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1. Introduction

We investigate a new smoothing method to estimate the hidden states of random
variables and to handle multiple noisy non-stationary time series data, and particu-
larly to deal with small sample economic time series. Kunitomo and Sato (2019), (see
Kunitomo, Sato and Kurisu (2018) also) have developed the separating information
maximum likelihood (SIML) method for estimating the non-stationary errors-in-
variables models. They have discussed the asymptotic properties and finite sample
properties of the estimation of unknown parameters. Kunitomo and Sato (2019)
utilized their results to solve the smoothing or filtering problem of hidden random
variables, which gives a new estimation method to handle macro-economic time se-
ries. In this paper, we continue to investigate the smoothing or filtering problem
and in particular, we develop the backward SIML smoothing method to solve the
initial value issue in the procedure. From our analysis, it is possible to interpret the
existing smoothing and filtering methods in the time domain and frequency domain.
Although some econometrician may not distinguish smoothing from filtering and the
latter terminology has been sometimes used, we shall use smoothing mainly in stead
of filtering in this paper.

There exists vast published research on the use of statistical time series anal-
ysis for macro-economic time series, which have the non-stationary trend, cycle,
seasonal. and measurement errors. For statistical filtering and smoothing meth-
ods, Kitagawa (2010) discussed the standard statistical methods already known,
including the Kalman-filtering and particle-filtering methods. Although many stud-
ies have examined statistical filtering theories, we must exercise caution in analyzing
non-stationary multivariate time series. The existing methods often depend on the
underlying distributions such as the Gaussian distributions for the Kalman-filtering,
and the procedure essentially depends on the dimension of state variables, there may
be some difficulty in extending the existing methods to high-dimension cases, even
when the dimension is about 10. On the other hand, we expect that our method is
simple and has some merits when handling small sample economic times series with
non-stationarity and seasonality with many variables, because our method does not
depend on the specific distributions as well as the dimension of the underlying ran-
dom variables. See Kunitomo, Awaya and Kurisu (2017) for a comparison of small
sample properties of the ML (maximum likelihood) and SIML estimation methods
for the non-stationary errors-in-variables models, and Nishimura, Sato and Taka-
hashi (2019) for an application of financial data smoothing. The most important
feature of the present procedure is that it may be applicable to small sample time
series data.

In Kunitomo and Sato (2019) there is an implicit assumption that we can han-
dle the initial value problem in smoothing or filtering. In the non-stationary time
series, however, the initial value of state estimate plays a crucial role in the re-
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sulting estimates of unobservable state vectors subsequently and then we need to
investigate this problem in a systematic way. The initial motivation of the present
paper to resolve this problem rather nicely. In fact we shall show that it is possible
to develop backward smoothing and iterative smoothing procedures, and we have
their convergence. Furthermore, some related issues arise and we shall develop the
multi-step smoothing and band-smoothing, which seem to be new in this paper. As
we will see, it seems that they are related to the general problem in the analysis of
non-stationary time series data.

In Section 2, we explain the non-stationary errors-in-variables model and the
SIML method. Then in section 3, we develop the SIML-filtering methods including
the forward, backward, and multi-step smoothing procedures. We give a theoretical
result of convergence of the smoothing or filtering method for the initial value prob-
lem and discuss the evaluation criteria. Then in section 4, we discuss generalizations
of the non-stationary errors-in-variables model and a mathematical interpretation
of our procedure. In Section 5, we give some numerical example and in section 6,
some conclusions are given. Some details of mathematical derivations and figures
are given in Appendix.

2. Non-stationary Errors-in-variables models

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)

′
be a p×1 vector andYn = (y

′
i) (= (yij)) be an n×

p matrix of observations and denote y0 as the initial p×1 vector. We try to estimate
the underlying non-stationary trends when we have the nonstationary state xi (=
(xji)) (i = 1, · · · , n), and the vector of noise component v

′
i = (v1i, · · · , vpi), which

are independent of xi. We use the non-stationary errors-in-variables representation

yi = xi + vi (i = 1, · · · , n),(2.1)

where xi (i = 1, · · · , n) is a sequence of non-stationary I(1) process, which satisfies

∆xi = (1− L)xi = v
(x)
i ,(2.2)

and v
(x)
i is a sequence of i.i.d. random vectors with E(v

(x)
i ) = 0 and E(v

(x)
i v

(x)′

i ) =
Σx. The random vector vi (i = 1, · · · , n) is a sequence of i.i.d. random variables
with E(vi) = 0 and E(viv

′
i) = Σv.

We consider the situation when each pair of vectors ∆xi and vi are indepen-
dently, identically, and normally distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv),
respectively, and we have the observations of an n× p matrix Yn = (y

′
i). Given the

initial condition y0, the np× 1 random vector (y
′
1, · · · ,y

′
n)

′
follows

vec(Yn) ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,(2.3)
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where 1
′
n = (1, · · · , 1) and

Cn =


1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1


n×n

.(2.4)

We use the K∗
n−transformation that from Yn to Zn (= (z

′
k)) by

Zn = K∗
n

(
Yn − Ȳ0

)
,K∗

n = PnC
−1
n ,(2.5)

where

C−1
n =


1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1


n×n

,(2.6)

and

Pn = (p
(n)
jk ) , p

(n)
jk =

√√√√ 2

n+ 1
2

cos
[

2π

2n+ 1
(k − 1

2
)(j − 1

2
)
]
.(2.7)

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′
n and Dn is a diagonal

matrix with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) and we write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(2.8)

The separating information maximum likelihood (SIML) estimator of Σ̂x can be
defined by

Gm = Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .(2.9)

Given the initial condition, the log-likelihood function except some constants when
the underlying distributions are Gaussian can be written as

Ln(θ) =
n∑

k=1

log |a∗knΣv +Σx|−1/2 − 1

2

n∑
k=1

z
′

k[a
∗
knΣv +Σx]

−1zk(2.10)

and

(−2)Ln(θ) =
n∑

k=1

log |a∗knΣv +Σx|+
n∑

k=1

z
′

k[a
∗
knΣv +Σx]

−1zk ,(2.11)

where θ is a vector of parameters.
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The model of (2.1) and (2.2) can be generalized to the cases when we have cycle
and seasonal components, and when vt and ∆xt are auto-correlated (see Kunitomo
and Sato (2019)). In this paper, however, we first focus on the smoothing or filtering
procedure of the simple non-stationary multiple time series. We shall discuss several
extensions in Section 4 briefly.

3. SIML Smoothing and Backward Smoothing

3.1 Forward SIML Smoothing

Kunitomo and Sato (2019) investigated the general filtering procedure based on the
Kn−transformation. When we interpret that the elements of the resulting n × p
random matrix Zn by this transformation take real values in the frequency domain,
it is easy to understand their roles. Since Pn is a kind of real-valued discrete Fourier
transformation, vectors zk (k = 1, · · · , n) in Zn are asymptotically uncorrelated. We
consider the partial inversion of the transformed orthogonal processes. Let an n× p
matrix

X̂n(Q) = CnPnQnPnC
−1
n (Yn − Ȳ0)(3.1)

and
Zn = PnC

−1
n (Yn − Ȳ0) ,Yn = Ȳ0 +X∗

n +Vn ,(3.2)

where X∗
n = (x∗′

i ) Vn = (v
′
i) are n× p matrices, x∗

i = xi − x0 and we set the initial
vector as y0 = x0.
The stochastic process Zn is the orthogonal decomposition of the original time series
Yn in the frequency domain and Qn is an n×n filtering matrix. Because Yn consist
of non-stationary time series, we need a special form of transformation Kn in (3.13).
We give explicit form for the trend smoothing (or filtering) procedure. Let an m×n
choice matrix Jm = (Im,O), and let also n× p matrix

X̂n(m) = CnPnJ
′

mJmPnC
−1
n (Yn − Ȳ0)(3.3)

and an n× n matrix Qn = J
′
mJm.

We construct an estimator of n×p hidden state matrixXn only in the lower frequency
parts by using the inverse transformation of Zn and deleting the estimated noise
parts (see Nishimura, Sato and Takahashi (2019)). We denote the hidden trend
state as

Xn(m) = CnPnJ
′

mJmPnC
−1
n Xn .(3.4)

This quantity is different from Xn because xi (i = 1, · · · , n) in (3.1) and (3.2)
contains not only the trend component of yi (i = 1, · · · , n), but also the noise
component in the frequency domain, which is different from the measurement noise
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component vi (i = 1, · · · , n) of (3.1) and (3.3). We try to estimate the trend
component of xi by using (3.3) and recover the trend component of Xn near at the
zero frequency because the effects of differenced measurement error noises (vi−vi−1)
are negligible around at zero frequency. This method differs from some existing
procedures that consider the decomposition of time series only in the time domain.
Our arguments can be justified by using the frequency decomposition of yi and
r
(n)
i = ∆yi (= yi−yi−1 and y0 being fixed), and we will discuss this issue in Section
4 (see Section 5.2 of Kunitomo and Sato (2019)).

3.2 A Backward Smoothing

We reconsider the role of initial condition in the non-stationary process. We take
n× p matrix Y∗

n = (y
′
i−1) and set the np× 1 random vector (y

′
0, · · · ,y

′
n−1)

′ 1. Given
the initial condition yn, we rewrite

vec(Y∗
n) ∼ Nn×p

(
1n · y

′

n, In ⊗Σv +C
′

nCn ⊗Σx

)
,(3.5)

where 1
′
n = (1, · · · , 1) and Cn is given by (2.4).

We use the K∗∗
n −transformation that from Y∗

n to Z∗
n (= (z∗

′
k )) by

Z∗
n = K∗∗

n

(
Y∗

n − Ȳ∗
n

)
,K∗∗

n = P∗
nC

′−1
n ,(3.6)

where Ȳ∗
n = 1ny

′
n,

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1


n×n

,(3.7)

and

P∗
n = (p

∗(n)
jk ) , p

∗(n)
jk =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
)j
]
.(3.8)

By using the spectral decomposition C
′−1
n C−1

n = P∗
nDnP

∗′
n and Dn is a diagonal

matrix with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) and we write

a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(3.9)

(See Appendix for derivations.)

1Given the initial condition yn we consider the joint distribution of (y
′

n−1, · · · ,y
′

0)
′
, where we

take (2.1) for i = 0, · · · , n− 1.
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We consider the partial inversion of the transformed orthogonal processes. Let an
n× p matrix

X̂∗
n(Qn) = C

′

nP
∗′
nQnP

∗
nC

′−1
n (Y∗

n − Ȳ∗
n)(3.10)

and
Z∗

n = P∗
nC

′−1
n (Y∗

n − Ȳ∗
n) ,Y

∗
n = Ȳ∗

n +X∗
n +V∗

n ,(3.11)

where X∗
n = (x∗′

i−1) and V∗
n = (v∗′

i−1) are n× p matrices.
The stochastic process Z∗

n is the orthogonal decomposition of the original time series
Y∗

n in the frequency domain and Qn is an n×n filtering matrix. Because Y∗
n consists

of non-stationary time series, we need a special form of transformation K∗∗
n . We give

explicit form for the trend filtering procedure and let also n× p matrix

X̂∗
n(m) = C

′

nP
∗′
n J

′

mJmP
∗
nC

′−1
n (Y∗

n − Ȳ∗
n)(3.12)

and an n× n matrix Qn = J
′
mJm.

We construct an estimator of n×p hidden state matrixX∗
n only in the lower frequency

parts by using the inverse transformation of Z∗
n and deleting the estimated noise

parts. We denote the hidden trend state as

X∗
n(m) = C

′

nP
∗′
n J

′

mJmP
∗
nC

′−1
n X∗

n .(3.13)

3.3 Initial Value Problem and Convergence

When we have non-stationary time series observations that follows a random walk
as statistical model, the role of initial value is important because of non-stationarity.
This aspect is different from stationary time series models, in which the effects of
initial value are negligible when the sample size is large. Hence it is important to
have smoothing or filtering procedure of non-stationary time series, that does not
depend much on the initial value. As the initial value, there can be two possibilities
as y1 and yn when we have n observations yi (i = 1, · · · , n). On this problem we
have an interesting useful result.

We consider two operators T
(m,n)
2k and T

(m,n)
2k−1 (k = 1, · · ·) to an n × 1 vector. Let

T0 = In and define T
(m,n)
2k−1 and T

(m,n)
2k recursively for k = 1, · · · ,M by

T
(m,n)
2k+1 (y) = CnPnQ

(m)
n PnC

−1[y − 1n(e
′

1T
(m,n)
2k (y))

′
] + 1n(e

′

1T
(m,n)
2k (y))

′
,(3.14)

and

T
(m,n)
2k (y) = C

′

nP
∗ ′

n Q(m)
n P∗

nC
′−1[y − 1n(e

′

nT
(m,n)
2k−1 (y))

′
] + 1n(e

′

nT
(m,n)
2k−1 (y))

′
,(3.15)

where Q(m)
n = J

′
mJm, e

′
1 = (1, 0, · · · , 0) and e

′
n = (0, · · · , 0, 1) are unit vectors.

The operator T
(m,n)
2k+1 (k = 1, 2, · · ·) is the SIML filering with the initial value y1 and
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T
(m,m)
2k (k = 1, 2, · · ·) is the revesed filtering. For non-stationary time series two

operators have different meaning.
Then we have the next proposition on the convergence of smoothing rocedures. The
proof is given in the Appendix.

Theorem 3.1 : As k → ∞, there exists n0 such that for n0 < n and m < n, we
have

T
(m,n)
2k+1 → T

(m,n)
1∗ =

∞∑
s=0

(A
(m,n)
2 )sA

(m,n)
1 ,(3.16)

and

T
(m,n)
2k → T

(m,n)
2∗ =

∞∑
s=0

(A
(m,n)
2∗ )sA

(m,n)
1∗ ,(3.17)

where

A
(m,n)
1 = CnPnQ

(m)
n PnC

−1 + [In −CnPnQ
(m)
n PnC

−1]1ne
′

1C
′

nP
∗
nQ

(m)
n P∗

nC
′−1 ,

A
(m,n)
2 = [In −CnPnQ

(m)
n PnC

−1]× [1− e
′

1C
′

nP
∗′
nQ

(m)
n P∗

nC
′−11n] ,

A
(m,n)
1∗ = C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1 + [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1]1ne

′

nCnPnQ
(m)
n PnC

−1 ,

A
(m,n)
2∗ = [In −C

′

nP
∗′
nQ

(m)
n P∗

nC
′−1]× [1− e

′

nCnPnQ
(m)
n PnC

−11n] .

The absolute values of all eigenvalues of A
(m,n)
2 and A

(m,n)
2∗ are less than one, and

then we can expresss

∞∑
s=0

(A
(m,n)
2 )s = (In −A

(m,n)
2 )−1 ,

∞∑
s=0

(A
(m,n)
2∗ )s = (In −A

(m,n)
2∗ )−1 .

Since the initial value is the starting point of non-stationary time series, we need
to develop some smoothing procedure, which does not depend on the initial value.
For the practical purpose, often we do want to use the procedure, which does not
depend on the latest observation yn. In this case, it may be reasonable to use the
T

(n)
2 .

The formulation of two filtering in this subsection is slightly different from Section
3.2 (we use n + 1 observations) because we have used n observations. It may be
natural for repeating smoothing and this aspect of difference is negligible when n is
large.

We have the next result on the backward SIML smoothing. The proof is given
in the Appendix.

Theorem 3.2 : Assume m/n → 0 as n → ∞. Then,

∥C′

nP
∗′
nQ

(m)
n P∗

nC
′−1 −PnQ

(m)
n Pn∥ → 0(3.18)

8



n → ∞, where the norm of a matrix A = (aij) (n × n) is defined by ∥A∥ =
maxi,j=1,···,n |aij|.

From this representation, the reversed SIML smoothing is essentially the same
smoothing with a real (finite, and discrete) Fourier transformation if we take the
time is reversed from n to 1 instead of 1 to n.

3.4 Band Smoothing

We consider a general filtering based on the K∗
n transformation and use the inversion

of some frequency parts of the random matrix Z∗
n. The leading example is the

seasonal frequency in the discrete time series and we take s (> 1) being a positive
integer.
Let an m2× [m1+m2+(n−m1−m2)] choice matrix Jm1,m2 = (O, Im2 ,O) (we take
m1 +m2 < n), and let also n× p matrix

X̂∗
n(m1,m2) = C

′

nP
∗′
n J

′

m1,m2
Jm1,m2P

∗
nC

′−1
n (Yn − Ȳn)(3.19)

and an n× n matrix Qn = Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 .

As an example, when we have the seasonal frequency s (> 1), we can take
m1 = [2n/s] − [m/2] and m2 = m. For instance, we take s = 4 for quarterly data
and s = 12 for monthly data.
As in the trend smoothing problem, the SIML-filtering value for

X∗
n(m1,m2) = C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1
n X∗

n ,(3.20)

and it is an estimate of some frequency components of xi (i = 1, · · · , n).
In this case we can define T2k−1 and T2k for k = 1, · · ·M as (3.14) and (3.15) by using
Jm1,m2 instead of Jm. Then it is straightforward to to find the next proposition on
the convergence of smoothing rocedures and the proof is in the Appendix.

Theorem 3.3 : As k → ∞, there exists n0 such that for n0 < n we have

T
(m1,m2,n)
2k+1 → T

(m1,m2,n)
1∗ =

∞∑
s=0

(A
(m1,m2,n)
2 )sA

(m1,m2,n)
1 ,(3.21)

and

T
(m1,m2,n)
2k → T

(m1,m2,n)
2∗ =

∞∑
s=0

(A
(m1,m2,n)
2∗ )sA

(m1,m2,n)
1∗ ,(3.22)

where

A
(m1,m2,n)
1 = CnPnQ

(m1,m2)
n PnC

−1

+ [In −CnPnQ
(m1,m2)
n PnC

−1]1ne
′

1C
′

nP
∗
nQ

(m1,m2)
n P∗

nC
′−1 ,

A
(m1,m2,n)
2 = [In −CnPnQ

(m1,m2)
n PnC

−1]× [1− e
′

1C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−11n] ,
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A
(m1,m2,n)
1∗ = C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1

+ [In −C
′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1]1ne

′

nCnPnQ
(m1,m2)
n PnC

−1

A
(m1,m2,,n)
2∗ = [In −C

′

nP
∗′
nQ

(m1,m2)
n P∗

nC
′−1]× [1− e

′

nCnPnQ
(m1,m2)
n PnC

−11n] .

The absolute values of all eigenvalues of A
(m1,m2,n)
2 and A

(m1,m2,n)
2∗ are less than one,

and then we can express

∞∑
s=0

(A
(m1,m2,n)
2 )s = (In −A

(m1,m2,n)
2 )−1 ,

∞∑
s=0

(A
(m1,m2,n)
2∗ )s = (In −A

(m1,m2,n)
2∗ )−1 .

Theorem 3.1 is a special case of Theorem 3.3 when m1 = 0 and m2 = m.

3.5 Multi-Step Smoothing

In the forward and backward smoothing procedures, it is important to choose an
appropriate m. In some applications, however, the problem becomes difficult when
there are some seasonal components. However, it may be possible to run the forward
and backward smoothing several times, which may be called multi-stage smoothing.

Let T
(m1,n)
1∗ be the first stage forward smoothing with a specific choice of m1.

Then we can define the double-stage forward smoothing by

T
(m1,m2,n)
1,1 = T

(m1,n)
1∗ T

(m2,n)
1∗ .(3.23)

Similarly, we can define the double-stage backward smoothing by

T
(m1,m2,n)
2,2 = T

(m1,n)
2∗ T

(m2,n)
2∗ .(3.24)

There can be more complicated smoothing procedures. Then we need some criterion
to find an appropriate smoothing procedure for applications. It may be possible to
deal with complicated seasonal patterns in the frequency domain because we first
take a rather large m1 and then we take a smaller m2, for instance.

For real applications, it may not be clear to find an appropriate m or m1 and
m2 at the beginning. One strategy in the trend estimation would be to choose a
relatively large m1, which should be less than the seasonality frequency, at the initial
stage. Then, at the second stage, we choose m2, which is smaller than m1 and use
the following evaluation criterion.

3.6 On Prediction Errors and Evaluation Criteria

The problem of choosing an appropriate filtering including the choice of m (or m1

and m2 in a more general case) in smoothing is an important question for appli-
cations. Since our procedure does not assume a particular distribution such as

10



Gaussianity and semi-parametric, it looks a challenging one. As we shall discuss in
the next section (see Kunitomo and Sato (2019)), there is a natural way to handle
the problem, which will be illustrated by the forward filtering case. (There is a
similar argument for the backward smoothing case.)

Let r
(n)
j = y

(n)
j − y

(n)
j−1 (j = 1, · · · , n) and we write

r̂
(n)
j =

n∑
k=1

pjkzk ,(3.25)

where z∗k is the orthogonal process at the frequency λ
(n)
k = (k − 1/2)/(2n+ 1) (k =

1, · · · , n) (see Section 5 of Kunitomo and Sato (2019)).
Then for h ≥ 1, it may be natural to use the predictor

r̂
(n)
n+h(m) =

m∑
k=1

pn+h,kzk ,(3.26)

which is a linear combination of m orthogonal processes with different frequencies.
Then for h ≥ 1, it may be reasonable to use the linear predictor

x̂
(n)
n+h(m) =

n+h∑
s=h+1

r̂(n)s (m) =
n+h∑

s=h+1

m∑
k=1

pskzk .(3.27)

By using (3.1) and (3.2), the prediction error can be written as

x̂
(n)
n+h(m)− x

(n)
n+h =

m∑
k=1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Vn)kj .+

n∑
k=m+1

n+h∑
s=h+1

n∑
j=1

psj(C
−1
n Xn)kj .

We use an elementary relation that

n+h∑
s=h+1

psk =
1√

2n+ 1

sin 2π
2n+1

(n+ h)(k − 1
2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

.

Then, when p = 1 for instance, by using a∗kn (k = 1, · · · ,m) in (2.8), we can derive
the prediction MSE as

MSE(m) =
4σ2

v

2n+ 1

m∑
k=1

[sin
2π

2n+ 1
(n+ h)(k − 1

2
)− sin

2π

2n+ 1
h(k − 1

2
)]2

+
σ2
x

2n+ 1

n∑
k=m+1

[
sin 2π

2n+1
(n+ h)(k − 1

2
)− sin 2π

2n+1
h(k − 1

2
)

sin 2π
2n+1

1
2
(k − 1

2
)

]2 .(3.28)

As a typical example, we set σ2
v = 2, σ2

x = 1, h = 4, n = 100. The minimum value of
MSE is attained when m∗ = 23.
We notice that the first term is an increasing function of m while the second term

11



is a decreasing function of m. There can be a point of m∗ such that MSE(m) is
minimized. There can be several criteria, which are based on the prediction MSE.
Because the prediction error depends on the unknown parameters of Σx and Σv, we
need to replace them in a simple way. When p = 1, we need the ratio of estimated
variances, which can be constructed by the discussion of Section 3 of Kunitomo,
Awaya and Kurisu (2019).

4. Discussions

4.1 An Extended Errors-in-Variables Model

There are possible generalizations of the basic model in Section 3. We consider the
additive decomposition model

yi = xi + si + vi (i = 1, · · · , n),(4.1)

where we take positive integers s (s > 1), N , and n = sN for the resulting simplicity
and arguments, and si (i = 1, · · · , n) is a sequence of non-stationary process, which
satisfies

∆si = (1− L)si = v
(s)
i ,(4.2)

where with the lag-operator Lssi = si−s, ∆s = 1− Ls,

v
(s)
i =

∞∑
j=0

C
(s)
sj e

(s)
i−sj ,(4.3)

and e
(s)
i is a a sequence of i.i.d. random vectors with E(e

(s)
i ) = 0 and E(e

(s)
i e

(s)′

i ) =

Σ(s)
e (a non-negative definite matrix). The p × p coefficient matrices C

(s)
j are ab-

solutely summable (
∑∞

j=0 ∥C
(v)
sj ∥ < ∞, ∥C(s)

sj ∥ = maxk,l=1,···,p |c(s)sk,sl(j)| with C
(s)
sj =

(c
(s)
sk,sl(j))).

Let f∆x(λ), f∆s(λ), and fv(λ) be the spectral density (p × p) matrices of ∆xi, ∆si
and vi (i = 1, · · · , n) and

f∆s(λ) = (
∞∑
j=0

C
(s)
sj e

2πiλsj)Σ(s)
e (

∞∑
j=0

C
(s)′

sj e−2πiλsj) (−1

2
≤ λ ≤ 1

2
) ,(4.4)

where we set C
(s)
0 = Ip as normalizations and i2 = −1. Then the p × p spectral

density matrix of the transformed vector process, which are observable, the spectral
density of the difference series ∆yi (= yi − yi−1) can be represented as

f∆y(λ) = f∆x(λ) + f∆s(λ) + (1− e2πiλ)fv(λ)(1− e−2πiλ) .(4.5)

12



We denote the long-run variance-covariance matrices of trend components and sta-
tionary components for g, h = 1, · · · , p as

Σx = f∆x(0) (= (σ
(x)
gh )) , Σs = f∆s(

1

s
) (= (σ

(s)
gh )) ,(4.6)

and
Σv = fv(0) = (σ

(v)
gh ) .(4.7)

Let f (SR)
v (λk), f

(SR)
∆s (λk) and f

(SR)
∆x (λk) be the symmetrized p × p spectral ma-

trices of vi, si and ∆xi at λk (= (k − 1
2
)/(2n + 1)) for k = 1, · · · , n, that is,

f (SR)
v (λk) = (1/2)[f (SR)

v (λk) + f̄ (SR)
v (λk)], f

(SR)
∆s (λk) = (1/2)[f

(SR)
∆s (λk) + f̄

(SR)
∆s (λk)]

and f
(SR)
∆x (λk) = (1/2)[f

(SR)
∆x (λk) + f̄

(SR)
∆x (λk)].

Theorem 5.1 of Kunitomo and Sato (2019) gives the condition that the orthogonal
processes are approximately distributed as the Gaussian distribution. Then, (-2)
times the log-likelihood function in the general model can be approximated as

(−2)Ln(θ) =
n∑

k=1

log |a∗knf (SR)
v (λk) + f

(SR)
∆s (λk)) + f

(SR)
∆x (λk))|(4.8)

+
n∑

k=1

z
′

k[a
∗
knf

(SR)
v (λk) + f

(SR)
∆s (λk)) + f

(SR)
∆x (λk)]

−1zk .

4.2 On a Frequency Interpretation

At the first glance, the SIML smoothing method might be regarded as an ad-hoc sta-
tistical procedure without any mathematical foundation. However, on the contrary,
there is a rather solid statistical foundation. Section 5 of Kunitomo and Sato (2019)
has discussed a justification of the SIML forward-smoothing and it is different from
the standard explanation of time series analysis in the frequency domain (Doob
(1953), and Brockwell and Davis (1990), and some extensions to non-stationaru
process (see Brillinger and Hatanaka (1969), Brillinger (1980)). We can proceed a
similar argument of Kunitomo and Sato (2019) on the backward smoothing.

For λ
(n)
k = (k − 1/2)/(2n+ 1) (k = 1, · · · , n), we write

z∗n(λ
(n)
k ) =

n∑
j=1

r
(n)∗
j [

2√
2n+ 1

sin[2πλ
(n)
k j] (k = 1, · · · , n),(4.9)

where r
(n)
j = y

(n)
j−1 − r

(n)
j (j = 0, · · · , n− 1).

Then, by using the inversion transformation with P∗
n, we can confirm that

r(n)s =
n∑

k=1

p∗skz
∗
n(λ

(n)
k ) (s = 1, · · · , n).(4.10)

It is another representation of R∗
n = (r

∗(n)′
i−1 ) = C

′−1
n X̂∗

n(Q
∗) when Q∗

n = In. For any
s (s = 1, · · · , n), r(n)s can be recovered as the weighted sum of othogonal processes
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z∗(n)(λ
(n)
k ) at frequency λ

(n)
k (k = 1, · · · , n). We then, by using Y∗

n = C
′
nR

′
n, recover

the non-stationary process y
(n)
t (t = 0, · · · , n− 1) given the initial condition y0 as

y
(n)
t = yn +

t∑
s=1

r
∗(n)
n−s .(4.11)

Let

αn(λ
(n)
m , j) =

1

n

m∑
k=1

[2 sin 2πλ
(n)
k j](4.12)

Then, when λ(n)
m → λ as n → ∞ (0 < λ < 1

2
), we find

βn(λ
(n)
m , j) → β(λ, j) =

2[1− cos 2πλ j]

π j
.

If we set the uncorrelated stochastic process of uncorrelated increments with con-
tinuous parameter λ (0 ≤ λ ≤ 1

2
) as Bn(λ) =

∑n
j=1 β(λ, j)r

∗(n)
j , then we find∫ 1

2

0
sin[2πλs]dBn(λ) = r∗(n)s (s = 1, · · · , n) .(4.13)

This corresponds to the continuous representation of a discrete (real-valued) sta-
tionary time series in the frequency domain (see Chapter 7.4 of Anderson (1971)).
If we write the limit of B = limn→∞Bn(λ) (assuming it exists), the (real-valued)
spectral distribution matrix FRS for any 0 ≤ λ1 < λ2 ≤ 1/2 can be defined as

FRS(λ2 − λ1) = E[(B(λ2 − λ1)B(λ2 − λ1)
′
] =

∫ λ2

λ1

fRS(λ)dλ(4.14)

if FRS is absolutely continuous and the matrix-valued density process fRS(λ) (0 ≤
λ1 < λ2 ≤ 1/2) exists.

If we set R̂∗
n(m) = (r̂

∗(m,n)′

i ) = C
′−1
n X̂∗

n(m), where r
∗(m,n)
i are p × 1 vectors for

i = 1, · · · , n. If we write

r̂∗(m,n)
s =

m∑
k=1

p∗skz
∗
n(λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n),(4.15)

it is the trend SIML-smoothing value for r∗(m,n)
s . It is X̂∗

n(m) (= C
′
nR

∗
n(m)). and

r∗(m,n)
s =

m∑
k=1

p∗skz
∗∗
n (λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n),(4.16)

where z∗∗(n)(λ
(n)
k ) are constructed from the n × p hidden states matrix X∗

n instead
of the observed n × p matrix data Y∗

n. Hence it is the same as the element of
C

′−1
n X̂∗

n(m), and for λ(n)
m = m/n in the frequency domain it is a discrete version of

r̂∗(n)s (λ(n)
m ) =

∫ λ
(n)
m

0
sin[2πλ s]dBn(λ) .(4.17)
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Then, it is the same as the element of C
′−1
n X̂∗

n(m), and its has the corresponding
(continuous) version in the frequency domain.

Similarly, r̂∗m1,m2,n)
s =

∑m1+m2
k=m1+1 psk∆λz

∗(n)(λ
(n)
k ) = r̂∗(m2,n)

s −r̂∗(m1,n)
s (s = 1, · · · ,m; 0 <

m1 < m2 < n) can be regarded as a discrete version of

r̂∗(n)s (λ(n)
m1

, λ(n)
m2

) =
∫ λ

(n)
m2

λ
(n)
m1

sin[2πλ s]dBn(λ) .(4.18)

5. A Numerical Example

We illustrate the use of the SIML-forward smoothing and SIML-backward smooth-
ing for real data. We have used the monthly US Manufacturers’ New Orders Data
during 2010-2020 because it has been known that this time series data has trend,
wild seasonal fluctuation and noise components.

Red Curve in Figure 1 shows the forward smoothing given the first observation
as the initial condition with m = 5. Green Curve in Figure 1 shows T ∗

1 as the
limit of the forward-backward iterations. Violet Curve in Figure 1 shows the two-
step forward filtering with m1 = 15(the first smoothing) and m = 5(the second
smoothing). Blue Curve in Figure 2 shows the backward smoothing given the last
observation as the initial condition with m = 5. Skyblue Curve in Figure 2 show T ∗

2

as the limit of the backward-backward iterations. Violet Curve in Figure 2 shows
the two-step backward filtering with m1 = 15(the first smoothing) and m = 5(the
second smoothing).

As we have expected, the initial value of both forward and backward smoothers
have significant effects around the initial values at which we start smoothing. The
effects of choosing the initial value become negligible either repeating smoothing
(or filtering) and multi-step smoothing. The resulting differences in two procedures
after a few steps are small for practical purposes.

6. Conclusions

When the observed non-stationary multivariate time series contain noises, it may be
difficult to disentangle the effects of trends and noises. This study is a subsequent
one to Kunitomo and Sato (2019), which investigated a new statistical procedure
to decompose time series into non-stationary trend component, seasonal component
and stationary noise (or measurement errors) component. The resulting smoothing
or filtering method for non-stationary multivariate series is simple and free from the
underlying distributions of noise and state vector and therefore it is robust against
possible misspecification in the non-stationary multivariate time series.

There are several interesting problems developed by our approach in this study.
Our method framework gives some earlier studies on the filtering methods in the
time domain and frequency domain. Although our method is a non-parametric
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Figure 1: The forward filtering results for US monthly US Manufacturers’ New Orders from 2010
to 2020. (https://www.census.gov/manufacturing/m3/index.html)
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Figure 2: The backward filtering results for US monthly US Manufacturers’ New Orders from
2010 to 2020. (https://www.census.gov/manufacturing/m3/index.html)
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smoothing method, there is a close relationship with the existing smoothing and
filtering methods such as Decomp by Kitagawa (2010), which was a subsequent
method of Akaike (1980). (See some discussions in Kunitomo and Sato (2019).)
There would be many empirical applications, which will be reported in another
occasion.
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APPENDIX A : Mathematical Derivations

We now present some details of derivations that we have omitted in the previous
sections. Most of our derivations is to apply trigonometric relations, which are
elementary and straightforward in a sense. We show only the essential parts of
derivations.

(i) Characteristic Roots and Vectors :

Lemma A.1 : (i) Define an n× n matrix A∗
n by

A∗
n =

1

2


0 1 0 · · · 0
1 0 1 · · · 0
0 1 0 1 · · ·
0 0 · · · 0 1
0 · · · 0 1 1

 .(A.1)

Then cos π( 2k−1
2n+1

) (k = 1, · · · , n) are eigen-values of A∗
n and the eigen-vectors are

sin[π( 2k−1
2n+1

)1]

sin[π( 2k−1
2n+1

)2]
...

sin[π( 2k−1
2n+1

)n]

 (k = 1, · · · , n).(A.2)

(ii) We have the spectral decomposition

C
′−1
n C−1

n = P∗
nDnP

∗′
n = 2In − 2A∗

n ,(A.3)

where Dn is a diagonal matrix with the k-th element

dk = 2

[
1− cos(π(

2k − 1

2n+ 1
))

]
(k = 1, · · · , n) ,(A.4)

C
′−1
n =


1 −1 · · · 0 0
0 1 −1 · · · 0
0 0 1 −1 · · ·
0 0 0 1 −1
0 0 0 0 1

(A.5)

and

P∗
n = (p∗jk) , p

∗
jk =

√√√√ 2

n+ 1
2

sin
[

2π

2n+ 1
(k − 1

2
) j
]
.(A.6)
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Proof of Lemma A.1 : (i) Let A∗
n = (a∗ij) (i, j = 1, · · · , n) and an n × 1

vector x = (xt) (t = 1, · · · , n) satisfying A∗
nx = λx . Then

x2

2
= λx1 ,(A.7)

xt−1 + xt+1

2
= λxt (t = 2, · · · , n− 1) ,(A.8)

1

2
xn−1 + xn = λxn .(A.9)

Let ξi (i = 1, 2) be the solutions of ξ2 − 2λξ + 1 = 0. Because 2λ = ξ1 + ξ2 and
ξ1ξ2 = 1, we have the solution as xt = c1ξ

t
1 + c2ξ

−t
1 (t = 1, · · · , n) and ci (i = 1) are

real constants. The first equation implies 0 = c1ξ
2
1 + c2ξ

−2
1 − (ξ1+ ξ−1

1 )(c1ξ1+ c2ξ
−1
1 ),

and c1 + c2 = 0 . Then we find that xt = c1[ξ
t
1 − ξ−t

1 ] and the third equation implies
ξ2n+1
1 = −1. Therefore,

λk = cos[π
2k − 1

2n+ 1
] (k = 1, · · · , n) .(A.10)

By taking c1 = (1/2i), the elements of the characteristic vectors ofA∗
n with cos[π(2k−

1)/(2n+ 1)] are

xt =
1

2i

[
ξt1 − ξ−t

1

]
= sin

[
π
2k − 1

2n+ 1
t

]
.(A.11)

(ii) The rest of the proof involves the standard arguments of spectral decomposition
in linear algebra. Q.E.D.

Proof of Theorem 3.1 :

(i) We consider the case of T2k+1 (k ≥ 1). By using the recursive relations, for k ≥ 1
we can represent

T2k+1 = A
(m,n)
1 + A

(n)
2 T2(k−1)+1 ,(A.12)

where an n× n metrix A
(m,n)
2 is defined by

A
(m,n)
1 = (In −CnPnJ

′

mJmPnC
−1)1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1)1ne
′

n .(A.13)

Then, we consider the characteristic roots of the coefficient matrix A
(m,n)
2 . Because

the rank of A
(n)
2 is one, there are n− 1 zero roots and one non-zero root, which is

a2n = e
′

n(In −CnPnJ
′

mJmPnC
−1)1ne

′

1(In −C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1)1n(A.14)

= [1− 1nCnPnJ
′

mJmPnC
−1en][1− 1nC

′

nP
∗
nJ

′

mJmP
∗
nC

′−1e1] .

By using the relation

1− 1
′

nCnPnJ
′

mJmPnC
−1e1 = 1

′

nCnPnJ
′

n−mJn−mPnC
−1e1 ,
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where Jn−m = (O, In−m) is a (n−m)× [m+ (n−m)] matrix. Because C−1
n e1 = e1

and the last term becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=m+1

[
n∑

j=1

cos
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)] ,

which is less than 1. It is because by using Lemma 5.1 of Kunitomo et al. (2018),
the above term is

[
2

2n+ 1
]

n∑
k=m+1

[[
sin 2π

2n+1
(k − 1

2
)n

sin π
2n+1

(k − 1
2
)
]× cos

2π

2n+ 1
(k − 1

2
)(1− 1

2
)]

Because

sin
π

2n+ 1
(k − 1

2
)[2n+ 1− 1] = sin π(k − 1

2
) cos

π

2n+ 1
(k − 1

2
) ,

it becomes

[
2

2n+ 1
]

n∑
k=m+1

sin π(k − 1

2
)× [

[cos π
2n+1

(k − 1
2
)]2

sin π
2n+1

(k − 1
2
)

] .

By using the fact that sinπ(k − 1
2
) takes +1 and −1 alternatively, we evaluate the

difference of

[cos π
2n+1

(k − 1
2
)]2

sin π
2n+1

(k − 1
2
)

−
[cos π

2n+1
(k − 1− 1

2
)]2

sin π
2n+1

(k − 1− 1
2
)

∼
[cos π

2n+1
(k − 1

2
)]2[1− cos π

2n+1
]

sin π
2n+1

(k − 1
2
)

.

We can take n > n0 such that sin π
2n+1

and 1− cos π
2n+1

being sufficient small. Then

each term becomes small and finally 1
′
nCnPnJ

′
n−mJn−mPnC

−1e1 is less than one.
Similarly,

[1− 1
′

nC
′

nP
∗
nJ

′

mJmP
∗
nC

′−1en] = 1
′

nC
′

nP
∗
nJ

′

n−mJn−mP
∗
nC

′−1en] .

Because 1
′
nC

′
n = 1

′
n and C

′−1
n en = en, the last term becomes

[

√√√√ 2

n+ 1
2

]2
n∑

k=1

n∑
j=m+1

[sin
2π

2n+ 1
(k − 1

2
)j sin

2π

2n+ 1
(n− 1

2
)j ,

which is less than 1. In this evaluation, we have utilized the relation that

n∑
k=1

sin
2π

2n+ 1
(k − 1

2
)j =

1

2i

ei
2π

2n+1
jn + e−i 2π

2n+1
jn − 2

ei
2π

2n+1
j 1
2 − e−i 2π

2n+1
j 1
2

(A.15)

=
1

2

1− cos 2π
2n+1

jn

sin 2π
2n+1

j 1
2

.
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By using the elementary relation on trigonometric functions that for 2(n − 1/2) =
(2n+ 1)− 2

sin
2π

2n+ 1
(n− 1

2
)j = sin

2π

2n+ 1
j = 2 sin

π

2n+ 1
j cos

π

2n+ 1
j ,

we find that |a2n| < 1 and we have convergence of T2k+1 as k → ∞.
(ii) We can apply the similar arguments to T2k (k ≥ 1). By using the recursive
relations, for k ≥ 1 we can represent

T2k = A
(m,n)
1∗ + A

(n)
2∗ T2(k−1)+1 ,(A.16)

where A
(m,n)
1∗ and A

(m,n)
2∗ are n×n metrices as defined in Theorem 3.1. By evaluating

the eigenvalues of A
(m,n)
2∗ , we find that the absokute value of engenvalues are less than

one and we have convergence of T2k as k → ∞.
(Q.E.D.)

Proof of Theorem 3.2 :

We need to evaluate

Fn = (fab) = C
′

nP
∗′
n J

′

mJmP
∗
nC

′−1 .(A.17)

We write

fab = [

√√√√ 2

n+ 1
2

]2
n∑

k=a

m∑
j=1

sin
2π

2n+ 1
(k−1

2
)j[sin

2π

2n+ 1
j(b−1

2
)−sin

2π

2n+ 1
j(b−1−1

2
)] ,

We use the relations

n∑
k=a

sin
2π

2n+ 1
(k − 1

2
)j =

1

2i

n∑
k=a

[ei
2π

2n+1
(k− 1

2
) − e−i 2π

2n+1
(k− 1

2
)]

=
1

2i

ei
2π

2n+1
(a−1)j + e−i 2π

2n+1
(a−1)j − ei

2π
2n+1

nj − e−i 2π
2n+1

nj

e−i 2π
2n+1

j 1
2 − ei

2π
2n+1

j 1
2

=
2

2i

cos 2π
2n+1

(a− 1)j − cos 2π
2n+1

nj

e−i 2π
2n+1

j 1
2 − ei

2π
2n+1

j 1
2

and

sin
2π

2n+ 1
(b− 1

2
)j − sin

2π

2n+ 1
j(b− 1− 1

2
)

=
1

2i
[(ei

2π
2n+1

j(b− 1
2
) − e−i 2π

2n+1
j(b− 1

2
))− (ei

2π
2n+1

j(b−1− 1
2
) − e−i 2π

2n+1
j(b−1− 1

2
))]

=
1

2i
[ei

2π
2n+1

j(b−1)(ei
2π

2n+1
j 1
2 − e−i 2π

2n+1
j 1
2 )− e−i 2π

2n+1
j(b−1)(e−i 2π

2n+1
j 1
2 − ei

2π
2n+1

j 1
2 )]

=
1

2i
(−ei

2π
2n+1

j(b−1) − e−i 2π
2n+1

j(b−1))(e−i 2π
2n+1

j 1
2 − ei

2π
2n+1

j 1
2 ) .
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Then 2n+ 1)/4× fab becomes

m∑
j=1

[cos
2π

2n+ 1
(a− 1)j − cos

2π

2n+ 1
nj] cos

2π

2n+ 1
j(b− 1)

=
m∑
j=1

[cos
2π

2n+ 1
(a− 1)j cos

2π

2n+ 1
j(b− 1)− cos

2π

2n+ 1
nj cos

2π

2n+ 1
j(b− 1)] .

By utilizing the relation

m∑
j=1

cos
2π

2n+ 1
j(k − 1

2
) = −1

2
+

1

2

sin 2π
k− 1

2

2n+1
(m+ 1

2
)

sin π
k− 1

2

2n+1

and elementary calculations, we find that

m∑
j=1

[cos
2π

2n+ 1
(a− 1)j − cos

2π

2n+ 1
nj] cos

2π

2n+ 1
j(b− 1)

−
m∑
j=1

[cos
2π

2n+ 1
(a− 1

2
) cos

2π

2n+ 1
(b− 1

2
)

=
1

2
+

1

4

sin 2π a+b−2
2n+1

(m+ 1
2
)

sin π a+b−2
2n+1

− 1

4

sin 2π a+b−1
2n+1

(m+ 1
2
)

sin π a+b−1
2n+1

− 1

4

sin 2π n+b−1
2n+1

(m+ 1
2
)

sin π n+b−1
2n+1

−1

4

sin 2π n−b+1
2n+1

(m+ 1
2
)

sin π n+b−1
2n+1

.

When m/n → 0 as n → ∞ for a, b = 1, · · · ,m, this quantity converges to 0. Hence
as n → ∞ and m/n → 0, fab (a, b = 1, · · · ,m) is asymptotically equivalent to

hab =
4

2n+ 1

m∑
j=1

[cos
2π

2n+ 1
j(a− 1

2
) cos

2π

2n+ 1
j(b− 1

2
)] ,(A.18)

which is the (a, b)−th element of Hn = PnJ
′
mJmPn. Hence we have the result.

(Q.E.D.)

Proof of Theorem 3.3 :

The proof is basically the same as Theorem 3.1. We replace Q(m)
n = J

′
mJm by

Q(m1,m2)
n = J

′
m1,m2

Jm1,m2 . Then by using the similar arguments as the proof of

Theorem 3.1, we find that the absolute values of the eigenvalues of A
(m1,m2,n
2 and

A
(m1,m2,n
2∗ are less than one and we have the convergence of the repeated smoothing

procedures.
(Q.E.D.)
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