi = xi + vi (i = 1, · · · , n). The criterion function is the
prediction MSE given by

(6.18) PMSE∗
n(h) =

1

h

n∑
i=n−h+1

(yi − x̂i)
2 .

We give some results on the trend filtering as Tables 6.1-6.3 by taking h = 2, · · · , 8
and n = 80, 120, 200, 300. In our simulations, as n increases, we have larger optimal
choice of m. Also as h increases, the optimal choice m decreases. When we have
long-horizon with h, it may be natural to use small number of lower frequencies. σx

and σv, the optimal choice of m could be stable.

18



Table 6.1 : Optimal Choice of m
(σx = 0.3 , σv = 0.05)

n 80 120 200 400
h=2 12 19 32 65
h=3 8 12 21 42
h=4 6 9 15 32
h=5 5 7 13 26
h=6 4 6 10 21
h=7 4 5 9 18
h=8 3 4 8 16

Table 6.2 : Optimal Choice of m
(σx = 0.3 , σv = 0.4)

n 80 120 200 400
h=2 13 19 33 66
h=3 8 13 21 43
h=4 6 9 16 32
h=5 5 8 13 26
h=6 4 6 11 21
h=7 4 5 9 18
h=8 3 5 8 16

Table 6.3 : Optimal Choice of m
(σx = 0.3 , σv = 1.0)

n 80 120 200 400
h=2 13 20 33 67
h=3 9 13 22 44
h=4 6 10 16 33
h=5 5 8 13 26
h=6 4 7 11 22
h=7 4 6 9 19
h=8 4 5 8 16

As the second example, we use the simple model of seasonal-plus-noise model. xi =
xi−1 + ut, si = xi × SAi, SAi = SAi−4, SAj = U(−0.75, 0.75) (j = 1, 2, 3), SA4 =
−(SA1 + SA2 + SA3) and yi = si + vi (i = 1, · · · , n). We have used the filters on
[n/2−m∗

1, n/2 +m∗
1] and [n−m∗

2, n]. (The notations are slightly different from the
ones in Section 5.) The criterion function is the prediction MSE given by

(6.19) MSEn =
n∑

i=n+1−h

(yi − ŝi)
2 .
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Table 6.4 : Optimal Choice of m∗
1 and m∗

2

(σx = 0.001 , σv = 0.01)

n 80(m∗
1,m

∗
2) 120(m∗

1,m
∗
2) 240(m∗

1,m
∗
2)

h=4 14,17 22,20 34,22
h=8 11,19 17,20 27,21
h=12 16,18 20,21 24,21

Table 6.5 : Optimal Choice of m∗
1 and m∗

2

(σx = 0.001 , σv = 0.5)

n 80(m∗
1,m

∗
2) 120(m∗

1,m
∗
2) 240(m∗

1,m
∗
2)

h=4 6,6 10,9 20,17
h=8 4,3 5,5 10,10
h=12 4,3 4,3 7,7

Table 6.6 : Optimal Choice of m∗
1 and m∗

2

(σx = 0.001 , σv = 1.2)

n 80(m∗
1,m

∗
2) 120(m∗

1,m
∗
2) 240(m∗

1,m
∗
2)

h=4 6,5 10,9 20,17
h=8 4,3 5,4 10,4
h=12 4,2 4,3 6,6

We give some results on the seasonal filtering as Tables 6.4-6.6 by taking h = 4, 8, 12
and n = 80, 120, 240 because we investigate the non-stationary seasonal components.
In our simulations, as n increases, we have larger optimal choice of m1 and m2, but
they are not large in Tables 6.5 and 6.6. As h increases, the optimal choice m may
be gradually decreasing.

7. An Application to Japanese Macro-consumption

We have applied our filtering method to the analysis of Japanese quarterly (real)
consumption-GDP data as the first example and three monthly consumption data
as the second example, which have been discussed in Section 2. All figures in this
section are gathered in the Appendix B.

First, we calculate the transformation of the original quarterly consumption data,
which show the non-stationarity and it may be a typical macro-economic variable.
Then we calculate the realized Zn as Figure 7.1 from the differenced consumption
data. In this case the Zn series gives a strange form mainly because the non-
stationarity and seasonality. Since there are clear seasonal components in the origi-
nal series, we calculated the realized Zn (Figure 7.2) and the empirical cumulative
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distribution of Z2
n (Figure 7.3), which correspond to the normalized sample spectral

distribution. Because we have quarterly macro-data, we have a large up and down
around 50, which corresponds to the seasonal frequency at s = 4. The empirical
spectral density has a abrupt change at this frequency. Since it has been a practice
in time series data analysis to use seasonal differencing in the Box-Jenkins method,
we calculated the realized Zn (Figure 7.4) after seasonal differencing. Although the
spectral contribution around the seasonal frequency, there are some rather wild fluc-
tuations at many other frequencies. Because we have some difficulty to interpret
the resulting time series, it may not be possible to justify the seasonal differencing
procedure. In our analysis we simply use the differencing and then use the frequency
domain analysis.

In Figure 7.5, we have investigated the analysis of real GDP. We have chosen
m = [n.99] and delete the seasonal frequency around 48-52 and some high-frequency
part. It means that we delete 5 data around the seasonal frequency and several high
frequencies, which correspond to the aliasing effects frequency and this procedure
was necessary to obtain stable empirical results. Then we compared the filtered time
series by our method and the official (published) seasonally adjusted time series. We
have found that the differences of these two time series are rather small and they
are often of negligible magnitude. Although our filtering procedure is quite simple,
this empirical example shows the usefulness of our method developed in the present
study.

As the second example, we have analyzed three consumption (monthly) time
series and the quarterly consumption time series. As we have seen in Section 2, three
macro-consumption series have similarities and some differences. In our example, our
goal is to construct the monthly consumption index, which is close to the observed
quarterly consumption time series. Because there are non-stationary trend, seasonal
and measurement errors, it may not be obvious to construct such consumption index
by the existing statistical tool.
Let Yi (i = 1, · · · , n) be the target (quarterly) time series and Zkt (k = 1, 2, 3; t =
3(i− 1)+ j, j = 0, 1, 2) be the k-th monthly time series. (t = 0 is the initial period.)
Then the criterion function is

(7.1) MSE(m,m1,m2,m3, w1, w2, w3) =
n∑

i=1

[
∆Ŷ

(T )
i −

3∑
j=1

wj∆Z
(T )
ji

]2

,

where ∆Ŷ
(T )
i = Ŷ

(T )
i − Ŷ

(T )
i−1 , (the trend part of the estimated ∆Yi because we

observe the quarterly data on Yi) ∆Z
(T )
ji = Z

(T )
ji − Z

(T )
j,i−1 (the trend parts of ∆Zji),

and wj (j = 1, 2, 3) are (unknown) weight coefficients and m, mj (j = 1, 2, 3) are
the numbers of trend filtering. In the above formulation we need to measure the
prediction errors based on differenced data because we have non-stationary trends
and seasonal.
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By using the least squares method, we minimized the MSE criterion with respect
to the underlying parameters. The estimated wj (j = 1, 2, 3) are 3.69, 5.19 and
1.64 (while the measurement units are different), but their magnitude are about
comparable to the published quarterly consumption level at 2002Q1), which are
statistically significant with 1%. The optimal choice of m = 29 while m1 = 36,m2 =
23 and m3 = 33. In our limited experiments, we have found some improvements of
prediction errors by choosing different m and mj (j = 1, 2, 3).

The black curves are the original series and the red curves are estimated trend
curves in Figures 7.6, 7.7 and 7.8. By taking relatively large mj (j = 1, 2, 3) we can
recover the cycle components of each series, which are the key role to be used as
the indicators of macro-business condition. In Figure 7.9, the green curve shows the
predicted value calculated from the latest observed (quarterly) data plus the pre-
dicted monthly part based on the estimated parameters. Since there is no monthly
observation of quarterly published consumption, we draw their latest (quarterly)
level by the black curve and the estimated SIML (filtered) values by the red curve.
One notable problem may be the introduction of consumption tax in 2014 April and
there was a sharp deviation of trend mainly because the black curve is the quarterly
observed macro-consumption. In the present study we did not have a focus on this
event, but it could be handled by some additional complication such as using a
dummy variable. Overall, we have found that while our procedure is relatively sim-
ple in comparison to the X-12-ARIMA seasonal adjustment with reg-ARIMA model,
the predictive results are satisfactory. In Figure 7.10, we have drawn the prediction
errors in terms of the differenced value Yi (i = 1, · · · , n) based on our procedure.
This figure illustrates the usefulness of the procedure because the macro-economic
time series are non-stationary with measurement errors.

8. Concluding Remarks

When the observed non-stationary time series contain noises, it may be difficult
to disentangle the effects of trends and the noises. For instance, in many macro-times
series we observe non-stationary trend, non-stationary seasonality and stationary
cycles with measurement errors. In this paper we investigate a new procedure to de-
compose of time series into non-stationary trend components, seasonal components
and stationary noise (or measurement errors) components. One important conclu-
sion is that it is useful to transform the observed time series by Kn−transformation
and investigate the transformed Zn series, which is based on Kunitomo and Sato
(2017), Kunitomo et al. (2018) and Nishimura et al. (2019). We can investigate
the information of noisy-time series such as macro-economic variable by looking at
their frequency and re-cover the traditional spectral distribution by the squared
Zn−variables.

As an illustrative empirical example, we have used our filtering method proposed
in this paper to analyze quarterly and monthly macro-consumption data in Japan.
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We have applied our method to construct the monthly consumption index, which
is consistent with the published or official (GDP-)consumption quarterly data. Al-
though the problem is practically complicated, we have shown that our method gives
a useful result for practical purposes.

There can be several interesting problems developed by our approach in this pa-
per. Since it is easy to handle theKn−transformation and the transformed Zn−data,
it may be straight-forward to develop a new way to determine the number of trend
factors and seasonal factors. Since there are many important empirical applications
such as the examples mentioned by Baxter and King (1999), and Müller and Watson
(2018), we have currently investigating several empirical examples with trends and
seasonality.
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APPENDIX A : Mathematical Derivations

In this Appendix, we give some details of derivations which we have omitted in the
previous sections.

(i) On (4.7) and (4.11) :
Let θjk =

2π
2n+1

(j − 1
2
)(k − 1

2
) (j, k = 1, · · · , n) . We use the relation that

θjk + θj′ ,k =
2π

2n+ 1
(j + j

′ − 1)(k − 1

2
) , θjk − θj′ ,k =

2π

2n+ 1
(j − j

′
)(k − 1

2
) .

Then we have

4
∑
k∈In

[cos θjk cos θj′ ,k](A.1)

=
∑
k∈In

[e
i(θjk+θ

j
′
,k
)
+ e

−i(θjk+θ
j
′
,k
)
] +

∑
k∈In

[e
i(θjk−θ

j
′
,k
)
+ e

−i(θjk−θ
j
′
,k
)
] ,

where In = [1, · · · ,m] (or In = [m1 + 1, · · · ,m1 +m2]) is the index set for j and k.
For In = [m1 + 1, · · · ,m1 +m2], by re-writing

θjk + θj′ ,k = (m1 −
1

2
)

2π

2n+ 1
(j + j

′ − 1) +
2π

2n+ 1
(j + j

′ − 1)(k −m1) ,

and

θjk − θj′ ,k = (m1 −
1

2
)

2π

2n+ 1
(j − j

′
) +

2π

2n+ 1
(j − j

′
)(k −m1) ,

the summation of the first two terms becomes

ei(m1+
1
2
) 2π
2n+1

(j+j
′−1)×1− ei

2π
2n+1

(j+j
′−1)m2

1− ei
2π

2n+1
(j+j′−1)

+e−i(m1+
1
2
) 2π
2n+1

(j+j
′−1)×1− e−i 2π

2n+1
(j+j

′−1)m2

1− e−i 2π
2n+1

(j+j′−1)
.

For the last two terms, we need to evaluate each terms when (i) j = j
′
and (ii)

j ̸= j
′
, separately. By using the similar calculations, when j ̸= j

′
the summation of

last two terms becomes

ei(m1+
1
2
) 2π
2n+1

(j−j
′
) × 1− ei

2π
2n+1

(j−j
′
)m2

1− ei
2π

2n+1
(j−j′ )

+ e−i(m1+
1
2
) 2π
2n+1

(j−j
′
) × 1− e−i 2π

2n+1
(j−j

′
)m2

1− e−i 2π
2n+1

(j−j′ )
.

When j = j
′
, θjk−θj′ ,k = 0 and the summation of last two terms become m2. Hence
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by using the relation

ei(m1+
1
2
) 2π
2n+1

(j+j
′−1) × 1− ei

2π
2n+1

(j+j
′−1)m2

1− ei
2π

2n+1
(j+j′−1)

+e−i(m1+
1
2
) 2π
2n+1

(j+j
′−1) × 1− e−i 2π

2n+1
(j+j

′−1)m2

1− e−i 2π
2n+1

(j+j
′−1)

.

=
ei

2π
2n+1

1
2
(j+j

′−1)(m1) − ei
2π

2n+1
1
2
(j+j

′−1)(m1+m2)

ei
2π

2n+1
(− 1

2
)(j+j′−1) − ei

2π
2n+1

( 1
2
)(j+j′−1)

+
e−i 2π

2n+1
1
2
(j+j

′−1)(m1) − e−i 2π
2n+1

1
2
(j+j

′−1)(m1+m2)

e−i 2π
2n+1

(− 1
2
)(j+j′−1) − e−i 2π

2n+1
( 1
2
)(j+j′−1)

and the corresponding results for j − j
′
(there are two cases when (a)j = j

′
and

(b)j ̸= j
′
), we have the result.

(ii) On (4.8) : When Yn − Ȳ0 = Xn +Vn, we re-write

X̂n −Xn = CnP
′

nJ
′

mJmPnC
−1
n (Xn +Vn)−CnP

′

nPnC
−1
n Xn(A.2)

= CnP
′

nJ
′

mJmPnC
−1
n Vn +CnP

′

n[In − J
′

mJm]PnC
−1
n Xn .

In the simple case, we have

E [tr(X̂n −Xn)
′
H

′
H(X̂n −Xn)](A.3)

= trHCnP
′

nJ
′

mJmPnC
−1
n [tr(Σv)In]C

−1′

n P
′

nJ
′

mJmPnC
′

nH
′

+trHCnP
′

nJ
∗′
mJ

∗
mPnC

−1
n [tr(Σx)In]C

−1′

n P
′

nJ
∗′
mJ

∗
mPnC

′

nH
′

= tr(Σv)trHCnP
′

nJ
′

mJmPnC
−1
n C−1′

n P
′

nJ
′

mJmPnC
′

nH
′

+tr(Σx)trHCnP
′

nJ
∗′
mJ

∗
mPnC

−1
n C−1′

n P
′

nJ
∗′
mJ

∗
mPnC

′

nH
′
,

where J∗
m = (Om, In−m) and In = J

′
mJm + J∗′

mJ
∗
m.

(iii) On Theorems 5.1 and 5.2 : Basically, we apply CLT (Theorem 7.6 of
Durrett (1991) for instance) on the sequence of ergodic stationary (discrete) time
series ∆yi and we give an outline of our derivations. Hence we need to confirm that
the resulting variance-covariance terms correspond to those of the limiting Gaussian
random variables.
For this purpose, we evaluate
(A.4)

E
[
∆λz

(n)(λ
(n)
k )∆λz

(n)(λ
(n)
k )

]
=

[
1

2n+ 1

] n∑
j,j′=1

(eiθjk+e−iθjk)(e
iθ

j
′
k
′ +e

−iθ
j
′
k
′ )E [rjr

′

j
′ ] .
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When k ̸= k
′
, it can be shown that the right-hand side terms are bounded by using

the straight-forward and tedious calculations. When k = k
′
, the right-hand side

consists of four terms which are associated with

(eiθjk + e−iθjk)(e
iθ

j
′
k + e

−iθ
j
′ ) = e

i(θjk+θ
j
′
k + e

−i(θjk+θ
j
′
k
)
+ e

i(θjk−θ
j
′
k + e

−i(θjk−θ
j
′
k
)

= (1) + (2) + (3) + (4) (, say) .

The sums of each terms of (1) and (2) are bounded. Under the assumption of
stationarity of rj, The dominant terms of (A.2) are (3) and (4), and then they are
approximately to
(A.5)

nΓ(0) + n cos 2π(
k

2n+ 1
)[Γ(1) + Γ(−1)] + n cos 2π(

k

2n+ 1
)[Γ(2) + Γ(−2)] + · · · .

We take k/(2n+ 1) −→ t (0 ≤ t < 1/2). Then we have (5.3) and (5.4).
Next, we consider
(A.6)

1

m

∑
k∈Im

∆λz
(n)(λ

(n)
k )∆λz

(n)(λ
(n)
k ) =

1

m

∑
k∈Im

1

2n+ 1

n∑
j,j′=1

(eiθjk+e−iθjk)(e
iθ

j
′
k
′+e

−iθ
j
′
k
′ )rjr

′

j′
.

There are four terms, but the first two terms are stochastically bounded. We find
that
(A.7)

n∑
j,j′=1

[
e
i(θjk−θ

j
′
k
)
+ e

−i(θjk−θ
j
′
k
)
]
rjr

′

j′
=

∑
s

[
2 cos 2πs(

k − 1/2

2n+ 1
)

]
[

n∑
j′=1

rs+j′r
′

j′
] .

Under the assumptions we have made, we find that for any s

(A.8)
1

n

n∑
j′=1

rs+j′r
′

j′
p−→ Γ(s) .

(See Chapter 8 of Anderson (1971) and Brockwell and Davis (1990) for instance.)
Therefore, we can show that (A.4) devided by n is approximately as

(A.9) Γ(0) + cos 2π(
k

2n+ 1
)[Γ(1) + Γ(−1)] + cos 2π(

k

2n+ 1
)[Γ(2) + Γ(−2)] + · · · .

By taking k/(2n+ 1) −→ t (0 ≤ t < 1/2) as n −→ ∞, we have (5.8). The rigorous
arguments of derivations could be tedious, but they are straight-forward and we
have omitted them.
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APPENDIX B : Some Figures

In this Appendix B, we give figures used in Section 7. As we have explained in
Section 2, all data are official data published by ESRI (Economic and Social Research
Institute), Cabinet Office of Japan and Statistics Bureau, Ministry of Internal Affairs
and Communications. They are available from the government official Web-cite :
e.stat.
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Figure 7.1 : Real-Consumption (original series)
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Figure 7.2 : Real-Consumption (differencing series)
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Figure 7.3 : Real-Consumption (empirical spectral distribution)

31



freq

R
C

O
N

0 20 40 60 80

−3
00

0
−1

00
0

0
10

00
20

00
30

00

Figure 7.4 : Real-Consumption (seasonal differencing)
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Figure 7.5 : Quarterly real-GDP
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Figure 7.6 : Kakei-Chosa Series
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Figure 7.7 : Shoudou Series
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Figure 7.8 : Sanji Series
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Figure 7.9 : Consumption Series
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Figure 7.10 : Predicted and realized Consumption Series (in differencing)
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