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Abstract

We develop a new method of detecting hidden factors of Quadratic Varia-
tion (QV) of Itô semimartingales from a set of discrete observations when the
market microstructure noise is present. We propose a statistical way to de-
termine the number of factors of quadratic co-variations of asset prices based
on the SIML (separating information maximum likelihood) method developed
by Kunitomo, Sato and Kurisu (2018). In high-frequency financial data, it
is important to disentangle the effects of the possible jumps and the market
microstructure noise existed in financial markets. We explore the variance-
covariance matrix of hidden returns of the underlying Itô semimartingales and
investigate its characteristic roots and vectors of the estimated quadratic vari-
ation. We give some simulation results to see the finite sample properties of
the proposed method and illustrate an empirical data analysis on the Tokyo
stock market.
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1. Introduction

In financial econometrics, several statistical methods have been proposed to estimate
the integrated volatility and co-volatility from high-frequency data. The integrated
volatility is one type of Brownian functionals and the realized volatility (RV) es-
timate has been often used when there does not exist any market microstructure
noise and the underlying diffusion process is directly observed. It has been known
that the RV estimator is quite sensitive to the presence of market microstructure
noise in high-frequency financial data. Then several statistical methods have been
proposed to estimate the integrated volatility and co-volatility. See Aı̈t-Sahalia and
Jacod (2014) for the detail of recent developments of financial econometrics. In
particular, Malliavin and Mancino (2002, 2009) have developed the Fourier series
method, which is related to the SIML (separating information maximum likelihood)
estimation by Kunitomo, Sato and Kurisu (2018) used in this paper. See Mancino
and Stanfelici (2008), and Mancino, Recchioni and Sanfelici (2017) on the recent
development of the Fourier series method.

In this paper we develop a new statistical way of detecting hidden factors of
Quadratic Variation of Itô-semimartingales from a set of discrete observations when
the market microstructure noise is present. We will use the high-frequency asymp-
totic method such that the length of observation intervals becomes small as the num-
ber of observations grows, which has been often used in recent financial econometrics.
In finance it is important to find several hidden factors among many financial prices
such as stocks, bonds and other financial products. It might be a practice to find
hidden factors after calculating various returns from price data and apply statisti-
cal tools such as principal component analysis, factor analysis and other statistical
multivariate techniques. However, it should be noted that the standard statistical
analysis has been developed to analyze independent (or stationary) observations and
most financial prices are classified neither as independent nor stationary observa-
tions. In addition to this fact, it is important to notice that when we have market
microstructure noises or measurement errors for prices, we have another statistical
problem when we use high-frequency financial data. Although the multivariate sta-
tistical analyses such as principal components and factor models have been applied
to financial data, these statistical methods do not necessarily give the right answers
when we have market microstructure noise in high-frequency data. The standard
statistical procedures could be a misleading way to analyze high-frequency financial
data. There have been several attempts to find the structure of volatilities and the
related issues. See Aı̈t-Sahalia and Xiu (2017a, b), Fissler and Podolskij (2017),
Jacod and Podolskij (2013), for instance. It seems that our approach is different
from other methods and there are some merits as statistical method.

In this paper, we develop a new way to determine the number of factors of
quadratic covariation or the integrated volatility of asset prices based on the SIML
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method, which was originally developed by Kunitomo et al. (2018). In high-
frequency financial data it is important to disentangle the effects of the possible
jumps and the market microstructure noise existed in financial markets. We ex-
plore the estimation problem of the variance-covariance matrix of the underlying
Itô semimartingales, that is, the quadratic variation (QV). We shall show that it is
possible to derive the asymptotic properties of the characteristic vectors and roots
of the estimated QV, and then develop some test statistic for the rank condition.
Our estimators of characteristic vectors and roots are consistent and they have the
asymptotic normality. We develop some test statistics based on the characteristic
roots and vectors to detect the number of factors of QV. We also give a real data
analysis on the Tokyo stock market as an illustration.

In Section 2 we define the Itô semimartigale and Quadratic Variation, which
is an extension of the integrated volatility with jump parts. Then we define the
SIML estimation and its asymptotic property for Itô semimartingales. In Section
3, we consider the characteristic equations of the estimated hidden and conditional
variance-covariance matrix] and give the theoretical results on the asymptotic prop-
erties of the associated characteristic roots and vectors when the true process is
an Itô semimartingale and there are market microstructure noises. We also give
some test statistics for the rank condition of the Quadratic Variation, which can be
applied to detect the number of factors of integrated volatilities for the continuous
diffusion case as a special case. In Section 4, we give some results on the Monte
Carlo simulations of our procedures and in Section 5 we illustrate an empirical data
analysis on the Tokyo stock market. Then in Section 6, we give concluding remarks.
Some mathematical details are given in the Appendix.

2. Estimation of Quadratic Variation

We consider a continuous-time financial market in a fixed terminal time T and
we set T = 1 without loss of generality. The underlying log-price is a p-dimensional
Itô semimartingale, but we focus on the fact that we observe the log-price process
in high-frequency financial prices and they are contaminated by the market micro-
structure noise. We define the filtered probability space on which the prices follow
the Itô semimartingale in the presence of market microstructure noise.

Let a first filtered probability space be (Ω(0),F (0), (F (0)
t )t≥0, P

(0)) on which the p-
dimensional Itô semimartingale X = (X(t))0≤t≤1 is defined. We adopt the construc-
tion of the whole filtered probability space (Ω,F , (Ft)t∈[0,1], P ), where both the pro-
cess X and the noiseare are defined (see Christensen, Podolskij and Vetter (2013)).
Let Bp be the Borel σ-field of Rp and Q be a probability measure on (Rp,Bp).

We consider a second filtered probability space (Ω(1),F (1), (F (1)
t )t∈[0,1], P

(1)), where
Ω(1) is the set of functions from [0, 1] to Rp, F (1) is the Borel σ-field on Ω(1), and
P (1) = ⊗t∈[0,1]Pt with Pt = Q. Define the market microstructure noise process

v = (v(t))t∈[0,1] as the canonical process on (Ω(1),F (1), (F (1)
t )t∈[0,1], P

(1)) with the
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canonical filtration F (1)
t = σ(v(s) : s ≤ t) for 0 ≤ t ≤ 1. From the definition

of v, Q is the marginal distribution of (v(t))t∈[0,1]. We shll use the filtered space

(Ω,F , (Ft)t∈[0,1], P ), where Ω = Ω(0) × Ω(1), F = F (0) × F (1), Ft = F (0)
t ⊗ F (1)

t and
P = P (0) × P (1).

When we consider the continuous time stochastic processes, the class of Itô semi-
martingales is a fundamental one and it includes the diffusion processes and jump
processes as special cases. In their applications to high-frequency financial data,
it has been known in financial econometrics that the role of market microstructure
noise is important. However, it is not straight-forward to estimate the volatility and
co-volatilities or quadratic variation in the general case in the presence of market
microstructure noise.

2.1 Itô semimartingale and Quadratic Variation

In this section, we describe the statistical model of the present paper. Let
Y(tni ) = (Yj(t

n
i ))(j = 1, · · · , p) be the (p-dimensional) observed (log-)prices at

ti ∈ [0, 1] and i = 1, · · · , n, which satisfyies

(2.1) Y(tni ) = X(tni ) + v(tni ) (i = 1, · · · , n) ,

where X(tni ) = (Xj(t
n
i )) is the p × 1 hidden stochastic vector process and v(tni ) (=

(vj(t
n
i ))) is a sequence of (mutually) independently and identically distributed mar-

ket microstructure noises with E [v(tni )] = 0 and E [v(tni )v(tni )
′
] = Σv (> 0 a positive

definite matrix).
We assume that these market microstructure noises are independent of the p-dimensional
continuous-time stochastic process X(t), which is given by

X(t) = X(0) +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dW(s) +

∫ t

0

∫
∥x∥<1

∆(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
∥x∥≥1

∆(s,x)µ(ds, dx) ,(2.2)

where b(s) and σ(s) are the p-dimensional adapted drift process and the p×q1 (q1 ≤
p) instantaneous predictable volatility process,W(s) = (Wj(s)) is the q1×1 standard
Brownian motions, ∆(ω, s,x) is a Rp-valued predictable function on Ω × [0,∞) ×
Rq2 (q2 ≤ p), µ(·) is a Poisson random measure on [0,∞) × Rq2 and ν(ds, dx) =
ds ⊗ λ(dx) is the predictable compensator or intensity measure of µ with a σ-
finite measure λ on (Rp,Bp). The jump terms are denoted as ∆X(s) = (∆Xj(s))
(∆Xj(s) = Xj(s) − Xj(s−), Xj(s−) = limu↑s Xj(u) at any s ∈ [0, 1]), and ∥ · ∥ is
the Euclidean norm on Rp. We use the notation c(s) = σ(s)σ

′
(s) = (cgh(s)) (p× p

matrix) and for p× 1 vectors yi = Y(tni ), xi = X(tni ), and vi = v(tni ) (i = 1, · · · , n).
We summarize the basic assumptions :
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Assumption 2.1. (a) The path t 7→ b(t, ω) is locally bounded.

(b) The process σ is continuous.

(c) We have supω,x ∥∆(ω, t,x)∥/g(x) is locally bounded for a deterministic non-
negative function satisfying

∫
Rp(g(x)

h ∧ 1)λ(dx) < ∞. for some h ∈ (0, 2)
(∥ · ∥ denotes the Euclidean norm on Rp).

(d) We have
∫ t+u

t
∥σ(s)∥ds > 0 a.s. for all t, u > 0.

(e) The noise terms v(tni ) (= vj(t
n
i )) (i = 1, · · · , n; j = 1, · · · , p) are a sequence

of i.i.d. random variables with E [v(tni )] = 0, E [v(tni )v
′
(tni )] = Σv (a positive

definite matrix) and E [v2j (tni )v2k(tni )] < +∞ (j, k = 1, · · · , p). Furthermore, the
stochastic processes of v and X are independent.

The conditions in Assumption 2.1 are standard in the literature of high-frequency
data analysis. We assume the condition (b) for the simplicity of our analysis and the
presentation of our results but our results also hold under more general assumption
that σ(t) is cádlág (condition (b′)). The condition (b′) implies that σ(t) and X(t)
could have common-jumps. There are some empirical evidence that σ(t) and the
original process X(t) have common jumps (see Jacod and Todorov (2010), and
Bibinger and Winkelmann (2018) for example). We also refer to Jacod and Todorov
(2009) and Bibinger and Winkelmann (2015) which have investigated statistical
testing for common jumps of X(t) (see Aı̈t-Sahalia and Jacod (2014), Jacod and
Protter (2012) and Kurisu (2018) for more discussions on this point). The condition
(e) such as the independence of v and X can be relaxed to some extent, but we do
not pursue the generalization for the sake of simplicity.

The fundamental quantity for the continuous-time Itô semimartingale with p ≥ 1
is the quadratic variation (QV) matrix, which is given by

(2.3) Σx =

∫ 1

0

c(s)ds+
∑

0≤s≤1

(∆X(s))(∆X(s))
′
= (σ

(x)
gh ) .

When the stochastic process is the diffusion-type, Σx becomes the integrated volatil-
ity

∫ 1

0
c(s)ds. The class of Itô semimartingales and the quadratic variation, which

have been standard in stochastic analysis, are fully explained by Ikeda andWatanabe
(1989), and Jacod and Protter (2012) as the standard literature.

2.2 On the SIML Estimation

Kunitomo and Sato (2013) have developed the separating information maximum
likelihood (SIML) estimation for general p ≥ 1, but there are no jump terms. The

5



SIML estimator of Σ̂x for the integrated volatility is defined by

(2.4) Σ̂x := Gm =
1

mn

mn∑
k=1

zkz
′

k = (σ̂
(x)
gh ) ,

where zk = (zgk) (j = 1, · · · , p; k = 1, · · · ,mn), which are constructed by the
transformation from Yn = (y

′
i) (n× p) to Zn (= (z

′

k)) by

(2.5) Zn = Kn

(
Yn − Ȳ0

)
where Kn = h

−1/2
n PnC

−1
n , hn = 1/n,

(2.6) C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,

(2.7) Pn = (p
(n)
jk ) , p

(n)
jk =

√
2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
and Ȳ0 = 1n · y

′
0 .

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element dk = 2[1 − cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) and akn (=

n× dk) = 4n sin2
[
π
2

(
2k−1
2n+1

)]
.

To assure some desirable asymptotic properties of the SIML estimator, we need the
condition that the number of terms mn should be dependent on n and we need
the order requirement that mn = O(nα) (0 < α < 0.5) for the consistency and
mn = O(nα) (0 < α < 0.4) for the asymptotic normality.

WhenX is an Itô semipmartingale with possible jumps, the asymptotic properties of
the SIML estimator were stated in Chapter 9 of Kunitomo et al. (2018) (Proposition
9.1 and Corollary 9.2) without the detailed exposition. Because they are the starting
points of further developments, we state an extended version of their result and we
give some supplementary derivations in the Appendix, for the sake of convenience.

In the following results, we freely use the stable convergence arguments and
F (0)-conditionally Gaussianity, which have been developed and explained by Jacod

(2008) and Jacod and Protter (2012), and use the notation
L−s−→ as stable convergence

in law. For the general reference on stable convergence, we refer to Häusler and

Luschgy (2015). We use the notation
d→ and

p→ as convergence in distribution and
in probability, respectively.
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Theorem 2.1 : Suppose Assumption 2.1 is satisfied and E [v4j (tni )] < +∞ in (2.1).
(i) For mn = [nα] ([·] is the floor function) and 0 < α < 0.5, as n → ∞

(2.8) Σ̂x −Σx
p−→ O .

(ii) Let

(2.9) σ̂
(∗)
gh =

√
mn

[
σ̂
(x)
gh − σ

(x)
gh

]
,

where σ̂
(x)
gh is the (g, h)-th component of Σ̂x and σ

(x)
gh (s) is the (g, h)-th component

of Σx. Then, as n → ∞, for mn = [nα] and 0 < α < 0.4, we have that

(2.10)

[
σ̂
(∗)
gh

σ̂
(∗)
kl

]
L−s−→ N

[
0,

(
Vgh Vgh,kl

Vgh,kl Vkl

)]
where

Vgh =

∫ 1

0

[
cgg(s)chh(s) + c2gh(s)

]
ds

+
∑

0<s≤1

[
cgg(s)(∆Xh(s))

2 + chh(s)(∆Xg(s))
2 + 2cgh(s)(∆Xg(s)∆Xh(s))

]
and

Vgh,kl =

∫ 1

0

[cgk(s)chl(s) + cgl(s)chk(s)] ds

+
∑

0<s≤1

[cgk(s)∆Xh(s)∆Xl(s) + cgl(s)∆Xh(s)∆Xk(s)

+chk(s)∆Xg(s)∆Xl(s) + chl(s)∆Xg(s)∆Xk(s)] .

Corollary 2.2 : When p = 1 in Theorem 2.1, the asymptotic variance Vgg is given
by

(2.11) Vgg = 2

[∫ 1

0

c2gg(s)ds+ 2
∑

0<s≤1

cgg(s)(∆Xg(s))
2

]
.

The notable point is the fact that the asymptotic distribution and limiting variance-
covariances of the SIML estimator have the same forms as the ones of the realized
volatility and co-volatilities when there is no noise terms if we replace n by mn,
which is dependent on n. It is the key fact to obtain the results of asymptotic
properties from the estimated QV in the next section.
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3. Asymptotic Properties of Characteristic Roots and Vec-
tors

One of important observations on the asset price movements has been the empirical
observation that although there are many financial assets traded in markets, many
of them move in similar ways with their trends, volatilities and jumps. Then there
is a question how to cope with many asset prices when the number of factors of
volatilities or quadratic variation of asset prices is less than p, which is the dimen-
sion of observed prices. In this section we consider the case when the underlying
continuous time stochastic process is a p-dimensional Itô semimartingale and the
number of factors of quadratic variation qx is less than p. In particular, we assume
that there exists a p× rx (1 ≤ rx < p) matrix B with rank rx such that

(3.1) B
′
[
X(t)−X(0)−

∫ t

0

b(s)ds

]
= O (0 ≤ t ≤ 1) .

Then if we use the notation qx = prx, we have

(3.2) rank(Σx) = rank

[∫ 1

0

c(s)ds+
∑

0≤s≤1

(∆X(s))(∆X(s))
′

]
= qx < p

and

(3.3) ΣxB = O ,

where Σx = (σ
(x)
gh ) .

To avoid the complications in the following derivations, we assume that b(s) =
0 (0 ≤ s ≤ 1) in this section. It has been known that the effects of drift terms are
negligible in the estimation of volatility and quadratic variation under some condi-
tions such as Assumption 2.1. See Aı̈t-Sahalia, Y. and J. Jacod (2014), or Chapter
5 of Kunitomo et al. (2018), for instance.
There are more general situations when we can relax the conditions given by (3.1)-
(3.3), but then there would be substantial complications involved. Hence in the
following analysis we shall use these conditions for the resulting simplicity.

We notice that the present problem has the similar aspect in the reduced rank re-
gression problem, which has been well-known in statistical multivariate analysis (See
Anderson (1984) and Anderson (2003) for instance). The new feature in our formu-
lation is the fact that we are dealing with the continuous-time stochastic process as
the hidden process while we have discrete observations with measurement errors.

In the present situation, if we take mn = [nα] and 0 < α < 0.5, then as n → ∞

(3.4) Σ̂x −Σm
p−→ O ,
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where Σm = (σgh.m),

(3.5) Σm = Σx + amΣv = (σ
(x)
gh + amσ

(v)
gh )

and

(3.6) am =
1

mn

m∑
k=1

akn

and akn = 4n sin2[π
2
( 2k−1
2n+1

)] (k = 1, · · · , n). We have the second term although
am → 0 as mn = nα → ∞ and 0 < α < 0.5.

Lemma 3.1 : We set am = (1/m)
∑m

k=1 akn and am(2) = (1/m)
∑m

k=1[akn]
2. Then

we can evaluate that as n → ∞ and m → ∞,

n

m2
am = (

n

m2
)
1

m

m∑
k=1

akn ∼ π2

∫ 1

0

s2ds(3.7)

by using sin x ∼ x − (1/6)x3 + o(x3) when x is small. (The differences should be
negligible because (n/m2)am ∼ π2(1/m)

∑m
k=1(k/m)2 = O(1).) Also we find that

n2

m4
am(2) =

1

m

m∑
k=1

(
n2

m4
)[akn]

2 ∼ π4

∫ 1

0

s4ds .(3.8)

In the following derivations, we investigate the case when Σv is known and
|Σv| ̸= 0. However, the results do not depend on this assumption if we use a
consistent estimator of Σv. The variance-covariance matrix Σv can be consistently
estimated by

(3.9) Σ̂v =
1

ln

n∑
k=n+1−ln

a−1
knzkz

′

k ,

where ln = [nβ] (0 < α < β < 1). We can take β being slightly less than 1 and
Σ̂v = Σv + Op(

1√
ln
) such that the effects of estimating Σv are negligible. (See

Chapter 5 of Kunitomo et al. (2018).)
Let the characteristic equation be

(3.10) |Gm − λH| = 0 ,

and B̂, the estimator of B in (3.1) and (3.3), is given by

(3.11)
[
GmB̂−HB̂Λ

]
= O ,
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where Gm (= Σ̂x) in (2.4), λi (i = 1, · · · , p) are the characteristic roots, Λ =
diag(λ1, · · · , λrx) with 0 ≤ λ1 ≤ · · · ≤ λp, and H is any positive (known) definite
matrix. For the resulting convenience, we take a p× rx (p = rx + qx)

B̂ =

[
Irx
−B̂2

]
for a normalization. We take H = Σ̂v in most part of the following analysis. Since
Σ̂v −Σv = Op(1/

√
ln), we can treat Σv as if it were Σ̂v if we take a large β (< 1)

with ln = O([nβ]). We set the characteristic roots in an ascending order as 0 ≤ λ1 ≤
· · · ≤ λrx ≤ · · · ≤ λp.

We take the probability limit of the determinantal equation

(3.12) |plimm→∞(Gm − amΣv)− (plimm→∞λ− am)Σv| = 0 .

The rank of Σx is qx, which is less than p, and am = O(m2/n). Then we find that

Gm −Σx = Op(am), Gm − (Σx + amΣv) = Op(
am√
m
) = Op(

√
m3

n
), and

(3.13) λi − am
p−→ 0 (i = 1, · · · , rx)

if
√
m3

n
−→ 0 as n → +∞ (see (3.22) and (3.32) below). Then

(3.14) [plimn→∞(Gm − amΣv)][plimn→∞B̂−B] = O .

By multiplying Π
′

∗(qx × p) from the left-hand to

Π
′

∗[plimn→∞(Gm − amΣv)]plimn→∞

[
B̂−B

]
= O ,

such that Π∗′plimn→∞Gm[
O
Iqx

] is non-singular. By using the facts that the rank is

qx and the normalization of B, we find

(3.15) plimn→∞B̂ = B .

In order to proceed the further step to evaluate the limiting random variables,
we use the Kn−transformation and we decompose the resulting random variables
zk = x∗

k +
√
aknv

∗
k (k = 1, · · · ,m) with E(v∗

kv
∗′
k ) = Σv and

(3.16) Gm =
1

m

m∑
k=1

(x∗
k +

√
aknv

∗
k)(x

∗
k +

√
aknv

∗
k)

′
,

where the p × 1 random vectors x∗
i and v∗

i are defined by (x∗′
i ) = Kn(x

′
i) and

(v∗′
i ) = Kn(v

′
i), which are n× p matrices.
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Under the null-hypothesis H0 : ΣxB = O, we have B
′
ΣxB = O (rx × rx). Then we

have the representation that

(3.17) B
′
Gm =

1

m

m∑
k=1

B
′
(
√
aknv

∗
k)(x

∗
k +

√
aknv

∗
k)

′

and

(3.18) B
′
GmB =

1

m

m∑
k=1

aknuku
′

k ,

where we define B
′
v∗
k = uk (k = 1, · · · ,mn).

Let βj (= (βhj)) be the j-th column vector of B (j = 1, · · · , rx) and

(3.19)
√
m[Gm −Σm]βj =

√
m[

p∑
h=1

(σ̂
(x)
gh − σgh.m)βhj]g ,

where Σm = Σx + amΣv (= (σgh.m)) and am = (1/m)
∑m

k=1 akn.

Since we have the relations
∑p

h=1 σ
(x)
gh βhj = 0 for g, j = 1, · · · , p under the rank

condition, we decompose

(3.20) [Gm −Σm]βj =
1

m

m∑
k=1

√
aknx

∗
k(v

∗′
k βj) +

1

m

m∑
k=1

akn(v
∗
kv

∗′
k −Σv)βj .

We can evaluate that the first term of (3.20) is Op(am/m) = Op(m/n) and the second
order is Op(am(2)/m) = Op((m/n)2) by using Lemma 3.1. Hence we find that the
dominant term is the first term as n → ∞. Hence the asymptotic conditional
covariances given F (0) are
(3.21)

ACov[
√
m

p∑
h=1

(σ̂
(x)
gh −σgh.m)βhj,

√
m

p∑
l=1

(σ̂
(x)
kl −σkl.m)βlj|F (0)] = amσ

(x)
gk [

p∑
h,l=1

σ
(v)
hl βhjβlj] .

By applying the central limit theorem (CLT) to the first term of the right-hand side
of (3.20), we have the asymptotic normality for (3.19) and (3.20).

Let

(3.22)
√
mB

′
(Gm −Σm)B =

1√
m

m∑
k=1

akn(uku
′

k −Ωv)

and Ωv = B
′
ΣvB (= (ωgh)).

Under the assumption of the existence of fourth order moments of noise terms, we

11



can evaluate the conditional covariances given F (0) as

Cov[
1√
m

m∑
k=1

akn(ugkuhk − ωgh),
1√
m

m∑
k=1

akn(ug′kuh′k − ωg′h′ )|F (0)](3.23)

=
1

m

m∑
k=1

[akn]
2
[
ωgg′ωhh′ + ωgh′ωg′h + κghg′h′

]
,

where κghg′h′ are the 4-th order cumulants of ugkuhkug′ ,kuh′ ,k and uk = (ugk) (g, h, g
′
, h

′
=

1, · · · , p).
We can further use the following Lemma on the fourth-order moments of theKn−transformed
random variables. The derivation will be given in the Appendix.

Lemma 3.2 : We take m = [nα] with 1/2 < α < 1. Under the assumption of
the existence of fourth order moments of noise terms, the effects of fourth-order
cumulants κghg′h′ are of smaller order when n → ∞,m → ∞.

By applying CLT to (3.22), under the assumption of existence of 4-th order mo-
ments, we have the asymptotic normality under Assumption 2.1(e).

Let an rx × rx diagonal matrix be Λ = (diag (λi)) and

(3.24) GmB̂−ΣvB̂[amIrx + (Λ− amIrx)] = O ,

which can be written as

(3.25) [Gm − amΣv]B̂ = ΣvB̂[Λ− amIrx ] .

By multiplying B̂
′
(rx × rx) from the left-hand to (3.24), we find

(3.26) B̂
′
ΣvB̂[Λ− amIrx ] = B̂

′
[Gm − amΣv]B̂ .

By multiplying [O, Iqx ](qx × p) from the left-hand to (3.23),

(3.27) [O, Iqx ][Gm − amΣv][B+ (B̂−B)] = [O, Iqx ]Σv[B+ (B̂−B)][Λ− amIrx ] .

Then we evaluate the order of each terms of the above equation. If we have the
condition m/n → 0 as n → ∞, it is asymptotically equivalent to

(3.28) [O, Iqx ]

√
n

m
[Gm − amΣv]B = [O, Iqx ]Σx[

O
Iqx

]

√
n

m
(B̂2 −B2) + op(1) .

Then we set the normalization factor cm as

(3.29) cm =

√
m

am
= O(

√
n

m
) ,

12



which goes to infinity as n → ∞ when m/n → 0 as n → ∞.
We denote the j-th column vectors of −B̂2 and −B2 as −β̂2j and −β2j as the

(p− rx)× lower part vectors of β̂j and βj. Because Σm = Σx +O(am), the limiting

distribution of cm[β̂2j − β2j] (j = 1, · · · , rx) is F (0)-conditionally normal with zero

means and the asymptotic conditional variance-covariance matrix given F (0) is

(3.30) AVar(cmβ̂2j|F (0)) = [

p∑
h,l=1

σ
(v)
hl βhjβlj][(O, Iq)Σx(O, Iq)

′
]−1 .

When we take H = Σ̂v and ln = [nβ] with 0 < α < β, 1/2 < β < 1, the effects of
estimating the variance and covariance matrix of the market microstructure noises
are small. It is because we have asymptotically similar equations as (3.24)-(3.28).
For instance, if we replace Σv by Σ̂v in (3.26), then it corresponds to Σv+Op(1/

√
ln)

and am(Σ̂v −Σv) = O(m2/n)× (1/
√
ln), which is of smaller order than Gm− amΣv

(it is of Op(am/
√
m) if m/l → 0 as n → ∞.

By calculating the variance and covariances of the limiting random variables and
applying CLT to (3.28), we summarize the asymptotic distributions of cm(B̂2 −B2)
as the next proposition.

Theorem 3.1 : Suppose Assumption 2.1 is satisfied in (2.1) and (2.2). We take
m = mn = [nα], ln = [nβ] with 0 < α < β < 1, 0 < α < 2/3, and H = Σ̂v. Let
cm → ∞ as n → ∞. Then, as n → ∞, we have that

(3.31) cm

[
B̂2 −B2

]
L−s−→ Nrxqx

(
0, (B

′
ΣvB)⊗ [(O, Iqx)Σx(O, Iqx)

′
]−1

)
.

Next, we investigate the limiting distribution of the characteristic roots of Λ and
the related statistics. Because of Lemma 3.1,

(3.32) B
′
(Gm −Σm)B = O(

√
am(2)

m
) = O(

am√
m
)

and

B
′
Gm(

O
Iq

)(B̂2 −B2) = Op(

√
am
m

)×Op(

√
am
m

) = Op(
am
m

); .

By using the decomposition B̂ = B+ [B̂−B], we can evaluate as

B̂
′
[Gm − amΣv]B̂(3.33)

= B
′
[Gm − amΣv]B−B

′
[Gm − amΣv][

O
Iqx

]Σ−1
∗ [O, Iqx ][Gm − amΣv]B

= Op(
am√
m
) +Op(

m

n
) ,

13



where

Σ∗ = [O, Iqx ]Σx[
O
Iqx

] .

Since the first term is Op(
am√
m
) = Op(

m
√
m

n
) and the second term is Op(

am
m
) = Op(

m
n
),

the second term of the right-hand-side is asymptotically negligible. Hence the lim-
iting distribution of

(3.34)
√
m(B

′
ΣvB)[(

1

am
)Λ− Irx ] ∼

√
m

am
B

′
(Gm −Σm)B

is F (0)-conditionally normal by applying CLT to (3.22).
We define

(3.35) Em = (eij) =

√
m

am
B

′
(Gm −Σm)B .

We also denote Ωv = B
′
ΣvB = (ωij) and D = Ω−1

v E (= (dij)). Then by using
Lemma 3.2,

dij = Cov[
r∑

k=1

ωikeki,
r∑

k′=1

ωjk
′

ek′j|F (0)](3.36)

=
am(2)

a2m

r∑
k,k′=1

ωikωjk
′

[ωkk′ωij + ωkjωk′ i] + op(1)

=
am(2)

a2m
[δ(i, j) + ωijω

ij] + op(1) ,

for ekj = (
√
m/am)(B

′
(Gm −Σm)B)kj and Ω−1

v = (ωij). (We shall ignore the last
term op(1) of (3.36) in the following expression for the resulting simplicity.)

When we use a consistent estimator of H = Σ̂v, the resulting expression of the
limiting distribution becomes simple, which may be useful in practice. By using the
fact that

√
am(2)/am ∼ 3/

√
5 and Lemma 3.2, we obtain the next result on the

asymptotic distributions of the smaller characteristic roots λi (i = 1, · · · , rx).

Theorem 3.2 : Assume the conditions on the Itô semimartingale in (2.1) and
(2.2) as Theorem 3.1. We take m = mn = [nα] (1/2 < α < 2/3), ln = [nβ] with
1/2 < α < β < 1 and H = Σ̂v. As n → ∞,m → ∞, and

(3.37)

√
m

am
[λi − am]

L−s−→ N(0,
9

5
dii)

for i = 1, · · · , rx (= p−qx) and [
√
m/am] [λi − am] are asymptotically normal jointly.

The covariances of [
√
m/am][λi − am] and [

√
m/am][λj − am] (i, j = 1, · · · , rx) are

given by

dij =
9

5
[δ(i, j) + ωijω

ij] .

14



Let

(3.38) λ∗
i =

√
m

am
[λi − am] (i = 1, · · · , rx).

Since the effect of estimating Σv is asymptotically negligible, we find the asymptotic
variance as

AVar[
rx∑
i=1

λ∗
i ] = E

 rx∑
i,i′=1

λ̃∗
i λ̃

∗
i′


= E

E
 rx∑

i,i′=1

λ̃∗
i λ̃

∗
i′

∣∣∣∣∣∣F (0)


= E

am(2)

a2m

rx∑
i,i′=1

[
δ(i, i

′
) + ωii

′ωii
′]

=
9

5
2rx ,

where we have used the notation that λ̃∗
i are characteristic roots of the characteristic

equation |Gm − λΣv|.

When 2/3 ≤ α < 1, we do not have (3.13) and λi − am (i = 1, · · · , rx) diverge
as n → +∞ because Gm − (Σx + amΣv) = Op(

am√
m
) = Op(

√
m3

n
). By using the

normalizing factor m
am(2)

to (3.10), we re-write

(3.39)

∣∣∣∣√ m

am(2)
(Gm − amΣv)−

√
m

am(2)
(λ− am)Σv

∣∣∣∣ = 0 .

Then it is asymptotically equivalent to∣∣∣∣∣ 1√
am(2)

1√
m

m∑
k=1

akn(v
∗
kv

∗′
k −Σv)−

√
m

am(2)
(λ− am)Σv

∣∣∣∣∣ = 0 .

Hence we can show that the sum of smaller rx characteristic roots of (3.10) withH =
Σv as

∑rx
i=1(λi−am) has the asymptotic distribution of the smaller rx characteristic

roots of

(3.40)
1√
am(2)

1√
m

m∑
k=1

akn(v
∗
kv

∗′
k −Σv) ,
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which is the same as the normalized sum of characteristic roots of (3.22).

Hence we summarize our main result on the trace-statistic
∑rx

i=1 λi, which will be
used as the key statistic for the application.

Theorem 3.3 : Assume the conditions in Theorem 3.2. We take m = mn =
[nα] (1/2 < α < 1), ln = [nβ] with α < β < 1 and H = Σ̂v. As n → ∞ and m → ∞,

(3.41)

√
m

am(2)

[
rx∑
i=1

(λi − am)

]
d−→ N(0, 2rx) .

and

(3.42)
m

am(2)

1

2rx

[
rx∑
i=1

(λi − am)

]2

d−→ χ2(1) .

For the practical purposes, there are some remaining problems. The key param-
eter m can be small because we take m = [nα], it may be important to find an
improvement of the limiting mixed normal distribution. By using (3.33) and (3.34),

the limiting distribution of
√
m

am
[Λ− amIrx ] can be corrected by adding the term

(3.43) Cm,rx,qx = [
−1√
m
]

qx∑
j=1

cjc
′

j ,

where cj (j = 1, · · · , qx) are independently distributed as Nrx(0, Irx).

The additional term for the sum of diagonal elements of
√
m

am
[Λ − amIr] can be

approximated as a χ2−distribution as

(3.44) tr(Cm,rx,qx) ∼
1√
m
χ2(rx × qx) .

More generally, if we take a non-singular (known) matrix H, then we need a
sligtly restrictive condition. When we use any H, let

(3.45) Λ∗∗
0 = (B

′
HB)−1Ωv (= (λ∗∗

ij )) ,

which corresponds to the probability limits of smaller characteristic roots.
Then we can replace B and Ωv (= B

′
ΣvB) by their consistent estimators. By using

Lemma A.1 in the Appendix, we have the following result.

Corollary 3.1 : In addition to the conditions in Theorem 3.2. assme that v(tni )
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follows the Gaussian distribution. We take m = mn = [nα] (0 < α < 2/3) and a
non-singular (constant) matrix H. As n → ∞, m → ∞ and

(3.46)
m

am(2)

1

r∗

[
rx∑
i=1

(λi − amλ
∗∗
ii )

]2

d−→ χ2(1) ,

where r∗ =
∑rx

i,i′=1
Cov(U∗

ii, U
∗
i′ ,i′

)and the covariances are given as Lamma A.1 in

the Appendix with the definition of Uii.

It may be convenient to take H = Irx for instance. Then there is a complication in
the expression of asymptotic distribution as well as we need an additional condition
on m to have the convergence.

A Test for Detecting the Number of Factors of Quadratic Variation

It is straight-forward to develop the testing procedure for the hypothesis H0 : rx =
r0 (r0 ≥ 1 is a specified number) against HA : rx = r0+1 , it may be reasonable to
use the r0-th smaller characteristic root and the rejection region can be constructed
by the limiting normal or χ2 distribution under H0. (H0 corresponds to the case of
qx = p− r0 while HA corresponds to qx = p− (r0 + 1). Hence it may be natural to
use the sum of smaller characteristic roots as

(3.47) R0 =

r0∑
i=1

(λi − am)

where 0 ≤ λ1 ≤ · · · ≤ λp. From Corollary 3.3, we can use

(3.48) Tn(r0) =
m

am(2)

1

2r0

[
r0∑
i=1

(λi − am)

]2

as the test statistics for detecting the number of factors of the underlying Itô semi-
martingale. The rejection region with 1− α significance level should be

(3.49) Tn(r0) ≥ χ2
1−α(1),

where χ2
1−α(1) is the (1−α)-quantile of χ2(1). Under HA, the r0+1-th characteristic

root λr0+1
p−→ ∞ and the test should be consistent.

Formally, we employ the following stopping rule for the proposed sequential test.

(1) Compute the test statistics Tn(p − 1). If Tn(p − 1) < χ2
1−α(1), we finish the

sequential test and conclude rx = p − 1. If Tn(p − 1) ≥ χ2
1−α(1), we proceed

to the next step to test H0 : rx = p− 2 against HA : rx = p− 1.

(2) We iterate the test H0 : rx = r0 − 1 against HA : rx = r0 (r0 = p − 1, p −
2, . . . , 1) sequentially until the null hypothesis is accepted.
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(3) We finish the sequential test and conclude rx = r0 − 1 at the time when
H0 : rx = r0 − 1 is accepted for the first time.

Our method corresponds to an extension of the standard statistical method to the
case when we have hidden continuous stochastic process and to detect the number
of factors in the statistical multivariate analysis. See Anderson (1984), Anderson
(2003), and Robin and Smith (2000).

4. Simulations

In this section, we give some simulation results on the characteristic roots and
test statistics and we discuss the finite sample properties of the characteristic roots
and test statistics we have developed in the previous sections.

4.1 Simulated Models

We simulate three dimensional Itô semimaritingales.
Let X̃ = (X̃(t))t≥0 (= (X̃1(t), X̃2(t), X̃3(t))

′
)t≥0) be the vector of Itô semimartingale

satisfying

dX̃j(t) = σj(t)dWj(t), j = 1, 2,(4.1)

dX̃3(t) = Z(t)dN(t) ,(4.2)

where W = (W1,W2)
′
is the two dimensional (standard) Brownian motion vector,

N is the Poisson process with intensity 10. We assume that N is independent of W
and Z = (Z(t))t≥0 is the jump sizes with Z(t) ∼ N(0, 5−2). (See Cont and Tankov
(2004) for the generation of jump processes.)
For the volatility process σ of the diffusion part, we set

d(σj(t))
2 = aj(µj − (σj(t))

2)dt+ κjσj(t)dW
σj(t), j = 1, 2,(4.3)

where σ1(t) and σ2(t) are independent, Wσ = (W σ1 ,W σ2)
′
is the two dimensional

(standard) Brownian motion vector, and a1 = 2, a2 = 3, µ1 = 0.8, µ2 = 0.7,
κ1 = κ2 = 0.5, E [dW σj(t)dWj(t)] = ρjdt, ρ1 = ρ2 = −0.5. In our simulation, we
consider the following two models :

(4.4) Model 1 : Y(t) = Γ1(X̃1(t), X̃2(t))
′
+ v(t)

and

(4.5) Model 2 : Y(t) = Γ1(X̃1(t), X̃2(t))
′
+ Γ2X̃3(t) + v(t).
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Here we denote the coefficients matrices (p × 2 and p × 1, respectively) as Γ1 =

(γ
(1)
1 , . . . ,γ

(p)
1 )

′
, where γ

(j)′

1 = (γ
(j)
1,1,γ

(j)
1,2), Γ2 = (γ

(1)
2 , . . . ,γ

(p)
2 )

′
and they are sam-

pled as γ
(j)
1,1 ∼ U([0.25, 1.75]), γ

(j)
1,2 ∼ U([0.1, 0.25]) and γ

(j)
2 ∼ U([0.25, 1.75]),

j = 1, . . . , p. The observation vectors are

Y(tni ) = (Y1(t
n
i ), . . . , Yp(t

n
i ))

′
, i = 1, . . . , n

and we set tni = i
n
(i = 1, · · · , n) and ∆ = ∆n = 1/n. As the market microstructure

noise vectors, we set v(tni ) = (v1(t
n
i ), . . . , vp(t

n
i ))

′
, and use independent Gaussian

noises for each component, that is,

(v1(t
n
i ), . . . , vp(t

n
i ))

′ ∼ i.i.d.Np(0, cIp) (i = 1, . . . , n) ,

with a pre-specified value c. In all simulations, we set p = 10 and n = 20000. We
note that Models 1 and 2 can be seen as special cases, which investigated in Li,
Tauchen and Todorov (2017a, b).

4.2 Simulation Results

Let N be the number of Monte Carlo iterations. We plotted the mean value of the
eigenvalues of the SIML estimator for the quadratic variation in Figures 4.1 and
4.2. To compute the SIML estimators, we set mn = 2 × [n0.646] (= 2 × 600) and
ln = 1.5mn.

(4.6) Σ̂x =
1

mn

mn∑
j=1

zjz
′

j , Σ̂v =
1

ln

n∑
j=n−ln+1

a−1
jn zjz

′

j,

where akn = 4n sin2
[
π
2

(
2k−1
2n+1

)]
.

In the following Figures, we set 0 ≤ λ̂1 ≤ . . . ≤ λ̂p are eigenvalues of Σ̂
−1

v Σ̂x.
In Model-1 and Model-2 we have 10 dimensions observation vectors (p = 10).

Model-1 has two factor of diffusion type (qx = 2, rx = 8) while Model-2 has two
diffusion type factors and one jumps factor (qx = 3, rx = 7). Figures 4.1-4.2 show
that the estimated characteristic roots reflect the true rank of hidden stochastic
process. Figures 4.3-4.4 show the distributions of the test statistic we are developed
in this paper. In the first case (Figure 4.3) there is a clear indication that there are
two non-zero characteristic roots, which are far from zero by any meaningful criterion
while in the second case (Figure 4.4) there is a clear indication that there are three
non-zero characteristic roots, which are far from zero with any meaningful criterion.
It seems that our method of evaluating the rank condition of hidden volatility factors
based on the characteristic roots and the SIML estimation of characteristic roots
detects the number of factors properly in these two numerical simulations.
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Figure 4.1 : Mean of estimated log characteristic roots (log eigenvalues) of Model 1
when c = 10−6(left) and c = 10−8(right). We set ∆ = 1/20000, mn = 2× [n0.646] (=
2× 600) and ln = 1.5mn. The number of Monte Carlo iteration is 300.

Figure 4.2 : Mean of estimated log characteristic roots (log eigenvalues) of Model 2
when c = 10−6(left) and c = 10−8(right). We set ∆ = 1/20000, mn = 2× [n0.646] (=
2× 600) and ln = 1.5mn. The number of Monte Carlo iteration is 300.
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Figure 4.3 : Empirical distributions of test statistic Tn(r0) of Model 1 when r0 =
7(left), r0 = 8(center) and r0 = 9(right) when rx = 8. We set ∆ = 1/20000,
c = 10−8, mn = 2 × [n0.646] (= 2 × 600) and ln = 1.5mn. The number of Monte
Carlo iteration is 300. The red line is the density of the chi square distribution with
1 degree of freedom.

Figure 4.4 : Empirical distributions of test statistic Tn(r0) of Model 2 when r0 =
6(left), r0 = 7(center) and r0 = 8(right) when rx = 7. We set ∆ = 1/20000,
c = 10−8, mn = 2 × [n0.646] (= 2 × 600) and ln = 1.5mn. The number of Monte
Carlo iteration is 300. The red line is the density of the chi square distribution with
1 degree of freedom.

5. An Empirical Example

In this section we report one empirical data analysis by using the proposed method
developed in the previous sections. It is no more than an illustration on our pro-
posed method in this paper. We have used the intra-day observations of top five
financial stocks (Mitsubishi UFJ Financial Group, Inc., Mizuho Financial Group,
Inc., Nomura Holdings, Inc., Resona Holdings, Inc., and Sumitomo Mitsui Financial
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Group, Inc.) traded in the Tokyo Stock Exchange (TSE) on January 25 in 2016,
which may be regarded as a typical one day. We have picked 5 major financial
stocks listed at TSE because they are actively traded in each day with high liquid-
ity. Hence we do not have serious disturbing effects due to actual non-synchronous
trading process in TSE market. We sub-sampled returns of each asset every 1 second
(∆ = n−1 = 1/18000) and we have taken the nearest trading (past) prices at every
unit of time.

For the SIML estimation we have set mn = 2 × [n0.51] (= 294) and ln = 1.5mn.
Since all companies belong to the same market division (First Section) of TSE, it
would be reasonable to expect that the number of factor of these assets is smaller
than 5 (i.e. qx < 5). Figure 5.1 shows the estimated eigenvalues of the quadratic
variation of these stocks by using (3.10) and (3.11). In this example, we have
two large eigenvalues while there are three smaller eigenvalues and two roots are
dominant. Then we have the statistics Tn(5) = 91.37832, Tn(4) = 40.41634, Tn(3) =
5.479696 and Tn(2) = 10.60642. Therefore, at a significance level of 0.01, the null
hypotheses H0 : rx = 5 and H0 : rx = 4 are rejected, but the null hypothesis
H0 : rx = 3 is not rejected. In this example, there is a large root and the second
larger root is much smaller than the the largest root, but cannot be ignored while
other roots are small. It implies that the quadratic variation has two factors in the
particular day.

Figure 5.1 : Estimated eigenvalues. In this case, ∆ = 1/18000, mn = 2× [n0.51] (=
294) and ln = 1.5mn.

Figure 5.2 shows the intra-day movements of five stock prices in the TSE afternoon
session of January 25, 2016. (There is a lunch break in Tokyo.) We set the same
values for the starting prices because we want to focus on the volatility structure
(or quadratic variation) of five asset prices. There is a strong evidence on two types
of intra-day movements of stock prices, which is consistent with our data analysis
reported.
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Figure 5.2 : Intra-day Movements of 5 Stock Prices at Tokyo (January 25, 2016)

6. Conclusions

In financial markets we usually have many assets traded and then it is important
to find hidden (small number of) factors behind many assets. As we have shown in
this paper, it is straight-forward to detect the number of hidden factors by using the
SIML method when the true hidden stochastic process is the class of Itô semimartin-
gales and there can be market microstructure noises. Our procedure is essentially
the same as the standard statistical method in multivariate analysis except the fact
that we have Itô semimartingales as the hidden state variables. We have derived the
asymptotic distributions of characteristic roots and vectors, which are new. Then
it is possible to develop the test statistics for the reduced rank condition, which
has been developed in the standard statistical multivariate analysis. From our lim-
ited simulations and an empirical application, our approach works well in practical
situations.

There can be possible extensions of our approach we have developed in this
paper. Since the conditions in (3.1)-(3.3) are restrictive, it would be interesting
to find the situations when we can lead to useful results. Also there are several
unsolved problems remained. Since we need to choose mn and ln in the SIML
testing in practice, which may be different from the problem of choosing mn and
ln in the SIML estimation. The testing power of test procedure will be another
unsolved problem although the trace statistic we used may be a natural choice of
test procedure.
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More importantly, the notable feature of our approach under (3.1)-(3.3) is that
the method is simple and our result is useful. We have a promising experiment
even in the case when the dimension of observations is not small, say 100. The
number of asset prices in actual financial markets is large in practical financial risk
management. There can be a number of empirical applications. These problems are
currently under investigation.
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APPENDIX : On Mathematical Derivations

In this Appendix we give some mathematical details used in the previous sections.
First, we give an outline of the Derivation of Theorem 2.1, which is supplementary
to Chapter 5 of Kunitomo et al. (2018). Second, we give the derivation of Lemma
3.1 and Lemma A.1, which are elementary but useful for the derivation of Corollaries
in Section 3.

(i) An Outline of the Derivation of Theorem 2.1 :
(Step 1) : We give an intuitive argument for the above results. The basic method
of proof is essentially the same to the one based on the notations, derivations and
their extensions given in Chapter 5 of Kunitomo et al. (2018). We first consider the
case when X has no jumps.
Let x∗′

k = (x∗
kj) and v∗

′

k = (v∗kj) (k = 1, · · · , n) be the k-th row vector elements of
n× p matrices

(A.1) X∗
n = Kn(Xn − Ȳ0) , V

∗
n = KnVn,

respectively, where we denote Xn = (x
′

k) = (xkg), Vn = (v
′

k) = (vkg), Zn = (z
′

k) (=
(zkg)) are n×p matrices with the notations zkg = x∗

kg+v∗kg in Section 3. We write zkg
as the g-th component of zk (k = 1, · · · , n; g = 1, · · · , p). We use the decomposition
of z

′

k = (zkg) for investigating the asymptotic distribution of
√
mn[Σ̂x − Σx] =

(
√
mn(σ̂

(x)
gh − σ

(x)
gh )gh) for g, h = 1, · · · , p. We decompose

√
mn

[
Σ̂x −Σx

]
(A.2)

=
√
mn

[
1

mn

mn∑
k=1

zkz
′

k −Σx

]

=
√
mn

[
1

mn

mn∑
k=1

x∗
kx

∗′
k −Σx

]
+

1
√
mn

mn∑
k=1

E [v∗
kv

∗′
k ]

+
1

√
mn

mn∑
k=1

[
v∗
kz

∗′
k − E [v∗

kv
∗′
k ]
]
+

1
√
mn

mn∑
k=1

[
x∗
kv

∗′
k + v∗

kx
∗′
k

]
.

Then we can investigate the conditions that three terms except the first one are
op(1). When these conditions are satisfied, we could estimate the variance and
covariance of the underlying processes consistently as if there were no noise terms
because other terms can be ignored asymptotically as n → ∞.
Let bk = (bkj) = h

−1/2
n e

′

kPnC
−1
n = (bkj) and e

′

k = (0, · · · , 1, 0, · · · ) be an n × 1
vector. We write v∗kg =

∑n
j=1 bkjvjg for the noise part and use the relation

(A.3) h−1
n (PnC

−1
n C

′−1
n P

′

n)k,k′ = δ(k, k
′
)4n sin2[

π

2n+ 1
(k − 1

2
)] .
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Then because we have
∑n

j=1 bkjbk′j = δ(k, k
′
)akn and Σv is bounded, it is straight-

forward to find K1 (a constant) such that

(A.4) E [(v∗kg)]2 = E [
n∑

i=1

bkivig

n∑
j=1

bkjvjg] ≤ K1 × akn .

As Chapter 5 of Kunitomo at al. (2018), we have

1

mn

mn∑
k=1

akn =
1

mn

2n
mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m2
n

n
)

and the second term becomes

(A.5)
1

√
mn

mn∑
k=1

E [v∗kn]2 ≤ K1
1

√
mn

mn∑
k=1

akn = O(
m

5/2
n

n
) ,

which is o(1) if we set α such that 0 < α < 0.4.
For the fourth term of (A.2),

E

[
1

√
mn

mn∑
k=1

x∗
kgv

∗
kg

]2

=
1

mn

mn∑
k,k′=1

E
[
x∗
kgx

∗
k′ ,g

v∗kgv
∗
k′ ,g

]
= O(

m2
n

n
) .

We set

sjk = cos[
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]

for j, k = 1, 2, · · · , n and then we have the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] =
n

2
+

1

4
for any k ≥ 1 .

For the third term of (A.2), we need to consider the variance of

(v∗kg)
2 − E [(v∗kg)2] =

n∑
j,j′=1

bkjbk,j′
[
vjgvj′ ,g − E(vjgvj′ ,g)

]
.

Then by using the assumption on the existence of the fourth order moments of
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market microstructure noise terms, we can find a positive constant K2 such that

E

[
1

√
mn

mn∑
k=1

((v∗kg)
2 − E [(v∗kg)2])

]2

=
1

mn

mn∑
k1,k2=1

E

[
n∑

j1,j2,j3,j4=1

bk1,j1bk1,j2(vj1,gvj2,g − E(vj1,gvj2,g))

×bk3,j3bk4,j4(vj3,gvj4,g − E(vj3,gvj4,g))]

≤ K2
1

mn

[
mn∑
k=1

akn]
2

= O(
1

mn

× (
m3

n

n
)2) ,

which is O(m5
n/n

2). Thus the third term of (A.2) is negligible if we set α such that
0 < α < 0.4.

The second step is to give the asymptotic variance-covariance of the first term, that
is,

(A.6)
√
mn

[
1

mn

mn∑
k=1

x∗
kx

∗′
k −Σx

]
because it is of the order Op(1). We can write

1

mn

mn∑
k=1

x∗
kx

∗′
k

=
1

mn

(
2

n+ 1
2

)
mn∑
k=1

[
n∑

i=1

ri cos[π(
2k − 1

2n+ 1
)(i− 1

2
)]

n∑
j=1

r
′

j cos[π(
2k − 1

2n+ 1
)(j − 1

2
)]]

=
n∑

i=1

ciirir
′

i +
∑
i ̸=j

cijrirj ,

where ri = xi − xi−1 = (rig) and

cii = (
2n

2n+ 1
)

[
1 +

1

m

sin 2πm( i−1/2
2n+1

)

sin(π i−1/2
2n+1

)

]
,

cij =
1

2m
(

2n

2n+ 1
)

[
sin 2πm( i+j−1

2n+1
)

sin(π i+j−1
2n+1

)
+

sin 2πm( j−i
2n+1

)

sin(π j−i
2n+1

)

]
(i ̸= j) .

Then Kunitomo et al. (2018) have shown that when ri are i.i.d. random variables

(A.7)

√
mn

n

n∑
i=1

[
rir

′

i −Σx + (cii − 1)rir
′

i

]
= op(1)
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and by re-writing (A.2) as

(A.8)

√
mn

n

n∑
i=1

[
cii rir

′

i −Σx

]
+

√
mn

n

n∑
i ̸=j

[
cij rir

′

j

]
we need to evaluate the asymptotic variance of its second term. Kunitomo and
Sato (2013) have also shown that if there is no jump terms, then the variance of
the limiting distribution of the (g, g)-th element of the limiting variance-covariance
matrix is the limit of

Vn(g, g) = 2
n∑

i,j=1

mnc
2
ij

∫ tni

tni−1

cgg(s)ds

∫ tnj

tnj−1

cgg(s)ds.

The resulting arguments of the derivations are the result of straightforward cal-
culations and lengthy, but the final form becomes simple. From the Lemma 3 in
Kunitomo and Sato (2013), we have that

(A.9)
n∑

i,j=1

c2ij =
4

mn

[
n

2
+

1

4

]2
.

Then following a similar argument of Lemma 7 in Kunitomo and Sato (2013), we
have that

(A.10) Vn(g, g)
p−→ V (g, g) = 2

∫ 1

0

c2gg(s)ds

as n → ∞. For the covariances of the hidden terms when there is no jump part, we
have the similar arguments and obtain the corresponding asymptotic variance as

(A.11) V (g, h) =

∫ 1

0

[
cgg(s)chh(s) + c2gh(s)

]
ds .

For the more general case when X have jumps, we can also show that the effect
of noise terms is asymptotically negligible by using the same argument in this step
(See also Step 3). Then, as with the proof of the stable convergence of the SIML
estimator in this step, it suffice to follow the proof of the stable convergence of
the realized volatility (See Chapter 5 of Jacod and Protter (2012) for details of the
proof.) to show our result for the more general case.

(Step 2) : In this step, we illustrate the basic arguments on jump-diffusion pro-
cesses when there is no market microstructure noise. (It may make the under-
lying arguments in a clear manner.) Let the (true) return vector process ri =

X(tni )−X(tni−1) (= (rgi) (i = 1, · · · , n; g = 1, · · · , p) in the decomposition of Z
(1)
n .
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Let p× p matrices An = (An(gh)) and A = (A(gh)) be

(A.12) An(gh) =
n∑

i=1

(Xg(t
n
i )−Xg(t

n
i−1))(Xh(t

n
i )−Xh(t

n
i−1))

and

(A.13) A(gh) =
n∑

i=1

∫ tni

tni−1

cgh(s)ds+
∑

tni−1<s≤tni

∆Xg(s)∆Xh(s)

 ,

where we set X(0) = (Xg(0)), Xi = (Xg(t
n
i )), ∆Xi = (∆Xg(t

n
i )), and c(s) =

(cgh(s)). Let q = 1 also be the number of Brownian motions for the resulting
notational simplicity. By using the basic arguments of stochastic processes, we can
approximate

√
n [An(gh)− A(gh)]

∼
√
n


n∑

i=1

σg1(t
n
i−1)(Wi −Wi−1) +

∑
tni−1<s≤tni

∆Xg(s)


×

σh1(t
n
i−1)(Wi −Wi−1) +

∑
tni−1<s≤tni

∆Xh(s)

− A(gh) ,

where σ(s) = (σgh(s)) and Wi = W (tni ). Then the above quantity can be asymp-
totically decomposed into

√
n

[
n∑

i=1

σg1(t
n
i−1)σh1(t

n
i−1)(Wi −Wi−1)

2 −
∫ 1

0

cgh(s)ds

]
(A.14)

+
√
n

 n∑
i=1

σg1(t
n
i−1)(Wi −Wi−1)

∑
tni−1<s≤tni

∆Xh(s)


+
√
n

 n∑
i=1

σh1(t
n
i−1)(Wi −Wi−1)

∑
tni−1<s≤tni

∆Xg(s)

 .

= (I) + (II) + (III) (say).

We denote (I), (II) and (III) in each terms of the last equality and we can evaluate
their asymptotic distributions. The resulting asymptotic variance is Vgh when p = 1.
When we have market microstructure noise terms, we apply the similar arguments
as (A.6)-(A.11) and then we have some additional jump terms in the limiting dis-
tribution.

31



(Step 3) : As the 3rd step, we apply the martingale convergence theorems as the
method of evaluating the asymptotic distributions of the SIML estimator used in
Chapter 5 when there are market microstructure noises. For g, h = 1, · · · , p, let

(A.15) Un =
n∑

j=2

[2

j−1∑
i=1

√
mncijrig]rjh,

where cij = (2/m)
∑m

k=1 siksjk (i, j = 1, · · · , n) and

(A.16) sjk = cos

[
2π

2n+ 1
(j − 1

2
)(k − 1

2
)

]
.

Then the variance of the limiting random variables can be calculated as the variance
of three terms in (A.15) except the factor

√
mn instead of

√
n as stated. In fact, we

need to evaluate the effects of cij (i, j = 1, · · · , n) as in Chapter 5 of Kunitomo et
al. (2018), which are omitted. The resulting calculations in the general case with
p ≥ 1, q ≥ 1 become tedious, but they are straightforward as we have given the
details for the diffusion cases in Chapter 5 of Kunitomo et al. (2018).

(Step 4) : Finally, we use the stable-convergence in law explained by Jacod and
Protter (2012), for instance, when the elements of Σx are random. The essential
arguments are the same and thus we have omitted their details.
(Q.E.D)

(ii) Derivation of Lemma 3.2 : Let p × 1 vectors wk = (wgk) = V
′
nP

′
nC

′−1
n ek

where Vn = (v
′

k) = (vkg) and ek = (0, · · · , 0, 1, 0, · · · , 0)′ (k = 1, · · · , n) is the n× 1
unit vectors.
Then by using (2.7) and tedious but straight-forward calculations as illustrated in
Chapter 5 of Kunitomo et al. (2018), E [wgk] = 0,

(A.17) E [wgkwhk] = σ
(v)
gh akn ,

and

(A.18) E [wgkwhkwg′ ,kwh′ ,k] =
[
σ
(v)
gh σ

(v)

g′ ,h′ + σ
(v)

gg′
σ
(v)

h,h′ + σ
(v)

g,h′σ
(v)

h,g′

]
[akn]

2 + o(a2kn) .

(It can be shown that the effects of diagonal elements in the quadtratic forms can
be negligible if 1 > α > 1/2.)

(iii) Finally, for the sake of convenience, we summarize an important, but simple
calculation of variances used in Corollaries 3.3 and 3.4 as a lemma.

Lemma A.1 : Assume the normality of market microstructure noises. Let a p× p
matrix

(A.19) U∗ = (U∗
ij) = (B

′
HB)−1(

√
m

am(2)
)B

′
(Gm −Σm)B ,
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and A−1 = (aij) = (B
′
HB)−1 and Ωv = (ωij) = (B

′
ΣvB). We denote X∗ as the

limiting random matrix of
√

m
am(2)

B
′
(Gm−Σm)B. Then the asymptotic variance is

given by

AV(U∗
ii) = E [

p∑
j=1

aijX∗
ji

p∑
j′=1

aij
′

X∗
j′ i
](A.20)

=

p∑
j,j′=1

aijaij
′

Cov(X∗
ji, X

∗
j′ ,i

)

=

p∑
j,j′=1

aijaij
′

[ωjj′ωii + ωjiωj′ i] .

When H = Ωv, it becomes

ωii

p∑
j=j′=1

ωijωij
′

ωjj′ +

p∑
j,j′=1

ωijωjiω
ij

′

ωj′ i = ωiiω
ii + 1 .

Also we find the asymptotic covariances as

ACov(U∗
ii, U

∗
kk) = E [

p∑
j=1

aijXji

p∑
j′=1

akj
′

X∗
j′k

](A.21)

=

p∑
j,j′=1

aijakj
′

Cov(X∗
ji, X

∗
j′ ,k

)

=

p∑
j,j′=1

aijakj
′

[ωjj′ωik + ωjiωj′k]

=

p∑
j′=1

[

p∑
j=1

aijωjj′ ]a
kj

′

ωik +

p∑
j,j′=1

aijωjia
kj

′

ωj′k .

When H = Ωv, it becomes

p∑
j′=1

ωkj
′

ωik + 1 = ωkiωik + 1 .
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