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Abstract

The Gaussian mixture distribution is important in various statistical problems. In particular it
is used in the Gaussian-sum filter and smoother for linear state-space model with non-Gaussian
noise inputs. However, for this method to be practical, an efficient method of reducing the
number of Gaussian components is necessary. In this paper, we show that a closed form ex-
pression of Pearson χ2-divergence can be obtained and it can apply to the determination of the
pair of two Gaussian components in sequential reduction of Gaussian components. By numer-
ical examples for one dimensional and two dimensional distribution models, it will be shown
that in most cases the proposed criterion performed almost equally as the Kullback-Libler di-
vergence, for which computationally costly numerical integration is necessary. Application to
Gaussian-sum filtering and smoothing is also shown.

Keywords: Gaussian mixture model (GMM), Gaussian mixture reduction, Kullback-Leibler
Divergence, Pearson χ2-divergence, Gaussian-sum filter.

1 Introduction

Reduction of the number of components in Gaussian mixture distribution is important in various field of sta-
tistical problems, data fusion, pattern recognition, supervised learning of multimedia and target tracking[8],[10].
As an example, consider a linear state space model

xn = Fnxn−1 +Gnvn

yn = Hnxn +wn, (1)

where the system noise vn and the observation noise wn are distributed according to a mixture of several
Gaussian components:

p(vn) =
q

∑
i=1

αiφ(vn|µv,Qi)

p(wn) =
r

∑
j=1

β jφ(wn|µw,R j). (2)

q and r are the number of Gaussian components of p(v) and p(w), respectively, and φ(x|µ,V ) denotes the
Gaussian density with mean vector µ and the variance covariance matrix V .
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Here assume that Yn denotes the set of observations up to time n, i.e., Yn = {y1, . . . ,yn}. The prediction
problem is to obtain, p(xn|Yn−1), the conditional distribution of xn given Yn−1, and the filter problem is to
obtain, p(xn|Yn), the conditional distribution of xn given Yn. For the linear state-space model with Gaussian
mixture noise, it is known that these conditional distributions are also given as the mixture of Gaussian
densities[1],[4],[5],[9]:

p(xn|Yn−1) =
q

∑
i=1

ℓn−1

∑
k=1

αiγk,n−1φ(xn|xik
n|n−1,V

ik
n|n−1) =

mn

∑
j=1

δ jnφ(xn|x j
n|n−1,V

j
n|n−1)

p(xn|Yn) =
r

∑
j=1

mn

∑
k=1

γ jk,nφ(xn|x jk
n|n,V

jk
n|n) =

ℓn

∑
i=1

γinφ(xn|xi
n|n,V

i
n|n) (3)

where mn = q× ℓn−1, δ jn = αiγk,n−1, ℓn = r×mn and γ jk,n = β jδknφ(yn|x jk
n|n−1,V

jk
n|n−1).

The Gaussian-sum filter is an algorithm to obtain these conditional densities recursively with time. The
advantage of the Gaussian-sum filter is that the parameters of the state distributions such as δ jn, γin, xn|t , and
Vn|t are obtained by running the Kalman filters in parallel. Therefore, the computation is easy and can yield
accurate results. However, there is a severe difficulties with this method. Namely, the numbers of Gaussian
components, mn and ℓn, increase by q× r times at each time step of the filtering. Therefore, the number of
Gaussian components would increase exponentially over time, and for this filtering method to be practical, a
computationally efficient method for the reduction of the number of Gaussian components is indispensable.

In principle, reduction of the number of Gaussian components can be realized by minimizing the
Kullback-Leibler divergence of the full-order Gaussian mixture distribution with respect to the reduced-
order Gaussian mixture distribution. However, as we discussed later in Section 2, two problems make this
method impractical. Therefore, as a practical measure, we usually reduce the number of Gaussian compo-
nents successively. In this paper, we refer to this method as the sequential reduction method and consider
criteria for selecting a pair of Gaussian components to be merged.

Kitagawa[4][5] used a weighted Kullback-Leibler divergence of two candidate Gaussian components.
Salmond[8] proposed a mixture reduction algorithm in which the number of components is reduced by
repeatedly choosing the two components that appear to be most similar to each other. Williams and
Maybeck[11] proposed a mixture reduction algorithm based on an integrated squared difference (ISD) simi-
larity measure, which has the big advantage that the similarity between two arbitrary Gaussian mixtures can
be expressed in closed form. Runnalls[7] proposed a measure of similarity between two components based
on the upper bound of the increase of Kullback-Leibler (KL) discrimination measure when a pair of two
Gaussian components are merged. In this paper, we propose use of Pearson χ2-divergence of two Gaussian
components for which we can derive a closed form expression for the criterion to select the pair of Gaussian
components to be merged.

In section 2, we define the Gaussian mixture reduction problem and briefly show some reduction meth-
ods. In section 3, a sequential reduction method based on Pearson χ2-divergence will be introduced, in
which the criteria for selecting a pair of indices to be merged can be obtained in explicit analytical form. In
section 4, emperical studies on the sequential reduction of the number of Gaussian components are shown,
using one-dimensional and two-dimensional Gaussian mixture distributions. Section 5 deals with the appli-
cation of the sequential Gaussian-mixture reduction method to the a Gaussianm-sum filtering and smoothing
for linear state-space model with Gaussian-mixture noise inputs. We conclude in Section 6. Details of the
derivation of the Pearson χ2-divergence is shown in Appendix.
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2 Reduction of Gaussian Components

2.1 Reduction based on Kullback-Leibler Discrimination

The Kullback-Leibler divergence is the most frequently used to evaluate the dissimilarity between true
distribution and an approximated distribution, which is defined by

I(g(x); f (x)) =
∫

log
{

g(x)
f (x)

}
g(x)dx =

∫
log{g(x)}g(x)dx−

∫
log{ f (x)}g(x)dx, (4)

where in the context of the Gaussian mixture approximation, g(x) is the full-order mixture model and f (x)
is the reduced order model (ℓ < m):

g(x) =
m

∑
i=1

αiφ(x|ξi,Vi) (5)

fℓ(x) =
ℓ

∑
i=1

βiφ(x|µi,Σi). (6)

Hereafter, for simplicity of the notation, the number of Gaussian components is referred to as the order.
In principle, the best reduced order model can be obtained by minimizing the Kullback-Leibler diver-

gence. However, there are two problems with this method. Firstly, except for simple densities such as
Gaussian density, the KL-divergence does not have a closed expression. So we need to apply numerical
integration to evaluate the KL-divergence. Secondly, to estimate the parameters of the best reduced order
model, we need to apply numerical optimization in high dimensional parameter space. Therefore, at least
for recursive filtering in which this reduction process is repeated as long as a new observation is obtained,
this method is impractical.

2.2 Sequential Reduction

Therefore, we usually apply a sequential reduction method. Assume that the full-order model and an ap-
proximated reduced order model are respectively defined by

g(x) =
m

∑
i=1

wiφ(x|ξi,Ui)

fℓ(x) =
ℓ

∑
i=1

αiφ(x|µi,Σi). (7)

In the sequential reduction method, to further reduce the number of components, we select a pair of two
components, say j and k, and pool these two densities. The reduced order model is defined by

h jk(x) = ∑
i ̸∈{ j,k}

αiφ(x|µi,Σi)+(α j +αk)φ(x|ζ jk,Vjk) (8)

where φ(x|ζ jk,Vjk) is the merged density whose parameters are usually determined so that the first two
moments of the distributions are preserved:

ξ jk = (α j +αk)
−1 (α jµ j +αkµk) (9)

Vjk = (α j +αk)
−1 [α j

{
Σ j +(µ j −ξ jk)(µ j −ξ jk)

T}+αk
{

Σk +(µ j −ξ jk)(µ j −ξ jk)
T}] .
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The indices of two pooled densities, j and k, are selected so that a properly determined criterion is
minimized. By repeating this process, we can obtain a Gaussian mixture approximation of g(x) with a
smaller number of Gaussian components.

For selecting a pair of two densities, many ad hoc criteria have been proposed so far. Kitagawa(1989,1994)
used the weighted KL-divergence of Gaussian components

D(k, j) = αkα j

{
Σ−1

k Σ j +Σ−1
j Σk +(µk −µ j)

T (Σ−1
k +Σ−1

j )(µk −µ j)
}
. (10)

Salmond(1990) proposed the increase of within-component variance

D2
s (k, j) = tr(Σ−1∆W ), ∆W (φk,φ j) =

αkα j

αk +α j
(µk −µ j)(µk −µ j)

T . (11)

Williams and Mayback (2003) used a squared difference of two densities

J(g, f ) =
∫
(g(x)− f (x))2dx. (12)

Runnalls(2006) used the upper bound of the increase of KL-divergence by pooling two densities:

B(k, j) =
1
2
{
(αk +α j) logdet(Vk j)−αk logdet(Σk)−α j logdet(Σ j)

}
(13)

and it is reported that this criterion mitigated some anomalous behavior in certain circumstances of the ones
by Williums and Mayback[11] and Salmond[8], and provide us with a reasonable reduction result[7].

3 Reduction Criterion based on Pearson χ2-Divergence

3.1 Pearson χ2-Divergence of Two gaussian Mixture Models

In this paper, we consider the use of Pearson χ2-divergence:

Dχ2(q; p) =
∫ (

q(x)
p(x)

−1
)2

p(x)dx =
∫ q(x)2

p(x)
dx−1. (14)

Assume that q(x) is a mixture of two Gaussian densities

q(x) = α jφ(x|µ j,Σ j)+αkφ(x|µk,Σk), α j +αk = 1 (15)

and p(x) is a pooled Gaussian density, p jk(x) = φ(x|ζ jk,Wjk), obtained by the moment preserving merge
where ζ jk and Vjk are given in (9). Then the Pearson χ2-divergence Dχ2( j,k) of the mixture of two Gaussian
densities with respect to the merged density is obtained by

Dχ2( j,k) =
∫ q(x)2

p jk(x)
dx−1

= α2
j

∫ f j(x)2

p jk(x)
dx+2α jαk

∫ f j(x) fk(x)
p jk(x)

dx+α2
k

∫ fk(x)2

p jk(x)
dx−1. (16)
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Here, since the densities f j(x), fk(x) and p jk are respectively defied by

f j(x) = (2π)−
k
2
∣∣Σ j

∣∣− 1
2 exp

{
−1

2
(x−µ j)

T Σ−1
j (x−µ j)

}
fk(x) = (2π)−

k
2 |Σk|−

1
2 exp

{
−1

2
(x−µk)

T Σ−1
k (x−µk)

}
(17)

p jk(x) = (2π)−
k
2
∣∣Vjk

∣∣− 1
2 exp

{
−1

2
(x−ζ jk)

TV−1
jk (x−ζ jk)

}
,

the integrand of the second term of the right hand side of the equation (16) is given by

f j(x) fk(x)
p jk(x)

= (2π)−
k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2
∣∣Vjk

∣∣ 1
2

×exp
{
−1

2
(x−µ j)

T Σ−1
j (x−µ j)−

1
2
(x−µk)

T Σ−1
k (x−µk)+

1
2
(x−ξ jk)

TV−1
jk (x−ξ jk)

}
= (2π)−

k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2
∣∣Vjk

∣∣ 1
2 exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
×exp

{
−1

2
(ζ jk −η jk)

T (Vjk −Σ jk)
−1(ζ jk −η jk)

}
exp

{
−1

2
(x−η jk)

TWjk(x−η jk)

}
(18)

where Σ jk = (Σ−1
j +Σ−1

k )−1, Wjk = Σ−1
j +Σ−1

k −V−1
jk and η jk = (Σ−1

j +Σ−1
k −V−1

jk )−1((Σ−1
j +Σ−1

k )ζ jk −
V−1

jk ξ jk). The details of the derivation of the last equality of (18) is given in the appendix.
Then, by integrating over the whole domain of the distribution, we obtain∫ f j(x) fk(x)

p jk(x)
dx =

∣∣Σ j
∣∣− 1

2 |Σk|−
1
2
∣∣Vjk

∣∣ 1
2
∣∣Wjk

∣∣− 1
2 exp

{
−1

2
(ζ jk −η jk)

T (Vjk −Σ jk)
−1(ζ jk −η jk)

}
×exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
. (19)

The expression for the first and the third term of (16) is obtained by putting by fk(x) = f j(x); namely,
µk = µ j and Σk = Σ j.∫ f j(x)2

p jk(x)
dx =

∣∣Σ j
∣∣−1 ∣∣Vjk

∣∣ 1
2
∣∣W̄j

∣∣− 1
2 exp

{
−1

2
(µ j −η jk)

TW̄−1
j (µ j −η jk)

}
(20)

where W̄j = 2Σ−1
j −V−1

jk , η j = (2Σ−1
j −V−1

jk )−1(2Σ−1
j µ j −V−1

jk ξ jk).

3.2 Proposed Reduction Criterion

Therefore the Pearson χ2-divergence for the Gaussian mixture reduction is obtained by

Dχ2( j,k) = α2
j

∣∣Σ j
∣∣−1 ∣∣Vjk

∣∣ 1
2
∣∣W̄j

∣∣− 1
2 exp

{
1
2
(µ j −ξ jk)

T (Vjk −
1
2

Σ j)
−1(µ j −ξ jk)

}
+ α2

k |Σk|−1 ∣∣Vjk
∣∣ 1

2 |W̄k|−
1
2 exp

{
−1

2
(µk −ξ jk)

T (Vjk −
1
2

Σk)
−1(µk −ξ jk)

}
+ 2αiα j

∣∣Σ j
∣∣− 1

2 |Σk|−
1
2
∣∣Vjk

∣∣ 1
2
∣∣Wjk

∣∣− 1
2 exp

{
−1

2
(ζ jk −ξ jk)

T (Vjk −Σ jk)
−1(ζ jk −ξ jk)

}
×exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
−1 (21)

5



In the sequential reduction based on this criterion, Dχ2( j,k) are evaluated for j = 1, ..., ℓ−1 and k = 2, ..., ℓ
and find the pair ( j∗,k∗) that satisfies

Dχ2( j∗,k∗) = min
j,k

Dχ2( j,k). (22)

Then the two Gaussian components φ(x|µ∗
j ,Σ∗

j) and φ(x|µ∗
k ,Σ

∗
k) are merged and we obtain the Gaussian

mixture model with ℓ− 1 components. Repeating this process, it is possible to obtain Gaussian mixture
distribution with a specific order.

The problem with this Pearson χ2-divergence is that q(x)/p(x) may become unbounded. Therefore, in
using this as the criterion for selecting the pair for merging, we need a safe-guard in computation. Namely,
we exclude the pair j and k from the merging candidate.

4 Empirical Study: Comparison of Reduction Methods

Many criteria have been proposed for selecting a pair of Gaussian components in sequential reduction of
Gaussian components. In this section we compare the following criteria:

1. Weighted KL-divergence of Gaussian components, Kitagawa (1989, 1994):

D( j,k) = α jαk

{
Σ−1

j Σk +Σ−1
j Σk +(µ j −µk)

T (Σ−1
j +Σ−1

k )(µ j −µk)
}

(23)

2. Upper bound of the increase of KL-divergence, Runalls (2006):

B( j,k) =
1
2
{
(α j +αk) logdet(Vjk)−α j logdet(Σ j)−αk logdet(Σk)

}
(24)

3. χ2-divergence proposed in this paper: Dχ2( j,k)

Beside these ad hoc criteria, we also considered the following two reduction methods based on the Kullback-
Leibler divergence.

4. The sequential reduction based on the Kullback-Leibler divergence of the pooled model obtained by
numerical integration:

I(g; f jk) =
∫

logg(x)g(x)dx−
∫

log f jk(x)g(x)dx. (25)

5. The global Kullback-Leibler divergence minimization method. Note that this method requires both
numerical integration and numerical optimization:

I(g; f̂ jk) =
∫

logg(x)g(x)dx−
∫

log f̂ jk(x)g(x)dx, (26)

where the parameters of f jk(x) are estimated by minimizing I(g; f jk). Therefore, this method is very
computationally costly and is feasible only for very low dimensional distributions.
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Table 1: Assumed one-dimensional Gaussian-mixture distribution with 16 components.

i αi µi Σi

1 0.30 0.0 0.5
2 0.15 5.0 1.0
3 0.15 -4.0 1.0
4 0.05 0.2 9.0
5 0.05 -1.5 2.0
6 0.0686 1.03982 4.39842
7 0.03472 -1.55209 3.78821
8 0.07578 -1.35090 2.78963
9 0.00101 -0.25711 1.18460
10 0.00011 2.00426 1.14186
11 0.01699 1.44357 1.00000
12 0.00003 -2.15010 1.02979
13 0.05787 -0.58808 1.21395
14 0.00039 1.57966 1.35196
15 0.02193 1.87170 1.12458
16 0.02257 0.55285 1.05299

4.1 One-dimensional Distributions

Table 1 shows the assumed full-order Gaussian mixture model with 16 Gaussian components. Table 2 and
Figure 1 show the increase of KL-divergence when the reduced order models are obtained by five meth-
ods. In the figure, grey line shows the results by Runnalls, green one by Kitagawa, blue one by Pearson
χ2-divergence, yellow one sequential reduction by Kullback-Leibler divergence, and red one by global op-
timization of Kullback-Leibler divergence. It can be seen that the sequential reduction based on Pearson
χ2-divergence yields almost the same performance as the sequential reduction by Kullback-Leibler diver-
gence.

The accuracy of the sequential reduction methods are worth by one or two digit than the optimal model.
However, the figure also indicates that by using a larger order m, we can attain a similar accuracy as the
optimal model.

Figure 2 shows the comparison of the densities obtained by the sequential reduction and the global
optimization method. In these plots, the red curve shows the true full order density, the green one the
optimal reduced order model obtained by minimizing the KL-divergence, and the purple one obtained by
the sequential reduction based on the Pearson χ2-divergence. It can be seen that for m ≥ 8, the green curve
and purple curve are visually indistinguishable. But for m=2 and 3, they are considerably different.

4.2 Two-dimensional Distributions

In this example, the true 2-dimensional density is expressed by 10 Gaussian distributions shown in Table 3.
Table 4 and Figure 8 show the Kullback-Leibler divergence of the true mixture model with respect to the
reduced order model obtained by 5 methods. It can be seen that, except for ℓ=2 and 3, the results by the
Pearson χ2-divergence is almost indistinguishable with the method based on Kullback-Leibler divergence.
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Table 2: Change of KL-divergence of true with respect to the reduced order models by various reduction
methods.

m Runnalls Kitagawa Pearson KL-div. Optimal
15 1.43×10−12 2.18×10−11 9.80×10−14 3.00×10−13 3.80×10−14

14 1.21×10−09 5.98×10−10 1.43×10−12 4.63×10−12 2.94×10−13

13 1.17×10−07 1.74×10−08 4.85×10−11 3.40×10−11 2.63×10−12

12 1.54×10−07 7.55×10−08 6.53×10−10 3.24×10−11 3.96×10−11

11 1.24×10−06 4.85×10−07 1.54×10−07 1.78×10−09 1.82×10−09

10 0.00010181 1.18×10−06 7.45×10−07 3.70×10−09 4.82×10−09

9 0.00010793 1.24×10−05 2.60×10−06 1.08×10−08 6.15×10−09

8 0.00013676 0.00022274 1.23×10−05 1.67×10−08 8.84×10−09

7 0.00033167 0.00022197 0.0001042 2.88×10−07 2.55×10−07

6 0.00175442 0.00031239 6.90×10−05 2.66×10−07 2.57×10−07

5 0.0040189 0.00110572 0.00035793 1.61×10−06 2.57×10−07

4 0.0060584 0.00076506 0.00076506 0.00024942 0.00024942
3 0.02886692 0.0331135 0.01810894 0.01650889 0.00435254
2 0.08941172 0.07007295 0.07938004 0.06884198 0.06884198
1 0.13589858 0.1304686 0.1304686 0.1304686 0.1304686
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Figure 1: Change in KL-divergence of true, sequentially reduced and optimal reduced order models.
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Figure 2: The comparison of the densities obtained by the sequential reduction and the global optimization
method.

Table 3: Assumed twe-dimensional Gaussian-mixture distribution with 16 terms.

i αi µi(1) µi(2) Σi(1,1) Σi(2,2) Σi(2,1)
1 0.30 0 0 1 1 0
2 0.20 2 0 4 2 0
3 0.16 3 3 2 2 -0.5
4 0.11 -4 -4 4 4 2
5 0.08 -1 1 9 9 4.0
6 0.06 2 -4 4 9 2
7 0.04 0 2 4 1 -0.5
8 0.03 -2 4 9 9 0
9 0.01 -2 0 2 1 0
10 0.01 1 -2 1 1 0
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Table 4: Change of KL-divergence of true model with respect to the reduced order models by various
reduction methods: Two dimensional case.

m Runnalls Kitagawa Pearson KL-div. Optimal
9 0.000220 0.000143 0.000163 0.000143 0.000022
8 0.000656 0.000849 0.000300 0.000300 0.000093
7 0.002367 0.001812 0.001051 0.001051 0.000258
6 0.004783 0.003920 0.002010 0.002010 0.000496
5 0.006878 0.023910 0.005754 0.005754 0.002862
4 0.029877 0.029670 0.014775 0.014775 0.004916
3 0.056387 0.034783 0.079955 0.039786 0.029775
2 0.099586 0.099586 0.122572 0.091505 0.084608
1 0.180119 0.180119 0.180119 0.180119 0.180119

Figures 4 and 5 show the contour and the bird’s-eye views of the reduced order Gaussian mixture models
obtained by the Pearson χ2-divergence.

Summarizing the two examples, there are three types of reduction methods, namely the sequential reduc-
tion by ad-hoc criterion, Sequential reduction by KL-divergence and global KL-divergence minimization.
Obviously the accuracy increases in this order, but computational cost increases. So the suggestion is to
estimate a mixture model with a slightly larger number of components by the sequential reduction method.

10



8

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

9 8 7 6 5 4 3 2 1

2D Gaussian Mixture

KL‐info Pearson Runnals AISM OptimizedKitagawa

Figure 3: Change in KL-divergence of true and optimal reduced order model.
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Figure 4: Contour of 2D densities obtained from the full-order Gaussian-mixture and reduced order
Gaussian-mixture models.
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Figure 5: Bird’s-eye-views of 2D densities obtained from the full-order Gaussian-mixture and reduced order
Gaussian-mixture models.

5 Non-Gaussian Smoothing

We consider the application of Gaussian-sum filter and smoother to the detection of the level shift in the
time series. The top-left plot of Figure 6 shows the example data analyzed in Kitagawa[3]. For estimation
of the trend of the series, we consider a simple state-space model.

xn = xn−1 + vn

yn = xn +wn. (27)

Here we assume that the observation noise is Gaussian but the system noise is a mixture of two Gaussian
distributions:

vn ∼ αN(0,τ2)+(1−α)N(0,ξ 2)

wn ∼ N(0,σ2), (28)

where σ2 = 1.027, τ2 = 0.000254, ξ 2 = 1.189 and α = 0.989.
Figure 6 show the estimates of the trend by the Non-Gaussian smoother [3] and the particle smoother

[6]. Table 5 shows the log-likelihoods and the cpu-times for various number of the maximum number of
Gaussian components approximating the state densities. At least in this case M = 8 or 16 looks sufficient.
The cpu-time is less than 1 second for filtering.

Figure 7 shows the smoothed distribution of the trend obtained by the Gaussian-sum smoother for the
number of components m=1, 2, 4 and 128. The top-left plot shows the case m = 1, bottom-left shows case
m = 2, top-right m = 4 and bottom-right m = 128. At least visually the results by m = 4 and 128 are almost

12
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Figure 6: Test data and the estimated trends obtained by the non-Gaussian smoother and the particle filter
with m=1000 and 100,000.

Table 5: Gaussian-sum filters and smoothers for various number of Gaussian components.

cpu time (in second)
m log-lk Filtering Smoothing
1 -741.930 0.00 0.08
2 -741.047 0.02 0.23
4 -740.816 0.02 0.94
8 -740.748 0.05 3.70
16 -740.702 0.27 14.85
32 -740.704 1.86 59.53
64 -740.704 14.26 243.47
128 -740.704 112.51 1018.20
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Figure 7: Estimated trends by the Gaussian-sum smoother with number of Gaussian components, m=1,2,4
and 128.

indistinguishable. This indicates that the Gaussian-sum filter is very efficints for linear state space model
with Gaussian-mixture noise inputs in the sense that it can provide a very accurate approximation to the
posterior distribution of the state.

It is interesting to note that as seen in Figure 8 the Gaussian-sum smoother with m = 1 is different from
the Kalman smoother.

6 Conclusion

Pearson χ2-divergence of two Gaussian components with respect to the merged single Gaussian distribution
has an explicit analytical form. According to the empirical studies, sequential reduction method based on
the Pearson χ2-divergence performed almost similarly as the one based on the Kullback-Leibler divergence
for which computationally costly numerical integration is necessary. Application to Gaussian-sum filter and
smoother is shown and it is shown that Gaussian-sum filtering method is very efficient for linear state-space
model with Gaussian mixture noise inputs.
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Figure 8: Comparison with Kalman smoother and Gaussian-sum smoother with one component (m=1).

7 Appendix
In this appendix, it will be shown that∫ f j(x) fk(x)

p jk(x)
dx = (2π)−

k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2
∣∣Vjk

∣∣ 1
2
∣∣Wjk

∣∣− 1
2 exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
×exp

{
−1

2
(ζ jk −η jk)

T (Vjk −Σ jk)
−1(ζ jk −η jk)

}
(29)

which is used in the derivation of the equation (19).

Notations

Σ−1
jk = Σ−1

j +Σ−1
k , Σ jk = (Σ−1

jk )
−1 = (Σ−1

j +Σ−1
k )−1, (30)

ξ jk = (α j +αk)
−1(α jµ j +αkµk) (31)

Vjk = (α j +αk)
−1 [α j

{
Σ j +(µ j −ξ jk)(µ j −ξ jk)

T}+αk
{

Σk +(µ j −ξ jk)(µ j −ξ jk)
T}] (32)

Wjk = Σ−1
j +Σ−1

k −V−1
jk = Σ−1

jk −V−1
jk , (33)

ζ jk = (Σ−1
j +Σ−1

k )−1(Σ−1
j µ j +Σ−1

k µk) (34)

Σ−1
jk ζ jk = Σ−1

j µ j +Σ−1
k µk, (35)

η jk =
(

Σ−1
j +Σ−1

k −V−1
jk

)−1(
Σ−1

j µ j +Σ−1
k µk −V−1

jk ξ jk

)
,

=
(

Σ−1
jk −V−1

jk

)−1(
Σ−1

jk ζ jk −V−1
jk ξ jk

)
, (36)

W̄j = 2Σ−1
j −V−1

jk , (37)

ζ j = (2Σ−1
j )−1(2Σ−1

j µ j) = Σ jΣ−1
j µ j = µ j (38)

η j = (2Σ−1
j −V−1

jk )−1(2Σ−1
j µ j −V−1

jk ξ jk). (39)

Hereafter in this appendix, for the simplicity of the notation, the suffix jk is omitted, namely we denote ξ jk = ξ ,
Vjk ≡V , Σ jk ≡ Σ, ζ jk ≡ ζ , ξ jk ≡ ξ , η jk = η .
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Matrix Lemma

(Σ−1
j +Σ−1

k )−1 = Σ j −Σ j(Σ j +Σk)
−1Σ j, (40)

(Σ−1 −V−1)−1 = Σ(V −Σ)−1V, (41)
(Σ−1

j +Σ−1
k −V−1)−1 = (Σ−1

j +Σ−1
k )−1(V − (Σ−1

j +Σ−1
k )−1)−1V

=
{

Σ j −Σ j(Σ j +Σk)
−1Σ j

}
(V −Σ)−1V (42)

V−1 −V−1Σ(V −Σ)−1 = V−1(V −Σ)(V −Σ)−1 −V−1Σ(V −Σ)−1 = (V −Σ)−1 (43)
Σ−1 − (V −Σ)−1V Σ−1 = (V −Σ)−1(V −Σ)Σ−1 − (V −Σ)−1V Σ−1 =−(V −Σ)−1 (44)
V−1Σ(V −Σ)−1V Σ−1 = {ΣV−1(V −Σ)Σ−1V}−1 = (V −Σ)−1 (45)

Lemma 1

µT
j Σ−1

j µ j +µT
k Σ−1

k µk −
(

Σ−1
j µ j +Σ−1

k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
= (µ j −µk)

T (Σ j +Σk)
−1(µ j −µk) (46)

proof

µT
j Σ−1

j µ j +µT
k Σ−1

k µk −
(

Σ−1
j µ j +Σ−1

k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
= µT

j Σ−1
j µ j +µT

k Σ−1
k µk −

(
Σ−1

j µ j +Σ−1
k µk

)T {
Σ j −Σ j(Σ j +Σk)

−1Σ j
}(

Σ−1
j µ j +Σ−1

k µk

)
= µT

j Σ−1
j µ j +µT

k Σ−1
k µk

−
{

µT
j −µT

j (Σ j +Σk)
−1Σ j +µT

k Σ−T
k Σ j −µT

k Σ−1
k Σ j(Σ j +Σk)

−1Σ j
}(

Σ−1
j µ j +Σ−1

k µk

)
= µT

j Σ−1
j µ j +µT

k Σ−1
k µk −µT

j Σ−1
j µ j −µT

j Σ−1
k µk +µT

j (Σ j +Σk)
−1µ j +µT

j (Σ j +Σk)
−1Σ jΣ−1

k µ j

−µT
k Σ−T

k µ j −µT
k ΣkΣ−1

j Σkµ j +µT
k Σ−1

k Σ j(Σ j +Σk)
−1µ j +µT

k Σ−1
k Σ j(Σ j +Σk)

−1Σ jΣ−1
k µk

= µT
k Σ−1

k µk −µT
j (Σ j +Σk)

−1µk −µT
k (Σ j +Σk)

−1µ j +µT
j (Σ j +Σk)

−1µ j −µT
k Σ−T

k Σ j(Σ j +Σk)
−1µk

= (µ j −µk)
T (Σ j +Σk)

−1(µ j −µk) (47)

Lemma 2

(x−µ j)
T Σ−1

j (x−µ j)+(x−µk)
T Σ−1

k (x−µk)

= (x−ζ )T Σ−1(x−ζ )+(µ j −µk)
T (Σ j +Σk)

−1(µ j −µk) (48)

Proof
Using Lemma 1, we have

(x−µ j)
T Σ−1

j (x−µ j)+(x−µk)
T Σ−1

k (x−µk)

= xT
(

Σ−1
j +Σ−1

k

)
x− xT

(
Σ−1

j µ j +Σ−1
k µk

)
−
(

Σ−1
j µ j +Σ−1

k µk

)T
x+µT

j Σ−1
j µ j +µT

k Σ−1
k µk

=
{

x− (Σ−1
j +Σ−1

k )−1(Σ−1
j µ j +Σ−1

k µk)
}T

(Σ−1
j +Σ−1

k )
{

x− (Σ−1
j +Σ−1

k )−1(Σ−1
j µ j +Σ−1

k µkt)
}

+µT
j Σ−1

j µ j +µT
k Σ−1

k µk − (Σ−1
j µ j +Σ−1

k µk)
T (Σ−1

j +Σ−1
k )−1(Σ−1

j µ j +Σ−1
k µk)

= (x−ζ )T Σ−1(x−ζ )+(µ j −µk)
T (Σ j +Σk)

−1(µ j −µk) (49)

Lemma 3

ζ T Σ−1ζ −ξ TV−1ξ −
(
Σ−1ζ −V−1ξ

)T (Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ
)

=−(ζ −ξ )T (V −Σ)−1(ζ −ξ ) (50)
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Proof

ζ T Σ−1ζ −ξ TV−1ξ −
(
Σ−1ζ −V−1ξ

)T (Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ
)

= ζ T Σ−1ζ −ξ TV−1ξ −
(
Σ−1ζ −V−1ξ

)T Σ(V −Σ)−1V
(
Σ−1ζ −V−1ξ

)
= ζ T Σ−1ζ −ξ TV−1ξ − (ζ T −ξ tV−1Σ)(V −Σ)−1(V Σ−1ζ −ξ )
= ζ T Σ−1ζ +ξ TV−1ξ −ζ T (V −Σ)−1V Σ−1ζ −ζ T (V −Σ)−1ξ

+ξ TV−1Σ(V −Σ)−1V Σ−1ζ +ξ TV−1Σ(V −Σ)−1ξ
= −(ζ −ξ )T (V −Σ)−1(ζ −ξ ) (51)

Lemma 4

(x−ζ )T Σ−1(x−ζ )− (x−ξ )TV−1(x−ξ ) = (x−η)TW (x−η)− (ζ −ξ )T (V −Σ)−1(ζ −ξ ) (52)

Proof
Using Lemma 3,

(x−ζ )T Σ−1(x−ζ )− (x−ξ )TV−1(x−ξ )
= xT (Σ−1 −V−1)x− xT (Σ−1ζ −V−1ξ )− (Σ−1ζ −V−1ξ )T x+ζ T Σ−1ζ −ξ TV−1ξ

=
{

x−
(
Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ

)}T (
Σ−1 −V−1){x−

(
Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ

)}
+ζ T Σ−1ζ −ξ TV−1ξ −

(
Σ−1ζ −V−1ξ

)T (Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ
)

= (x−η)T (Σ−1 −V−1)(x−η)+ζ T Σ−1ζ −ξ TV−1ξ

−
(
Σ−1ζ −V−1ξ

)T (Σ−1 −V−1)−1 (Σ−1ζ −V−1ξ
)

= (x−η)TW (x−η)+ζ T Σ−1ζ −ξ TV−1ξ −
(
Σ−1ζ −V−1ξ

)T
W−1 (Σ−1ζ −V−1ξ

)
= (x−η)TW (x−η)− (ζ −ξ )T (V −Σ)−1(ζ −ξ ) (53)

Lemma 5

µT
j Σ−1

j µ j +µT
k Σ−1

k µk −ξ TV−1ξ

= (µ j −µk)
T (Σ j +Σk)

−1(µ j −µk)− (ζ −ξ )T (V −Σ)−1(ζ −ξ ). (54)

Proof

µT
j Σ−1

j µ j +µT
k Σ−1

k µk −ξ TV−1ξ

−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T (

Σ−1
j +Σ−1

k −V−1
)−1(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)

= µT
j Σ−1

j µ j +µT
k Σ−1

k µk −
(

Σ−1
j µ j +Σ−1

k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
−ξ TV−1ξ +

(
Σ−1

j µ j +Σ−1
k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T

(Σ−1 −V−1)
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)

= (µ j −µk)
T (Σ j +Σk)

−1(µ j −µk) (55)

−ξ TV−1ξ +
(

Σ−1
j µ j +Σ−1

k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T

(Σ−1 −V−1)
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)
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Here, the terms after the second term of the above equation can be expressed in a signle term as follows:

−ξ TV−1ξ +
(

Σ−1
j µ j +Σ−1

k µk

)T (
Σ−1

j +Σ−1
k

)−1(
Σ−1

j µ j +Σ−1
k µk

)
−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T

(Σ−1 −V−1)
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)

= −ξV−1ξ +ζ T Σ−1ζ − (Σ−1ζ −V−1ξ )T (Σ−1 −V−1)(Σ−1ζ −V−1ξ )
= −ξV−1ξ +ζ T Σ−1ζ − (Σ−1ζ −V−1ξ )T Σ(V −Σ)−1V (Σ−1ζ −V−1ξ )
= −ξV−1ξ +ζ T Σ−1ζ − (ζ T −ξ TV−1Σ)T (V −Σ)−1(V Σ−1ζ −ξ )
= ζ T Σ−1ζ −ξV−1ξ −ζ T (V −Σ)−1V Σ−1ζ +ξ TV−1Σ(V −Σ)−1V Σ−1ζ

+ζ−1(V −Σ)−1ξ −ξ TV−1Σ(V −Σ)−1ξ
= −ζ T (V −Σ)−1ζ −ξ (V −Σ)−1ξ +ζ T (V −Σ)−1ξ +ξ T (V −Σ)−1ζ
= −(ζ −ξ )T (V −Σ)−1(ζ −ξ ). (56)

Proposition
Assume that f j(x), f j(x), fk(x) and p jk(x) are respectively given by f j(x) ∼ N(µ j,Σ j), fk(x) ∼ N(µk,Σk) and

p jk(x)∼ N(ζ ,V ), then integral of f j(x) fk(x)/p jk(x) over the whole domain is given by∫ f j(x) fk(x)
p jk(x)

dx =
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2 |V |

1
2 |W |−

1
2 exp

{
1
2
(ζ −ξ )T (V −Σ)−1(ζ −ξ )

}
×exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
(57)

Proof
Since f j(x) and fk(x) are defined by

f j(x) = (2π)−
k
2
∣∣Σ j

∣∣− 1
2 exp

{
−1

2
(x−µ j)

T Σ−1
j (x−µ j)

}
fk(x) = (2π)−

k
2 |Σk|−

1
2 exp

{
−1

2
(x−µk)

T Σ−1
k (x−µk)

}
, (58)

respectively, f j(x) fk(x) is given by

f j(x) fk(x) = (2π)−k ∣∣Σ j
∣∣− 1

2 |Σk|−
1
2 exp

{
−1

2
(x−µ j)

T Σ−1
j (x−µ j)−

1
2
(x−µk)

T Σ−1
k (x−µk)

}
. (59)

Then by Lemma 2

f j(x) fk(x) = (2π)−k ∣∣Σ j
∣∣− 1

2 |Σk|−
1
2 exp

{
−1

2
(x−ζ )T Σ−1(x−ζ )

}
×exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
.

Since p jk(x) is defined by

p jk(x) = (2π)−
k
2 |V |−

1
2 exp

{
−1

2
(x−ξ )TV−1(x−ξ )

}
, (60)

f j(x) fk(x)/p jk(x) is given by

f j(x) fk(x)
p jk(x)

= (2π)−
k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2 |V |

1
2 exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
×exp

{
−1

2
(x−ζ )T Σ−1(x−ζ )+

1
2
(x−ξ )TV−1(x−ξ )

}
. (61)
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Then by Lemma 4, it can be expressed as

f j(x) fk(x)
p jk(x)

= (2π)−
k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2 |V |

1
2 exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
×exp

{
1
2
(ζ −ξ )T (V −Σ)−1(ζ −ξ )

}
exp

{
−1

2
(x−η)TW (x−η)

}
. (62)

By integrating whole domain of x, we obtain∫ f j(x) fk(x)
p jk(x)

dx =
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2 |V |

1
2 |W |−

1
2 exp

{
1
2
(ζ −ξ )T (V −Σ)−1(ζ −ξ )

}
×exp

{
−1

2
(µ j −µk)

T (Σ j +Σk)
−1(µ j −µk)

}
, (63)

which complete the proof of the proposition.

By putting µk = µ j ,Σk = Σ j in the Proposition we obtain the following
Corollary

∫ f (x)2
j

p jk(x)
dx =

∣∣Σ j
∣∣−1 |V |

1
2
∣∣Wj

∣∣− 1
2 exp

{
1
2
(µ j −ξ )T (V − 1

2
Σ j)

−1(µ j −ξ )
}
. (64)

Note
The equation (62) can be directly obtained by considering the expression of the f j(x) fk(x)/p jk(x) as follows:

f j(x) fk(x)
p jk(x)

= (2π)−
k
2
∣∣Σ j

∣∣− 1
2 |Σk|−

1
2 |V |

1
2 (65)

× exp
{
−1

2
(x−µ j)

T Σ−1
j (x−µ j)−

1
2
(x−µk)

T Σ−1
k (x−µk)+

1
2
(x−ξ )TV−1(x−ξ )

}
.

Here the terms in the brace of the right hand side of the above equation is given by

(x−µ j)
T Σ−1

j (x−µ j)+(x−µk)
T Σ−1

k (x−µk)− (x−ξ )TV−1(x−ξ )

= xT
(

Σ−1
j +Σ−1

k −V−1
)

x− xT
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)

−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T

x+µT
j Σ−1

j µ j +µT
k Σ−1

k µk −ξ TV−1ξ

= (x−ζ )−1 W (x−ζ )−1 +µT
j Σ−1

j µ j +µT
k Σ−1

k µk −ξ TV−1ξ

−
(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)T (

Σ−1
j +Σ−1

k −V−1
)−1(

Σ−1
j µ j +Σ−1

k µk −V−1ξ
)
. (66)

Then by Lemma 5, it can be expressed as

(x−ζ )−1 W (x−ζ )−1 +(µ j −µk)
T (Σ j +Σk)

−1(µ j −µk)− (ζ −ξ )T (V −Σ)−1(ζ −ξ ). (67)

Therefore we obtain the equation (62).
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