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Abstract

We investigate a new filtering method to estimate the hidden states of random
variables for multiple non-stationary time series data. This helps in analyzing
small sample non-stationary macro-economic time series in particular and it is
based on the frequency domain application of the separating information max-
imum likelihood (SIML) method, developed by Kunitomo, Sato and Kurisu
(2018), and Kunitomo, Awaya and Kurisu (2019), and Nishimura, Sato and
Takahashi (2019). We solve the filtering problem of hidden random variables
of trend-cycle, seasonal and measurement-errors components, and propose a
method to handle macro-economic time series. We develop the asymptotic
theory based on the frequency domain analysis for non-stationary time series.
We illustrate applications, including some properties of the method of Müller
and Watson (2018), and analyses of some macro-economic data in Japan.
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1 Introduction

There exists vast research on the use of statistical time series analysis for macro-
economic time series. One important feature of macroeconomic time series, which
is different from standard statistical time series analysis, is that the observed time
series is an apparent mixture of non-stationary and stationary components. The
second feature is that the measurement errors in economic time series play im-
portant roles, because macro-economic data are usually constructed from various
sources, including sample surveys in major official statistics, while the statistical
time series analysis often ignored measurement errors. Third, the sample size of
macro-economic data is rather small, and we have about 120 time series observa-
tions for each series for quarterly data over 30 years. The quarterly GDP series,
which is the most important data in the Japanese macro-economy, for instance, is
regularly estimated and released by the cabinet office of Japan 1. Fourth, to publish
the seasonally adjusted data, the official agencies usually apply the X-12-ARIMA
program, which uses the univariate reg-ARIMA model to remove the seasonality as
the standard filtering procedure. As the sample size is small, it is important to use
an appropriate statistical procedure to extract information on trend-cycle, seasonal-
ity and noise (or measurement error) components systematically from multiple time
series data.

In this study, we investigate a new filtering procedure to estimate the hidden
states of trend-cycle, which are non-stationary, and to handle multiple time series
data, including small sample time series. Kunitomo and Sato (2017), Kunitomo,
Sato and Kurisu (2018), and Kunitomo, Awaya and Kurisu (2019) have developed
the separating information maximum likelihood (SIML) method for estimating the
non-stationary errors-in-variables models. They have discussed the asymptotic and
finite sample properties of the estimation of unknown parameters in the statistical
models. We utilize their results to solve the filtering problem of hidden random
variables and show that they lead to new a way to handle macro-economic time
series.

Related literature on the non-stationary economic time series analysis are En-
gle and Granger (1987) and Johansen (1995), which examined multivariate non-
stationary and stationary time series and developed the notion of co-integration
without measurement errors. Our problem is related to their work, but it has dif-
ferent aspects, and our focus is on the non-stationary trend-cycle, seasonality and
measurement error in the non-stationary errors-in-variable models and their fre-
quency domain analysis. Some related econometric studies on time series in the

1Currently, GDP time series data in Japan are constructed and seasonally adjusted since
1994Q1, although some may think the historical data before 1994 was constructed and measured
exactly in the same way. The measuring procedures of official GDP series has been changed sev-
eral times including the base-year changes. See https://www.esri.cao.go.jp/index-e.html for the
detailed explanation of how GDP in Japan is constructed.
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frequency domain are Baxter and King (1999), Christiano and Fitzgerald (2003)
and Müller and Watson (2018). See Yamada (2019) for a survey of related studies,
including the well-known Hodrick-Prescot (HP) filter in econometrics.

In statistical multivariate analysis, some studies on the errors-in-variables models
are Anderson (1984, 2003) and Fuller (1987); however, they considered multivariate
cases of independent observations, and the underlying situation is different from
ours.

For statistical filtering methods, Kitagawa (2010) discussed the standard statis-
tical methods already known, including the Kalman-filtering and particle-filtering
methods. Although many studies have examined statistical filtering theories, we
must exercise caution in analyzing non-stationary multivariate economic time se-
ries. See Granger and Hatanaka (1964), Brillinger and Hatanaka (1969) on early
studies, and Harvey and Trimbur (2008) on the relationship between HP filter and
other methods, for instance. Here we should mention two issues. First, the existing
methods often depend on the underlying distributions such as the Gaussian distri-
butions for the Kalman-filtering, and second, they often depend on the dimension
of state variables. There may be some difficulty in extending the existing methods
to high-dimension cases, even when the dimension is about 10. On the other hand,
we expect that our method has robustness properties when we handle small sample
economic times series with non-stationary trend-cycle, and stationary seasonality
and measurement errors because our method does not depend on the specific distri-
bution as well as the dimension of the underlying random variables. See Kunitomo,
Awaya and Kurisu (2017) for a comparison of small sample properties of the ML
(maximum likelihood) and SIML methods for the non-stationary errors-in-variables
models, and Nishimura, Sato and Takahashi (2019) for an application of finan-
cial data smoothing. The most important feature of the present procedure is that
it may be applicable to small sample time series data with non-stationary trend-
cycle, seasonal and noise components and it has a statistical foundation based on
the (real-valued) spectral decomposition of stochastic processes by a (real-valued)
Fourier transformation, as we shall explain in Sections 4 and 5.

In Section 2, we give some macro-economic data, which have motivated this
present study. In Section 3, we define the non-stationary errors-in-variables models
and the SIML method. In Section 4, we introduce the SIML filtering method. In
Section 5, we give the statistical foundation of the method and in Section 6, we
discuss the problem of choosing the number of orthogonal processes, and give some
numerical examples based on simulation and data. Section 7 contains some appli-
cations including an interpretation on the Müller-Watson method in econometrics
and gives two empirical applications of macro-consumption in Japan. Concluding
remarks are given in Section 8. The Appendix contains some mathematical deriva-
tions of our results and figures.
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2 Two Illustrative Examples

In the first illustrative example, we plot the graph of two macro-economic time series
in Japan: quarterly (real) consumption and quarterly (real) GDP (1994Q1-2018Q2)
as Figure 1 2. It looks like a simple example of linear regression in undergraduate
textbooks. However, if we draw the time series sequences of these (original and
seasonally unadjusted official) macro-data estimated by the Cabinet office of the
Japanese Government as Figure 2, we find things to be a little more complex than
in Figure 1. There are clear trend-cycle components, seasonal fluctuations, and
noise components in two time series data. Although many economists usually use
the seasonally adjusted (published) data, which were constructed by using the X-12-
ARIMA program in different ministries within the government, the effects of filtering
in the program are often unknown. The X-12-ARIMA program uses the univariate
reg-ARIMA model, which is a mixture of univariate seasonal ARIMA and linear
regression, and it decomposes univariate time series into the trend-cycle, seasonality
and noise components as the standard procedure 3. In contrast, the DECOMP
program, which is explained by Kitagawa (2010), is a possible choice particularly in
Japan, uses the univariate AR model and the Kalman filtering technique with AIC,
which is based on the Gaussian likelihood. When each time series is handled using
different filtering procedures (i.e., different ARIMA models or reg-ARIMA models
for instance), it may cause a fundamental problem in their interpretation when the
focus is on the relationships among different non-stationary time series.

Figure 3 gives three different macro-consumption data (2002 January - 2016 De-
cember), which are observed as monthly time series and widely used by economists in
Japan to judge the current macro-business condition. The first series is Kakei-Chosa
(the data from monthly consumer-survey collected by Statistics Bureau, Ministry
of Internal Affairs and Communications), the second is Shougyo-Doutai-Statistics
(the data from monthly retail constructed by Ministry of Economy, Trade and In-
dustry (METI)). and the third is Dai-Sanji-Sangyo-Statistics (the index data on
commerce constructed by METI). We note that the data construction processes
of these series based on sample surveys are complex in different ministries within
the government, and each data reflects different aspects of macro-consumption. Al-
though they show similar movements, we observe some differences in trend-cycle,
seasonality and noises. Then it may be desirable to unify the monthly consumption
series because we want to judge the business condition each month by just observing
these data to evaluate the state of the Japanese macro-economy and forming macro-
economic policy. Many economists in both governments and private sectors usually
use seasonally adjusted data, which were constructed from the quarterly or monthly
(original) time series via the univariate X-12-ARIMA seasonal adjustment program.

2In Japan, both the original quarterly series and the seasonally adjusted series of GDP and its
major components are regularly published. It differs from macro-data in the U.S. in some aspect.

3See Findley et.al. (1998) for the detail of X-12-ARIMA program.
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Figure 1: GDP vs. Consumption. (Data are the Quarterly real GDP and real-
consumption between 1994Q1-2014Q3, which were published in 2015 by the Economic Social
Research Institute (ESRI), Cabinet Office, Japan.)
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Figure 2: GDP and Consumption. (Data are the Quarterly real GDP and real-
consumption between 1994Q1-2014Q3, which were published in 2015 by the Economic Social
Research Institute (ESRI), Cabinet Office, Japan.)
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Figure 3: Monthly Consumption Series. (Data are the monthly consumptions between
2002M1-2016M12, which were published in 2017 by the Statistics Bureau and Ministry of Economy,
Trade and Industry (METI), Japan.)

It is important to construct the monthly consumption index, which is consistent
with the published quarterly macro-consumption data, which usually reported with
substantial time lags. It was one of motivations to develop our filtering theory.

Some econometricians use the multivariate (parametric) time series models such
as VAR (vector autoregressive process) for analyzing macro-economic data and in-
vestigating the relationships among them. They may use the seasonally adjusted
(official) data, but we need caution to use such data because most published offi-
cial data are already filtered by the X-12-ARIMA program. When the dimension
is more than 2, some difficulties handling trend-cycle, seasonal, and measurement
errors at the same time typically arise. A need to handle macro-economic data in
simple non-parametric way motivated us to develop the multivariate non-stationary
errors-in-variables models and the filtering method for the hidden state variables
with measurement errors in Sections 3 and 4.
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3 Non-Stationary Errors-in-Variables Model and

SIML

3.1 A Simple Non-Stationary Errors-in-Variables Model and
the SIML Method

In this sub-section we first introduce a simple non-stationary errors-in-variables
model with trend and noise components, and explain the SIML method. Then
in the next subsection we shall investigate the general framework for non-stationary
multivariate time series with trend-cycle, seasonal and measurement-error compo-
nents.

Let yji be the i−th observation of the j−th time series at i for i = 1, · · · , n; j =
1, · · · , p. We set yi = (y1i, · · · , ypi)′ be a p × 1 vector and Yn = (y

′
i) (= (yij)) be

an n × p matrix of observations and denote y0 as the initial p × 1 vector and it
is fixed. We consider the simple model that the underlying non-stationary trend
is x

′
i(= (x1i, · · · , xpi), i = 1, · · · , n) and the noise component is v

′
i = (v1i, · · · , vpi),

which is independent of xi. We write

(3.1) yi = xi + vi (i = 1, · · · , n) .
When each pair of vectors Δxi and vi are independently, identically, and normally
distributed (i.i.d.) as Np(0,Σx) and Np(0,Σv), respectively, we have the observa-
tions of an n× p matrix Yn = (y

′
i) and set the np× 1 random vector (y

′
1, · · · ,y′

n)
′
.

Given the initial condition y0 (= x0), we have

(3.2) vec(Yn) ∼ Nn×p

(
1n · y′

0, In ⊗Σv +CnC
′
n ⊗Σx

)
,

where 1
′
n = (1, · · · , 1) and

(3.3) Cn =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0 0
1 1 0 · · · 0
1 1 1 · · · 0
1 · · · 1 1 0
1 · · · 1 1 1

⎞
⎟⎟⎟⎟⎠

n×n

.

We use the Kn−transformation that from Yn to Zn (= (z
′
k)) by

(3.4) Zn = K∗
n

(
Yn − Ȳ0

)
,K∗

n = PnC
−1
n ,

where Ȳ0 = 1n · y′
0,

(3.5) C−1
n =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠

n×n

,
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and

(3.6) Pn = (p
(n)
jk ) , p

(n)
jk =

√
2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
.

Using the spectral decomposition C−1
n C

′−1
n = PnDnPn and Dn is a diagonal matrix

with the k-th element dk = 2[1− cos(π( 2k−1
2n+1

))] (k = 1, · · · , n) , we write

(3.7) a∗kn (= dk) = 4 sin2

[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .

Then the separating information maximum likelihood (SIML) estimator of Σx in
(3.2) can be defined by

(3.8) Gm = Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′
k ,

where we set m = mn = [nα] (0 < α < 1).
We need to use m terms in n and the reason for this becomes clear from the fre-
quency domain analysis, which will be explained in Section 5.
Kunitomo, Awaya and Kurisu (2019) discussed the estimation of the variance-
covariance matrix Σv when vi are i.i.d. vectors and some consistent estimators
of Σv were developed. As we shall see in Section 5, the SIML estimation method
is quite robust, even when v

(x)
i and vi are non-Gaussian stationary processes, and

they are serially-correlated.

3.2 General Non-Stationary Errors-in-Variables Model

In order to investigate non-stationary trend-cycle component, and stationary sea-
sonality and measurement error component, we consider the general non-stationary
multivariate errors-in-variables model 4

(3.9) yi = xi + si + vi (i = 1, · · · , n) .
We take a positive integer s (s > 1), N , and n = sN for the resulting simplicity of
exposition and arguments, We explain the general model in three steps.

(i) The trend-cycle factor xi (i = 1, · · · , n) is a sequence of non-stationary I(1)
process that satisfies

(3.10) Δxi = (1− L)xi = v
(x)
i ,

4It is possible to use the log-transformed data for multiplicative models. It is known that
the standard model in X-12-ARIMA is a multiplicative one although it uses moving averages, for
instance.
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with the lag-operator Lxi = xi−1, Δ = 1− L,

(3.11) v
(x)
i =

∞∑
j=0

C
(x)
j e

(x)
i−j ,

and e
(x)
i is a sequence of i.i.d. random vectors with E(e

(x)
i ) = 0 and E(e

(x)
i e

(x)′
i ) =

Σ(x)
e (positive-semi-definite). The p×p coefficient matrices C

(x)
j (= c

(x)
kl (j)) are abso-

lutely summable and ‖C(x)
j ‖ = O(ρj), where 0 ≤ ρ < 1 and ‖C(x)

j ‖ = maxk,l=1,··· ,p |c(x)kl (j)|.
The random vectors vi (i = 1, · · · , n) are a sequence of stationary I(0) process with

(3.12) vi =
∞∑
j=0

C
(v)
j e

(v)
i−j ,

where the p × p coefficient matrices C
(v)
j are absolutely summable and ‖C(v)

j ‖ =

O(ρj), where 0 ≤ ρ < 1 and e
(v)
i is a sequence of i.i.d. random vectors with

E(e
(v)
i ) = 0, E(e

(v)
i e

(v)′
i ) = Σ(v)

e (positive definite).

(ii) The seasonal factor si (i = 1, · · · , n) is a sequence of stationary process 5, which
satisfies

(3.13) si =
∞∑
j=0

C
(s)
sj e

(s)
i−sj ,

where the lag-operator is defined by Lssi = si−s (s ≥ 2), and e
(s)
i is a a sequence

of i.i.d. random vectors with E(e
(s)
i ) = 0 and E(e

(s)
i e

(s)′
i ) = Σ(s)

e (a non-negative

definite matrix). The p × p coefficient matrices C
(s)
j are absolutely summable and

‖C(s)
j ‖ = O(ρj), where 0 ≤ ρ < 1.

(iii) Let fΔx(λ), fv(λ) and fs(λ) be the spectral density
6 (p× p) matrices of Δxi, vi

and si (i = 1, · · · , n) defined by

(3.14) fΔx(λ) = (
∞∑
j=0

C
(x)
j e2πiλj)Σ(x)

e (
∞∑
j=0

C
(x)′
j e−2πiλj) , (−1

2
≤ λ ≤ 1

2
) ,

(3.15) fv(λ) = (
∞∑
j=0

C
(v)
j e2πiλj)Σ(v)

e (
∞∑
j=0

C
(v)′
j e−2πiλj) , (−1

2
≤ λ ≤ 1

2
) ,

5When we assume that Δsi is stationary, most arguments in the following sections would go
through. We have omitted its details.

6Our notation of spectral density is slightly different from the standard notation used in An-
derson (1971). Let μ = 2πλ and fA(μ) (−π ≤ μ ≤ π) be the spectral density in Chapter 7 of
Anderson (1971). Then, f(λ) = 2πfA(μ) (− 1

2 ≤ λ ≤ 1
2 ). The present defition of spectral density

corresponds to 2πfA(−μ) in some literature.
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and

(3.16) fs(λ) = (
∞∑
j=0

C
(s)
sj e

2πiλsj)Σ(s)
e (

∞∑
j=0

C
(s)′
sj e−2πiλsj) (−1

2
≤ λ ≤ 1

2
) ,

where we set C
(x)
0 = C

(v)
0 = C

(s)
0 = Ip for normalization and i2 = −1 (see Chapter 7

of Anderson (1971)).
Then the p×p spectral density matrix of the transformed vector process of difference
series Δyi (= yi − yi−1) can be represented as

(3.17) fΔy(λ) = fΔx(λ) + (1− e2πiλ)[fs(λ) + fv(λ)](1− e−2πiλ) .

We denote the long-run variance-covariance matrices of trend-cycle and noise com-
ponents for g, h = 1, · · · , p as

(3.18) Σx = fΔx(0) (= (σ
(x)
gh )) , Σv = fv(0) = (σ

(v)
gh ) .

respectively.

One important often neglected issue is that when applying the differencing pro-
cedure to non-stationary time series and using the standard statistical method for
multivariate stationary time series, there is no guarantee of keeping the relationships
among the original time series as they were by using the transformations. Although
Engle and Granger (1987) and Johansen (1995) noticed this problem, they did not
consider the frequency domain aspect with seasonality and measurement errors. The
SIML filtering approach may shed a new light on the relationships among the time
domain and frequency decompositions of non-stationary multivariate time series.

4 The SIML Filtering Method

4.1 Basic Filtering

We introduce the general filtering procedure based on the Kn−transformation in
(3.4). When we interpret that the elements of the resulting n × p random matrix
Zn take real values in the frequency domain, it is easy to understand their roles.
Since Pn is a kind of real-valued discrete Fourier transformation, vectors zk (k =
1, · · · , n) in Zn are asymptotically uncorrelated, as we shall discuss in Section 5.1.
We investigate the partial inversion of the transformed orthogonal processes. Let
an n× p matrix

(4.19) X̂n(Q) = CnPnQnPnC
−1
n (Yn − Ȳ0)

11



and

(4.20) Zn = PnC
−1
n (Yn − Ȳ0) ,Yn = Ȳ0 +X∗

n + Sn +Vn ,

where X∗
n = (x∗′

t ), Sn = (s
′
t) and Vn = (v

′
t) are n × p matrices, x∗

t = xt − x0 (t =
1, · · · , n) and x0 = y0 is the initial vector. (We use the subscript t instead of i in
this subsection.)
The stochastic process Zn is the orthogonal decomposition of the original time series
Yn in the frequency domain and Qn is an n×n filtering matrix. Because Yn consist
of non-stationary time series, we need a special form of transformation Kn in (3.4).
We give explicit forms of two examples, including the trend-cycle filtering and the
band filtering procedures. Although there can be many possible filtering procedures
within our general framework, it is useful to discuss some linear filtering procedures.
Let an n× n diagonal matrix

(4.21) Qn =
n∑

t=1

wt,ne
(n)
t e

(n)′
t

and e
(n)
t = (0, · · · , 1, · · · )′ (t = 1, · · · , n) are the unit vectors and wt,n (t = 1, · · · , n)

are some non-negative constants.
We start with the case when wt,n = 1 (t = 1, · · · , n) and we have the identity
matrix Qn = In. Then we find CnPnQnPnC

−1
n = In. There can be useful cases and

we present two cases as the trend-cycle filtering and the band filtering by choosing
wt,n = 1 or 0 for some t′s. Although the first example could be regarded a special
case of the second one, the analysis of trend-cycle component in the first example
has an important role in economic time series.

(i) Trend-Cycle Filtering: Let an m × n (m < n) choice matrix Jm = (Im,O),
and let also n× p matrix

(4.22) X̂(m)
n = CnPnJ

′
mJmPnC

−1
n (Yn − Ȳ0)

and an n× n matrix Qn = J
′
mJm .

We construct an estimator of n×p hidden state matrixX∗
n only in the lower frequency

parts by using the inverse transformation of Zn and deleting the estimated seasonal
and noise parts. We denote the hidden trend-cycle state based on m frequencies as

(4.23) X(m)
n = CnPnJ

′
mJmPnC

−1
n X∗

n .

This quantity is different from X∗
n because xt (t = 1, · · · , n) in (3.9) and (3.10)

contains not only the trend-cycle component of yt (t = 1, · · · , n), but also the noise
component in the frequency domain, which is different from the measurement noise
component vt (t = 1, · · · , n) in (3.9)-(3.13). We try to estimate the trend-cycle
component of xt by using (4.22) and recover the trend-cycle component of Xn near

12



at the zero frequency because the effects of differenced measurement error noises
(vt − vt−1) are negligible around at zero frequency. This method differs from some
existing procedures that consider the decomposition of time series only in the time
domain. Our arguments can be justified by using the frequency decomposition of yt

and r
(n)
t = Δyt (= yt − yt−1 and y0 being fixed), and we shall discuss this issue in

Section 5.2.

We partition Pn into [m+ (n−m)]× [m+ (n−m)] matrices as

Pn =

(
P11 P12

P21 P22

)

and then

PnJ
′
mJmPn =

(
P11

P21

)
(P11,P12) = In −

(
P12

P22

)
(P21,P22) .

After straightforward calculations (see the Appendix for the derivation), the (j, j
′
)-

th element of An = PnJ
′
mJmPn (= (a

(n,m)

j,j
′ )) is given by

a
(n,m)
j,j =

2m

2n+ 1
+

1

2n+ 1

[
sin 2mπ

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(4.24)

a
(n,m)

j,j′ =
1

2n+ 1

[
sin 2mπ

2n+1
(j + j

′ − 1)

sin π
2n+1

(j + j ′ − 1)
+

sin 2mπ
2n+1

(j − j
′
)

sin π
2n+1

(j − j ′)

]
(j �= j

′
) .

It is possible to evaluate MSE of statistical state vector estimation. Let X̂
(m)
n =

(X̂
(m)
ni ) (X̂

(m)
ni is an n × 1 vector, i = 1, · · · , p) and X

(m)
n = (X

(m)
ni ) (X

(m)
ni is an

n × 1 vector for i = 1, · · · , p). By decomposing Yn − Ȳ0 = X∗
n + Sn + Vn and

X̂
(m)
n −X∗

n = CnPnJ
′
mJmPnC

−1
n (Sn +Vn), we find

E[(X̂
(m)
ni −X

(m)
ni )(X̂

(m)
nj −X

(m)
nj )

′
] = K∗−1

n QnK
∗
nΓ

(s+v)
n (i, j)K∗′

nQnK
∗′−1
n ,

where K∗
n = PnC

−1
n , Γ(s+v)

n (i, j) is the n×n variance-covariance matrix of Sni+Vni

and Snj +Vnj (n × 1 vectors for i, j = 1, · · · , p), and, Sni and Vni (n × 1 vectors)
are the i−th and j−the column vectors of Sn and Vn, respectively.
Since (25) does not depend on xt, (22) minimizes the MSE with respect to unknown
state vector xt to estimate (23) and it is optimal in this sense.

(ii) Band Filtering : We consider a general filtering based on the Kn transforma-
tion in (3.4) and use the inversion of some frequency parts of the random matrix
Zn. The leading example is the analysis of seasonal frequencies in the discrete time
series and we take s (> 1) being a positive integer as the seasonal lag.
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Let an m2× [m1+m2+(n−m1−m2)] choice matrix Jm1,m2 = (O, Im2 ,O) (we take
m1 +m2 < n), and let also n× p matrix

(4.25) X̂(m1,m2)
n = CnPnJ

′
m1,m2

Jm1,m2PnC
−1
n (Yn − Ȳ0)

and an n× n matrix Qn = J
′
m1,m2

Jm1,m2 .
When we have a particular seasonal frequency s (> 1), for instance, we can take
m1 = [2n/s] − [m/2] and m2 = m. We set s = 4 for quarterly data and s = 12 for
monthly data. (We may have many seasonal frequencies in data analysis as pointed
out by Granger and Hatanaka (1964) already.)
As in the trend-cycle filtering problem, (4.25) is the SIML-filtering value for

(4.26) X(m1,m2)
n = CnPnJ

′
m1,m2

Jm1,m2PnC
−1
n (X∗

n + Sn) ,

and it is an estimate of some frequency components of xt+st (t = 1, · · · , n) in (3.9),
(3.10) and (3.13). The filtering problem becomes difficult because some frequency
component of yt includes not only some component xt at the same frequency, but
also some component of the measurement errors at the same frequency.
After straightforward calculations (see the Appendix) in this case, the (j, j

′
)-th

element of An = PnJ
′
m1,m2

Jm1,m2Pn (= (a
(n,m1,m2)

j,j′ )) is given by

a
(n,m1,m2)
j,j =

2m2

2n+ 1
+

1

2n+ 1

[
sin 2(m1+m2)π

2n+1
(2j − 1)− sin 2(m1)π

2n+1
(2j − 1)

sin π
2n+1

(2j − 1)

]
,(4.27)

a
(n,m1,m2)

j,j′ =
1

2n+ 1

[
sin 2(m1+m2)π

2n+1
(j + j

′ − 1)− sin 2(m1)π
2n+1

(j + j
′ − 1)

sin π
2n+1

(j + j ′ − 1)

+
sin 2(m1+m2)π

2n+1
(j − j

′
)− sin 2(m1)π

2n+1
(j − j

′
)

sin π
2n+1

(j − j ′)

]
(j �= j

′
) .

When m1 = 0 and m2 = m, the resulting formula reduces to the trend-cycle filtering
case. There are existing filtering procedures having the frequency domain interpre-
tation, but it seems that our procedure differs from some existing literature because
of (4.24) and (4.27).
It is also possible to evaluate MSE of the state vector estimation in the same way
as Case (i). Let X̂

(m1,m2)
n be an estimate of the hidden state as

X
(s,m1,m2)
n = CnPnJ

′
m1,m2,n

Jm1,m2,nPnC
−1
n (X∗

n + Sn).

By using the similar calculation as Case (i) and the notation of Γ(v)
n (i, j) (i, j =

1, · · · , p), we find

E[(X̂
(m1,m2)
ni −X

(s,m1,m2)
ni )(X̂

(m1,m2)
nj −X

(s,m1,m2)
nj ))

′
](4.28)

= K∗−1
n QnK

∗
nΓ

(v)
n (i, j)K∗′

nQnK
∗′−1
n ,
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where Γ(v)
n (i, j) is the n× n variance-covariance matrix of Vni and Vnj. We use an

(m2−m1)×n choice matrix Jm1,m2 = (O, Im2−m1 ,O) and Q∗
n = In−J

′
m1,m2

Jm1,m2 .
If there are several seasonal frequencies, we need more complicated filtering proce-
dures.

5 On a Statistical Foundation

5.1 Underlying Asymptotic Theory

At first glance, the SIML filtering procedure may be regarded as an ad-hoc statistical
procedure without any mathematical foundation. However, it has a rather solid
statistical foundation.
Let θjk = 2π

2n+1
(j − 1

2
)(k − 1

2
) , p

(n)
jk = 1√

2n+1
(eiθjk + e−iθjk) and for Yn = (y

′
i) we

write zk (k = 1, · · · , n) as

(5.29) zn(λ
(n)
k ) =

n∑
j=1

p
(n)
jk rj , rj = yj − yj−1 ,

which is a (real-valued) Fourier-transformation and y0 is fixed.

Then, we find that zn(λ
(n)
k ) (k = 1, · · · , n) are the (real-valued) Fourier-transformation

of data at the frequency λ
(n)
k (= (k − 1/2)/(2n + 1)), which is a (real-part of) esti-

mate of the orthogonal incremental process z(λ) (0 ≤ λ ≤ 1/2), which is continuous
in the frequency domain.

We shall utilize an asymptotic theory for the stationary linear processes because
the time series model defined by (3.9)-(3.13) can be regarded as a special case. Let

(5.30) ri = Δyi = μ+
∞∑
j=0

Γjwi−j ,

where μ is a constant vector (we assume μ = 0 for simplicity in this section), Γj

are p×p matrices, and wi are a sequence of mutually independent random variables
with E[wi] = 0, E[wiw

′
i] = Σu (> 0). The errors-in-variables model in Section 3

implies that the p× p matrices Γj satisfy
∑∞

h=0 ‖Γj‖ < ∞ .

We then summarize the useful result on z(λ
(n)
k ). Although it could be regarded as

a direct extension of Theorem 8.4.3 of Anderson (1971) for discrete and (ergodic)
stationary time series, we could not find the following representation. The proof is
given in the Appendix.

Proposition 1: Let rj (j = 1, · · · , n) be an ergodic stationary stochastic process
given by (5.30) with

∑∞
h=0 ‖Γj‖ < ∞ and the fourth order moments of each element

of wi are finite.
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Let also zn(λ
(n)
k ) =

∑n
j=1 p

(n)
jk rj and rj be an ergodic stationary sequence with

E[rj] = 0, Γ(h) = E(rjr
′
j−h), and the (symmetrized real-valued) spectral density

matrix

(5.31) fSR(λ) =
∞∑

h=−∞
cos(2πhλ)Γ(h) , 0 ≤ λ ≤ 1

2

is the positive definite and bounded (real-valued and symmetrized) spectral matrix.

Assume that λ
(n)
k → s, λ

(n)

k′ → t as n → ∞ for 0 < s < t < 1
2
. Then, as n −→ ∞

(5.32)

[
zn(λ

(n)
k )

zn(λ
(n)

k′ )

]
w−→ N2p

[
0, [

fSR(s) 0
0 fSR(t)

]

]
.

This proposition covers the general model with (3.9)-(3.13) with the moment con-
ditions because Δyi are stationary. As the asymptotic variance-covariance matrix
of the orthogonal random vectors zn(λ

(n)
k ) is the (symmetrized real) spectral density

matrix, it can be estimated consistently. When we have noise terms as in Section 3,
it is not possible to estimate the (long-run) variance-covariance matrix Σx of trend-
cycle component simply by using the differenced time series rj(= Δyj) = yj −yj−1.
It is because

(5.33) E[rjr
′
j] = E[ΔxjΔx

′
j] + E[ΔsjΔs

′
j] + E[ΔvjΔv

′
j] .

The SIML estimator of fSR(0) (= fΔx(0)) = Σx in the general case can be defined
by

(5.34) Gm =
1

mn

m∑
k=1

(zn(λ
(n)
k ))(zn(λ

(n)
k ))

′
.

Then we summarize the basic property of the SIML estimation of Σx and the deriva-
tion is given in the Appendix.

Proposition 2: Assume that the fourth order moments of each element of v
(x)
i , vi

and v
(s)
i (i = 1, · · · , n) in (3.9)-(3.13) are bounded. We set mn = [nα] (0 < α < 1)).

Then, as n −→ ∞
(5.35) Gm

p−→ Σx .

The above result has some implication on the use of the frequency domain analysis
of (non-stationary) multiple time series. For 0 ≤ μ ≤ 1

2
, let the symmetrized (real-

valued) spectral density matrix of Δyj (j = 1, · · · , n) be fSR,Δy(μ) = (1/2)[fΔy(μ)+
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f̄Δy(μ)] , where f̄( · ) is the complex conjugate of f and we have the initial condition
y0.
Similarly, we find that fSR,Δx(λ) = (1/2)[fΔx(λ) + f̄Δx(λ)] ,
fSR,Δs(λ) = (1/2)(1− e2πiλ)[fs(λ) + f̄s(λ)](1− e−2πiλ) and
fSR,Δv(λ) = (1/2)(1− e2πiλ)[fv(λ) + f̄v(λ)](1− e−2πiλ).
They are the consequence of (3.17), (5.29) and (5.31) for the symmetrized spectral
(real-valued) density matrices.
From this interpretation, it may be easy to find that Gm is a consistent estimator
of the long-run variance-covariance matrix, which is the spectral density matrix at
the zero-frequency fSR,Δx(0) when we use the Zn− transformation of data.

5.2 Frequency Interpretation of SIML-filtering

In the traditional statistical time series analysis for a stationary discrete (vector)
process with the (complex-valued) spectral distribution F , it has a representation
with right-continuous (complex-valued) orthogonal increments in the frequency do-
main (see Doob (1953), Brockwell and Davis (1990) for the details). Chapter 7 of
Anderson (1971) is informative because of its discussion on real-valued representa-
tions although it has only univariate cases. The real-valued multivariate orthogonal
processes and the spectral density matrix play important roles in our formulation.
For λ

(n)
k = (k − 1/2)/(2n+ 1) (k = 1, · · · , n), we rewrite (5.29) as

(5.36) zn(λ
(n)
k ) =

n∑
j=1

r
(n)
j

2√
2n+ 1

cos[2πλ
(n)
k (j − 1

2
)] (k = 1, · · · , n).

Then, by using the inversion transformation with Pn, we can confirm that

(5.37) r(n)s =
n∑

k=1

psk zn(λ
(n)
k ) (s = 1, · · · , n).

It is another representation of Rn = (r
(n)′
i ) = C−1

n X̂n(Q) in (4.19) when Qn = In.

For any s (s = 1, · · · , n), r(n)s can be recovered as the weighted sum of othogonal

processes zn(λ
(n)
k ) at frequency λ

(n)
k (k = 1, · · · , n). We then, by using Yn = CnRn,

recover the non-stationary process y
(n)
t (t = 1, · · · , n) given the initial condition y0

as

(5.38) y
(n)
t = y0 +

t∑
s=1

r(n)s .

Let

(5.39) αn(λ
(n)
m , j − 1

2
) =

1

n

m∑
k=1

[2 cos 2πλ
(n)
k (j − 1

2
)]
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Then, when λ
(n)
m → λ as n → ∞ (0 < λ < 1

2
), using Lemma 5.1 of Kunitomo et al.

(2018), we find

αn(λ
(n)
m , j − 1

2
) → α(λ, j − 1

2
) =

2 sin 2πλ(j − 1
2
)

π(j − 1
2
)

.

If we set the uncorrelated stochastic process of uncorrelated increments with con-
tinuous parameter λ (0 ≤ λ ≤ 1

2
) as An(λ) =

∑n
j=1 α(λ, j − 1

2
)r

(n)
j , then we find

(5.40)

∫ 1
2

0

cos[2πλ(s− 1

2
)]dAn(λ) = r(n)s (s = 1, · · · , n) .

This corresponds to the continuous representation of a discrete (real-valued) sta-
tionary time series in the frequency domain (see Chapter 7.4 of Anderson (1971)).
If we write the limit of A(λ) = limn→∞ An(λ) (assuming it exists), the (real-valued)
spectral distribution matrix FRS for any 0 ≤ λ1 < λ2 ≤ 1/2 can be defined as

(5.41) FRS(λ2 − λ1) = E[(A(λ2 − λ1)A(λ2 − λ1)
′
] =

∫ λ2

λ1

fRS(λ)dλ

if FRS is absolutely continuous and the matrix-valued density process fRS(λ) (0 ≤
λ1 < λ2 ≤ 1/2) exists.

From (4.22), we set R̂n(m) = (r̂
(m,n)′
i ) = C−1

n X̂n(m) and r̂
(m,n)
i are p× 1 vectors for

i = 1, · · · , n. If we write

(5.42) r̂(m,n)
s =

m∑
k=1

psk zn(λ
(n)
k ) (s = 1, · · · ,m; 0 < m < n),

it is the trend-cycle estimate of the SIML-filtering value for r
(m,n)
s , which is the

corresponding element of Rn(m) (= CnXn(m)). It corresponds to

(5.43) r(m,n)
s =

m∑
k=1

psk z
∗
n(λ

(n)
k ) (s = 1, · · · ,m; 0 < m < n),

where z∗n(λ
(n)
k ) are constructed from the n × p hidden states matrix Xn instead of

the observed n × p matrix data Yn. Hence (5.42) is the same as the element of

C−1
n X̂

(m)
n in (4.22), and for λ

(n)
m = m/(2n) in the frequency domain it is a discrete

version of

(5.44) r̂(n)s (λ(n)
m ) =

∫ λ
(n)
m

0

cos[2πλ(s− 1

2
)]dAn(λ) .

Then, (5.43) is the same as the element of C−1
n X

(m)
n in (4.23), and it has the corre-

sponding (continuous) version in the frequency domain.
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Similarly, r̂
(m1,m2,n)
s =

∑m1+m2

k=m1+1 pskzn(λ
(n)
k ) = r̂

(m2,n)
s − r̂

(m1,n)
s (s = 1, · · · ,m;

0 < m1 < m2 < n) can be regarded as a discrete version of

(5.45) r̂(n)s (λ(n)
m1

, λ(n)
m2

) =

∫ λ
(n)
m2

λ
(n)
m1

cos[2πλ(s− 1

2
)]dAn(λ) .

From our interpretation of the SIML filtering we find an interesting represen-
tation of (discrete time and real-valued) stationary processes and orthogonal incre-
mental stochastic processes. They are closely related to our method of data analysis
for non-stationary vector time series.

6 Some Simulation and the Choice of Frequencies

6.1 A Guide of Choosing Frequencies

When we are interested in filtering a non-stationary time series with trend-cycle,
seasonality and measurement errors, we need to choose the parameter m. We give a
guide to set m in the trend-cycle filtering case for practical purpose. From the dis-
cussion of Section 5.2, the orthogonal process zn(λ

(n)
k ) corresponds to the frequency

λ
(n)
k = (k − 1

2
)/(2n + 1) (k = 1, · · · , n). When we are interested in the trend-cycle

component, we may only use λ
(n)
k = (k − 1

2
)/(2n + 1) (k = 1, · · · ,m) and then the

maximum frequency is approximately

(6.46) λ(n)
max =

m

2n
.

For instance, when we have monthly data over 20 years as an example, we have
n = 240 and s = 12. Since we have seasonal frequencies, we want to find trend-
cycle components as business cycles more than 1.5 year, say. Then an appropriate
maximum frequency would be λ

(n)
max = 1.5/24 and then we could take m∗ = 480 ×

(1.5/24) = 30.
As another example if we have quarterly data over 30 years, we have n = 120 and
s = 4. Since we have seasonal frequency, we want to find trend-cycle components as
business cycles more than 1.5 year, say. Then an appropriate maximum frequency
would be λ

(n)
max = 1.5/8 and then we could take m∗ = 240× (1.5/8) = 45.

If we were interested in the trend-cycle component of the non-stationary time series,
these choices might be reasonable candidates.

As we shall see in the next subsection, this point could be checked by simulation
for prediction.

6.2 Some Simulation

When we have estimates of the state variables x
(m)
i (i = 1, · · · , n), the estimates

of error components are v̂
(m)
i = yi − x̂

(m)
i (i = 1, . . . , n). Then, an estimated MSE
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of the one-step ahead prediction errors based on the SIML-smoothing or filtering is
given by

(6.47) PMSEn(h) = E[(yn+h − yn)(yn+h − yn)
′ |Fn] ,

where Fn is the σ−field (information) available at n.
One may try to minimize the estimated h-step prediction MSE by choosing an
appropriate m. It may be reasonable to take h = 2, 3 as short-run prediction and
h = 4, 8 for long-run prediction from our limited experiments.
We only show a result on the simple trend plus noise model when p = 1, xi =
xi−1 + v

(x)
i and yi = xi + vi (i = 1, · · · , n) with v

(x)
i ∼ N(0, σ2

x) and vi ∼ N(0, σ2
v).

The criterion function is the prediction MSE given by

PMSE∗
n(h) =

1

h

n∑
i=n−h+1

(yi − x̂
(m)
i )2 ,

where x̂
(m)
i is the estimate of x

(m)
i .

We present the minimumm asm∗ based on the trend-cycle filtering as Tables 6.1-6.3
by taking h = 2, 4, 6, 8 and n = 80, 120, 200, 400. In our simulations, as n increases,
we have larger choice of m∗ while m∗ decreases as h increases. When we have a long
horizon with h, it may be natural to use a small number of lower frequencies, and
for a wide range of σx and σv.

Table 6.1 : PMSE and Choice of m
(σx = 0.3 , σv = 0.05)

n 80 120 200 400
h=2 12 19 32 65
h=3 8 12 21 42
h=4 6 9 15 32
h=5 5 7 13 26
h=6 4 6 10 21
h=7 4 5 9 18
h=8 3 4 8 16
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Table 6.2 : PMSE and Choice of m
(σx = 0.3 , σv = 0.4)

n 80 120 200 400
h=2 13 19 33 66
h=3 8 13 21 43
h=4 6 9 16 32
h=5 5 8 13 26
h=6 4 6 11 21
h=7 4 5 9 18
h=8 3 5 8 16

Table 6.3 : PMSE and Choice of m
(σx = 0.3 , σv = 1.0)

n 80 120 200 400
h=2 13 20 33 67
h=3 9 13 22 44
h=4 6 10 16 33
h=5 5 8 13 26
h=6 4 7 11 22
h=7 4 6 9 19
h=8 4 5 8 16

6.3 A Comparison of the SIML Filtering and HP Filtering

In order to characterize some property of the SIML filtering, we give an illustrative
example. For this purpose, we take a monthly original consumption data in Section 2
(Kakei-Chosa series in Figure 3) and show the result of the SIML filtering and the HP
filtering with two parameter values (λ) as Figure 4. (We used hpfilter procedure
in mFilter R-package for HP filter and took m = 12 for the SIML filter, which
corresponds to frequencies over 2 year cycles since λ

(n)
max = 1/24.) An important point

is that when we have strong seasonality in data, the SIML often gives reasonable
estimates while the usefulness of HP filter depends on the the particular parameter
value chosen for λ.

Further comparison would be interesting, but it is beyond the scope of this paper.

7 Applications

7.1 An interpretation of Müller and Watson (2018)

Recently, Müller andWatson (2018) have proposed the so-called long-run co-variability
of macro-economic time series. They have investigated many non-stationary time
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Figure 4: An Example of SIML and HP Filters. (An illustrated comparison of the
SIML and HP Filters by using consumption data.)
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series and obtained some empirical findings. In this sub-section, an interpretation
of their method will be given as measuring the relationships among long-run trend-
cycle in our framework when p = 2. Moreover, we obtain an important consequence
from Proposition 2 in Section 5.1.

In this sub-section, we consider the case of p = 2 in (3.9)-(3.13). Let 2×2 matrices

Σx = (σ
(x)
ij ), we then define the (long-run) regression coefficient β = [σ

(x)
22 ]

−1σ
(x)
21

under the assumption that σ
(x)
22 > 0. Let also Gm(0) = (g

(m)
ij ), and an n× 2 matrix

(7.48) (w1,w2) = C−1
n (Yn −Y0) .

For estimating β, we define

(7.49) β̂ = [g
(m)
22 ]−1g

(m)
21 = [w

′
2PnJmJ

′
mPnw2]

−1[w
′
2PnJmJ

′
mPnw1] .

This quantity can be interpreted as the least squares slope of the transformed vector
from y1n on the transformed vector from y2n for an n × 2 matrix Yn = (y1n,y2n),
which is essentially the same as the one proposed by Müller and Watson (2018) 7.
Then, from Proposition 2 in Section 5 and its proof in the Appendix we immediately
obtain the following result.

Proposition 3 : In (3.9)-(3.13) with p = 2, we assume that the fourth order

moments of each element of v
(x)
i , vi and v

(s)
i (i = 1, · · · , n) are bounded, and Σx is

positive definite.
(i) We fix an m, then β̂ is not consistent when n → ∞.
(ii) Set mn = [nα] and 0 < α < 1, then as n −→ ∞

(7.50) β̂ − β
p−→ 0 .

The second part of this proposition is an extended version of the first part of Theorem
4.1 of Kunitomo and Sato (2017).

A Simulation Example
To illustrate our arguments in Proposition 3, we performed a set of Monte Carlo
experiments under the simple situation with p = 2 (the replication was 10,00 in each
simulation). The model is given by

(7.51) xi = (
x1,i

x2,i
) = (

x1,i−1

x2,i−1
) + (

v
(x)
1,i

v
(x)
2,i

) ,

7In their notation, m corresponds to q, which is fixed. They did use the (differenced) stationary
data, and thus, we could interpret that they calculated the linear regression from the filtered data
X̂∗

n = P
′
nJ

′
mJmPnC

−1
n (Yn −Y0) as a modification of (4.19) in our notation.
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(7.52) yi = (
y1,i
y2,i

) = (
x1,i + βx2,i

x2,i
) + (

v1,i
v2,i

) ,

where we have generated the normal errors v
(x)′
i = (v

(x)
1,i , v

(x)
2,i ), v

′
i = (v1,i, v2,i), (i =

1, · · · , n) with zero means, variances σ
(x)
j = 0.75 and σ

(v)
j = 1.5 (j = 1, 2), zero

covariances and an initial value x0.
This is a two dimensional I(1)-process, which is not co-integrated, but close to a
cointegrated-process. We present the finite sample properties of the (naive) least
squares (LS) estimator from the original data, the Müller-Watson (MW) estimatot,
and the SIML (SIML) estimator from the transformed data.

The simulation results in Tables 7.1-7.3 are consistent with our arguments in
Proposition 3. In the tables, Direct LS stands for the standard regression on y1n on
y2n, while MW and SIML stand for Muller-Watson and SIML, respectively. When
we have two-dimensional time series and they are not cointegrated, the standard
least square method is badly biased. The procedure proposed by Muller and Watson
(2018) often gives reasonable results, but its variance does not decrease as the sample
size increases. The SIML estimation method has reasonable finite sample properties
as well as reasonable asymptotic properties and it is applicable to more general
cases.

Table 7.1 : Simulations (Direct LS)

n 200 1000 30000
true 1.2000 1.2000 1.2000
mean 2.2016 2.2287 2.0918
SD 0.0930 0.2183 1.4901

Table 7.2 : Simulations (MW)

n 200 1000 30000
true 1.2000 1.2000 1.2000
mean 1.1418 1.2129 1.1875
SD 0.5279 0.5301 0.5337

Table 7.3 : Simulations (SIML)

n 200 1000 30000
true 1.2000 1.2000 1.2000
mean 1.0828 1.1807 1.2020
SD 0.3278 0.1904 0.0766
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7.2 Some Macro-economic data and Constructing a Monthly
Consumption Index

As illustrations for the empirical analysis, we have used our filtering method to
analyze Japanese quarterly (real) consumption-GDP data as the first example, and
three sets of monthly consumption data as the second example, which have been
discussed in Section 2. Appendix B contains all figures in this subsection.

As the first example, the ratio of real GDP and real consumption (quarterly
original series) and their time series plots are given in Figures 1 and 2. They show
non-stationarity in their trend-cycle and seasonality as typical macro-economic vari-
ables. We then calculate the transformed data using Pn (a kind of real Fourier
transformation) as Figure 5 from the original consumption data. In this case, the
transformed series gives a wild up and down fluctuation, and trend-cycle and season-
ality are sucked. To find seasonal components from the original series, we calculated
the realized zk (k = 1, · · · , n) (Figure 6) and the empirical cumulative distribution of
z2k (k = 1, · · · , n) (Figure 7), which roughtly correspond to the normalized and real-
valued sample spectral distribution function. Each component of zk (k = 1, · · · , n)
is an orthogonal decomposition in the frequency domain. Because we have quarterly
macro-data, we have a large up and down around (λ

(n)
k =) 0.25, which corresponds to

the seasonal frequency at s = 4. The empirical spectral distribution has an abrupt
change at this frequency. From these figures, we can judge that the real Fourier
transformation based on Kn does give useful information.

As it has been a practice in time series data analysis to use seasonal differencing
Δsyi = yi − yi−s (s = 4) in the Box-Jenkins method, we calculated the real Fourier
transformation based on Pn (Figure 8) after seasonal differencing. Although the
contribution of the resulting orthogonal process around the seasonal frequency could
be significant, there are some rather wild fluctuations on at many other frequencies
by using Pn−transformation. Because we have some difficulty in interpreting the
resulting time series, it may not be possible to justify the seasonal differencing
procedure, and we recommend not to use this representation. In the following
analysis, we simply use the differencing and then use the frequency domain analysis.

In Figure 9, we have analyzed real Quarterly-GDP. We show one example with
m = [n.99] and the deleted seasonal frequency are around 48-52 (48/196-52/196 in
[0, 1/2]) and we delete extremely high-frequency part. We deleted only five trans-
formed data around the seasonal frequency and the main intention was to investigate
the effect of seasonality with a narrow band. We have taken α = .99 since we wanted
to remove some contribution of high frequency, but we could have used other choices
and the results are not much different from Figure 8 in most cases. We compared the
filtered time series using our method and the official (published) seasonally adjusted
time series. We found that the differences in two time series (i.e., the published
time series and the SIML filtered time series) are rather small and they are often
of negligible magnitude. Although our filtering procedure is simple, this empirical
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example suggests the usefulness of our method developed in this study.

As the second example, we have analyzed three consumption (monthly) time
series and the quarterly consumption time series, which are mentioned in Section 2.
Then this is an empirical example when p = 4 and s = 12 with missing observations
because the quarterly one series cannot give monthly information. As we have seen
in Figure 3, three monthly consumption series have similarities and some differences
in their components. In our example, our goal is to construct the monthly con-
sumption index, which is consistent with the observed quarterly consumption time
series in trend-cycle component. Because of non-stationary trend-cycle, seasonal
and measurement errors, it may not be obvious to construct a useful consumption
index using existing statistical tools.
Let Yi (i = 1, · · · , n) be the target (quarterly) time series and Zjt (j = 1, 2, 3; t =
3(i − 1) + l, l = 1, 2, 3) be the j-th monthly time series (t = 0 is the initial period
and we fix the initial values Y0, Zj0). Then the criterion function is
(7.53)

MSE(m,m1,m2,m3, w1, w2, w3) =
n∑

i=1

[
ΔŶ

(T )
i −

3∑
j=1

wj(
3∑

l=1

ΔZ
(T )
j,3(i−1)+l)

]2

,

where ΔŶ
(T )
i = Ŷ

(T )
i − Ŷ

(T )
i−1 , (the trend part of the estimated ΔYi because we

observe quarterly data on Yi), ΔZ
(T )
jt = Z

(T )
jt −Z

(T )
j,t−1 (the trend parts of ΔZjt), and

wj (j = 1, 2, 3) are (unknown) weight coefficients and m, mj (j = 1, 2, 3) are the
numbers of trend-cycle filtering. In the above formulation, we need to measure the
prediction errors based on differenced data because we have non-stationary trend-
cycle component.

Using the least squares method, we minimized the MSE criterion with respect
to the underlying parameters. The estimated wj (j = 1, 2, 3) are 3.69, 5.19, and
1.64 (while the measurement units are different), but their magnitudes are compa-
rable to the published quarterly consumption level at 2002Q1-2016Q4), which are
statistically significant at 1%. We have chosen m = 29, m1 = 36,m2 = 23 and
m3 = 33. Although it may be possible to use other possibilities, but in our limited
experiments, we found some improvements in prediction error over other cases with
different combinations of m and mj (j = 1, 2, 3).

The black curves are the original series and the red curves are the estimated
trend curves in Figures 10 and 11 for two monthly series. By taking relatively large
mj (j = 1, 2, 3), we can recover the cycle components of each series, which are
crucial as the indicators of macro-business condition. In Figure 12, the green curve
shows the predicted state value calculated from the latest observed (quarterly) data
plus the predicted monthly part based on the estimated parameters. As there is
no monthly observation of quarterly published consumption, we draw their latest
(quarterly) level with the black curve and the estimated SIML (filtered) values with
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the red curve 8. Overall, we found that while our procedure is much simpler than the
X-12-ARIMA seasonal adjustment with reg-ARIMA model, the estimated filtered
series are consistent with the (published) quarterly series given the fact we have non-
stationary trend-cycle, seasonal and measurement errors components even when we
do not have large samples. In Figure 13. we have drawn the prediction errors in
terms of the differenced value Yi (i = 1, · · · , n) based on our procedure. This figure
illustrates the usefulness of the procedure because the macro-economic time series
are non-stationary with measurement errors.

The empirical data analyses in this subsection are presented for illustrations. We
are currently investigating the consumption data and the results will be reported on
another occasion.

8 Concluding Remarks

When the observed non-stationary multivariate time series contain seasonality and
noises, it may be difficult to disentangle the effects of trend-cycle, seasonal and mea-
surement errors. In real (seasonally unadjusted) times series, we often observe non-
stationary trend-cycle, seasonality and measurement errors while the X-12-ARIMA
program in official agencies uses the univariate reg-ARIMA model to remove the
seasonality from original time series. In this study we investigate a new procedure
to decompose time series into non-stationary trend-cycle components, stationary
seasonal and noise (or measurement errors) components. The resulting method for
non-stationary multivariate series is simple and free from the underlying distribu-
tions of components. Hence, it is robust against possible misspecification in the
non-stationary multivariate economic time series. An important conclusion is that
it is useful to transform the observed time series using the Kn−transformation and
investigate the transformed Zn series.

In empirical example in Section 7, we have illustrated our method to analyze
quarterly and monthly macro-consumption data in Japan. We presented a way to
construct the monthly consumption index as the second example, which is consistent
with the published or official (GDP-)consumption quarterly data. Although the
problem is practically complicated, we have shown that our method gives a useful
way for practical purpose.

There can be several further problems. Although it is easy to handle the Kn−
transformations of non-stationary multivariate time series and construct the trans-
formed Zn−data, there is a non-trivial initial value problem of filtering. Another
direction would be to handle some abrupt changes in multiple time series, such as
the changes of consumption tax in Japan. Some progress on these problem has been

8One notable event was the introduction of consumption tax in April 2014 and a sharp deviation
of trend. In the present study, we do not focus on this aspect and it will be in Sato and Kunitomo
(2020b).
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made (Sato and Kunitomo (2020a,b)), which will be reported in other occasions. As
there are many important empirical applications, we need to develop a systematic
statistical procedure.
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APPENDIX A : Mathematical Derivations

We now present some details of derivations that we have omitted in the previous
sections. We refer to Kunitomo, Sato and Kurisu (2018) as KSK(2018).

(i) On (4.24) and (4.27) : When we take m1 = 0 and m2 = m, then (4.27)
reduces (4.24). Hence, we show (4.27).
For θjk =

2π
2n+1

(j − 1
2
)(k − 1

2
) (j, k = 1, · · · , n), we use the relation that

θjk + θj′ ,k =
2π

2n+ 1
(j + j

′ − 1)(k − 1

2
) , θjk − θj′ ,k =

2π

2n+ 1
(j − j

′
)(k − 1

2
) .

We then have

4
∑
k∈I(1)n

[cos θjk cos θj′ ,k](A.54)

=
∑
k∈I(1)n

[e
i(θjk+θ

j
′
,k
)
+ e

−i(θjk+θ
j
′
,+k

)
] +

∑
k∈I(1)n

[e
i(θjk−θ

j
′
,k
)
+ e

−i(θjk−θ
j
′
,k
)
] ,

where I
(1)
n = [1, · · · ,m] (or I

(2)
n = [m1 + 1, · · · ,m1 +m2]) is the index set for j and

k.
For I

(2)
n = [m1 + 1, · · · ,m1 +m2], by rewriting

θjk + θj′ ,k = (m1 − 1

2
)

2π

2n+ 1
(j + j

′ − 1) +
2π

2n+ 1
(j + j

′ − 1)(k −m1) ,

and

θjk − θj′ ,k = (m1 − 1

2
)

2π

2n+ 1
(j − j

′
) +

2π

2n+ 1
(j − j

′
)(k −m1) ,

the summation of the first two terms in (A.54) becomes

ei(m1+
1
2
) 2π
2n+1

(j+j
′−1)×1− ei

2π
2n+1

(j+j
′−1)m2

1− ei
2π

2n+1
(j+j′−1)

+e−i(m1+
1
2
) 2π
2n+1

(j+j
′−1)×1− e−i 2π

2n+1
(j+j

′−1)m2

1− e−i 2π
2n+1

(j+j′−1)
.

For the last two terms in (A.54), we need to evaluate each term when (i) j = j
′
and

(ii) j �= j
′
, separately. Using similar calculations in (A.54) with the index set I

(2)
n ,

when j �= j
′
, the summation of last two terms becomes

ei(m1+
1
2
) 2π
2n+1

(j−j
′
) × 1− ei

2π
2n+1

(j−j
′
)m2

1− ei
2π

2n+1
(j−j′ )

+ e−i(m1+
1
2
) 2π
2n+1

(j−j
′
) × 1− e−i 2π

2n+1
(j−j

′
)m2

1− e−i 2π
2n+1

(j−j′ )
.

When j = j
′
, θjk − θj′ ,k = 0 and the summation of last two terms with the index set

I
(2)
n becomes 2m2. Hence, it is possible to evaluate each terms of (4.24) and (4.27).
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Using the relation

ei(m1+
1
2
) 2π
2n+1

(j+j
′−1) × 1− ei

2π
2n+1

(j+j
′−1)m2

1− ei
2π

2n+1
(j+j′−1)

+e−i(m1+
1
2
) 2π
2n+1

(j+j
′−1) × 1− e−i 2π

2n+1
(j+j

′−1)m2

1− e−i 2π
2n+1

(j+j′−1)
.

=
ei

2π
2n+1

1
2
(j+j

′−1)(m1) − ei
2π

2n+1
1
2
(j+j

′−1)(m1+m2)

ei
2π

2n+1
(− 1

2
)(j+j

′−1) − ei
2π

2n+1
( 1
2
)(j+j

′−1)

+
e−i 2π

2n+1
1
2
(j+j

′−1)(m1) − e−i 2π
2n+1

1
2
(j+j

′−1)(m1+m2)

e−i 2π
2n+1

(− 1
2
)(j+j′−1) − e−i 2π

2n+1
( 1
2
)(j+j′−1)

and the corresponding results for j − j
′
(there are two cases when (a)j = j

′
and

(b)j �= j
′
), we obtain the results of (4.27), and then (4.24) by using I

(1)
n instead of

I
(2)
n .

(ii) The proof of Proposition 1 : Essentially, we apply the Central Limit
Theorem (Theorem 8.4.3 of Anderson (1971) or Theorem 7.6 of Durrett (1991)) to
the sequence of ergodic stationary (discrete) time series. We will give the basic steps
of our derivations and mention that the problem here is similar to those explained
in Chapters 7-9 of Anderson (1971) in details.

First, we need to show that the resulting variance-covariance terms correspond
to those of the limiting Gaussian random variables.
For this purpose, we need to evaluate
(A.55)

E
[
zn(λ

(n)
k )zn(λ

(n)

k′ )
′
]
=

[
1

2n+ 1

] n∑
j,j

′
=1

(eiθjk + e−iθjk)(e
iθ

j
′
k
′ + e

−iθ
j
′
k
′ )E[rjr

′
j
′ ] .

When k �= k
′
, we find that the right-hand side terms are bounded by using the

straightforward calculations. We notice that the right-hand side consists of sums of
four terms associated with

(eiθjk + e−iθjk)(e
iθ

j
′
k
′ + e

−iθ
j
′
k
′ )(A.56)

= e
i(θjk+θ

j
′
k
′ ) + e

−i(θjk+θ
j
′
k
′ ) + e

i(θjk−θ
j
′
k
′ ) + e

−i(θjk−θ
j
′
k
′ )

= (A) + (B) + (C) + (D) (, say) .

Then we find that the sums of each terms associated with (A) and (B) in (A.55) are
bounded, which becomes small when n is large. We write

(A.57)
n∑

j,j′=1

e
i(θjk+θ

jk
′ )E[rjr

′
j] =

n−1∑
h=−(n−1)

∑
j′∈S(h)

e
i(θ

h+j
′
,k
+θ

j
′
k
′ )Γ(h) ,
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where S(h) = {1, 2, · · · , n−h} for h ≥ 0 and S(h) = {1−h, 2−h, · · · , n} for h < 0.
When h ≥ 0 given h, the second sum is given as

n−h∑
j′=1

ei
2π

2n+1
(h+j

′− 1
2
)(k− 1

2
)ei

2π
2n+1

(j
′− 1

2
)(k

′− 1
2
) × Γ(h)

=

⎡
⎣n−h∑

j
′
=1

ei
2π

2n+1
(k+k

′−1)(j
′−1)

⎤
⎦ ei

2π
2n+1

(h+1/2)(k− 1
2
)+ 1

2
(k

′− 1
2
) × Γ(h) .

When h < 0 given h, the sum can be written

n+h−1∑
j′+h−1=0

ei
2π

2n+1
[(h+j

′−1)(k+k
′−1)+ 1

2
(k− 1

2
)−(h+ 1

2
)(k

′− 1
2
)] × Γ(h) .

Because these sums are finite and we have the condition
∑+∞

h=−∞ ‖Γ(h)‖ < +∞, the
sum with (A) and (B) in (A.55) become arbitrarily small when n is large. (The
terms with (B) are the same as those with (A) except their signs in the exponential
parts.)
Second, we need to show that the sums of each terms with (C) and (D) in (A.55)
when k = k

′
are dominant terms. We utilized the relation

(A.58)
n∑

j,j′=1

e
i(θjk−θ

jk
′ )E[rjr

′
j] =

n−1∑
h=−(n−1)

∑
j′∈S(h)

e
i(θ

h+j
′
,k
−θ

j
′
k
′ ) × Γ(h) ,

When h ≥ 0 given h, the second sum is given as

n−h∑
j′=1

ei
2π

2n+1
(j

′−1)(k−k
′
)ei

2π
2n+1

[(h+ 1
2
)(k− 1

2
)− 1

2
(k

′− 1
2
)] × Γ(h)

and when h < 0 given h, the sum can be written

n+h−1∑
j′+h−1=0

ei
2π

2n+1
[(h+j

′−1)(k−k
′
)+ 1

2
(k− 1

2
)−(h− 1

2
)(k

′− 1
2
)] × Γ(h) .

The sums of the above terms are bounded when k �= k
′
by using the same ar-

gument as we have (A.57). (The terms with (D) are the same as those with (C)
except their signs in the exponential parts.) On the other hand, when k = k

′
,∑n−h

j
′=1

ei2π
k−k

′
2n+1

(j
′−1) = n − h. Then the dominant sums with (C) and (D) in (A.55)

become

(A.59)

[
n

2n+ 1

] n−1∑
h=−(n−1)

[
cos 2π

k − 1/2

2n+ 1
h

]
[Γ(h) + Γ(−h)] .
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We note that under the assumption of stationarity of rj, it has been known that
1
n

∑n
j
′
=1 rh+j′r

′
j′

p−→ Γ(h) . (See Chapter 8 of Anderson (1971), and Brockwell and

Davis (1990), for instance.)

Third, we consider the situation that λ
(n)
k → s, λ

(n)

k′ → t as n → ∞ for 0 < s < t < 1
2
.

Since
∑+∞

h=−∞ ‖Γ(h)‖ < +∞ and ‖Γ(h)‖ is small as h is large, in the situation that

λ
(n)
k → λ for 0 < λ < 1

2
as n → ∞, we have (5.31). (We can take k such that

k/(2n) = λ+ o(1/nε) (ε > 0) such that
∑

|h|>nε ‖Γ(h)‖ is arbitrary small.)
For the asymptotic normality, we set a sequence of random variables

(A.60) W
(n)

k,k′ = (α
′
1,α

′
2)

[
Z

′
ne

(n)
k

Z
′
ne

(n)

k
′

]
, k, k

′
= 1, · · · , n,

and Zn = PnRn, Rn = (r
′
j) (n × p matrix), where αi (i = 1, 2) are p × 1 (non-

zero) constant vectors and e
(n)
k = (0, · · · , 0, 1, 0 · · · , 0)′ (k = 1, · · · , n) are n× 1 unit

vectors.
We can also construct a sequence of random variables W

(n)
s,t by using

p
(n)
s,j =

√
2/(2n+ 1) cos 2πs(j − 1/2) instead of p

(n)
jk in Pn.

Then E[|W (n)

k,k
′ −W

(n)
s,t |2]

p

→ 0 as n → ∞ ( λ
(n)
k → s, λ

(n)

k′ → t (0 < s < t < 1
2
).

Finally, we utilize the truncation argument used in the proof of Theorem 8.4.3
of Anderson (1971) and approximate (5.30) by the (finite order) moving-average
representation for a large h > 0

(A.61) r
(n,h)
i = μ+

h∑
j=0

Γjwi−j

and zn,h(λ
(n)
k ) =

∑n
j=1 p

(n)
jk r

(n,h)
j . By applying the standard method of proof in

Theorem 8.4.3 of Anderson (1971), i.e., first we fix a h > 0 and we show the CLT

for zn,h(λ
(n)
k ) and then by taking h → ∞ and we can show that the effects of h are

negligible because
∑+∞

s=−∞ ‖Γ(s)‖ < +∞. (Q.E.D.)

(iii) The proof of Proposition 2 : Let z
(x)
k = (z

(x)
kj ) and Z

(s+v)
k = (z

(s+v)
kj ) (k =

1, · · · , n) be the k-th row vector elements of n× p matrices

(A.62) Z(x)
n = K∗

n(Xn − Ȳ0) , Z
(s+v)
n = K∗

n(Sn +Vn) , K
∗
n = PnC

−1
n ,

respectively, where we denote Xn = (x
′
k) = (xkg), Sn = (s

′
k) = (skg), Vn = (v

′
k) =

(vkg), Zn = (z
′
k) (= (zkg)) are n × p matrices with zkg = z

(x)
kg + z

(s+v)
kg . We write

zkg, z
(x)
kg , z

(s+v)
kg as the g−th component of zk, z

(x)
k , z

(s+v)
k (k = 1, · · · , n; g = 1, · · · , p).

We use z
(f)
kg (f = x, s+v) and decompose Σ̂x−Σx = (σ̂

(x)
gh −σ

(x)
gh )gh) for g, h = 1, · · · , p.
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We re-write

1

mn

mn∑
k=1

zkz
′
k − Σx(A.63)
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(s+v)′
k + z

(s+v)
k z

(x)′
k

]
.

Then we will investigate the conditions that three terms except the first one of
(A.63) are op(1) and

(A.64)
1

mn

mn∑
k=1

z
(x)
k z

(x)′
k − Σx

p−→ O

as mn → ∞ (n → ∞). Since Δxi is stationary, it is not difficult to show the second
assertion via Chapter 5 of KSK(2018). By using (A.59), the expected (matrix) value
of (1/m)

∑mn

k=1 zkz
′
k is given by

n

2n+ 1

n−1∑
h=−(n−1)

[
1

m

n∑
k=1

cos 2π
k − 1/2

2n+ 1
h

]
[Γ(h) + Γ(−h)] .

Then by Lemma 5.1 of KSK(2018), the middle sum is
[1/2m] sin[2πmh/(2n+1)]/ sin[πh/(2n+1)], which becomes 1 as m → ∞,m/n → 0
for a fixed h. Then the limit is fSR(0) =

∑+∞
−∞ Γ(h) because it is finite.

Here we use the notation cij (i, j = 1, · · · , n) of Chapter 5 of KSK(2018) as cij =
(2/m)

∑m
k=1 θikθjk. Then for (non-zero p× 1) constant vector α we can evaluate

E

[
1

mn

mn∑
k=1

(α
′
zk)

2 −α
′
Σxα

]2

= (
2

2n+ 1
)2E

⎡
⎣ n∑
j,j′=1

cjj′α
′
(rjr

′
j′ − E(rjr

′
j′ ))α

⎤
⎦
2

≤ K1[
2

2n+ 1
]2

n∑
j,j

′
=1

c2
j,j

′ ,

where K1 is a positive constant and we used the boundedness of fourth moments.
Again by using Lemma 5.2 of KSK(2018), we find that

∑n
j,j′=1 c

2
j,j

′ = (n+ 1/2)2/m

and we have shown the first assertion as m → ∞,m/n → 0.

Next we show that the second, third and fourth terms in the right-hand-side of
(A.63) are asymptotically negligible as n → ∞. and we could estimate the variance
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and covariance of the underlying processes consistently as if there were no seasonal
and noise terms
Let bk = (bkj) = e

′
kPnC

−1
n = (bkj) and e

(n)′
k = (0, · · · , 1, 0, · · · ) be an n × 1 vector.

We write z
(s+v)
kg =

∑n
j=1 bkj(sjg + vjg) for the seasonal and noise part and use the

relation

(A.65) (PnC
−1
n C

′−1
n P

′
n)k,k′ = δ(k, k

′
)4 sin2[

π

2n+ 1
(k − 1

2
)] .

Then under the conditions that ‖C(s)
j ‖ = O(ρj) (0 ≤ ρ < 1) and ‖C(v)

j ‖ =
O(ρj) (0 ≤ ρ < 1), we can find K2 (a positive constant) such that

(A.66) E[(z
(s+v)
kg )]2 = E[

n∑
i=1

bki(v
(s)
ig + vig)

n∑
j=1

bkj(v
(s)
jg + vjg)] ≤ K2 × a∗kn .

It is because

E[(z
(s+v)
kg )]2 =

n∑
i,j=1

bkibkj
[
σ(v)
gg (i− j) + σ(s)

gg (i− j)
]
,

where σ
(v)
gg (i − j) + σ

(s)
gg (i − j) is the (i − j)−th autocovariance of vig + v

(s)
ig and

vjg + v
(s)
jg . (We denote bki = 0 for i < 0 and i > n.) Then

E[(z
(s+v)
kg )]2 =

n−1∑
l=−(n−1)

[
n∑

j=1

bkjbk,j+l(σ
(v)
gg (l) + σ(s)

gg (l))]

≤ [
n∑

j=1

b2kj]]
∞∑

l=−∞
[|σ(v)

gg (l)|+ |σ(s)
gg (l)|] .

Because ‖C(s)
j ‖ = O(ρj) and ‖C(v)

j ‖ = O(ρj),
∑∞

l=−∞[|σ(v)
gg (l)|+ |σ(s)

gg (l)|] is bounded.
Also it is straight-forward to find that

1

mn

mn∑
k=1

a∗kn =
1

mn

2
mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m2
n

n2
) ,

by using the relation

m∑
k=1

2 cos(π
2k − 1

2n+ 1
) =

m∑
k=1

[ei
2π

2n+1
(k− 1

2
) + e−i 2π

2n+1
(k− 1

2
)] =

sin( 2π
2n+1

m)

sin( π
2n+1

)
.

Then the second term of (A.63) becomes

(A.67)
1

mn

mn∑
k=1

E[z
(s+v)
kg ]2 ≤ K3

1

mn

mn∑
k=1

a∗kn = O(
m2

n

n2
) ,
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which is o(1) if we set α such that 0 < α < 1 and K3 is a positive constant.
(The arguments here are similar to the derivations in Chapter 5 of KSK(2018), but
there is a major difference on the conditions because their asymptotic arguments
are based on the situation when the length of observed intervals decrease. In the
present situation, there is no

√
n factor in Kn-transformation and we use K∗

n and
a∗kn while they have used akn = na∗kn.)
For the fourth term,

E

[
1

mn

mn∑
j=1

z
(x)
kg z

(v)
kg

]2

=
1

m2
n

mn∑
k,k′=1

E
[
z
(x)
kg z

(x)

k
′
,g
z
(v)
kg z

(v)

k
′
,g

]
= O(

mn

n2
) .

In the above evaluation we have used the evaluation that if we set sjk = cos[ 2π
2n+1

(j−
1
2
)(k − 1

2
)] (j, k = 1, 2, · · · , n), then we have the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] =
n

2
+

1

4
for any k ≥ 1 .

(See Chapter 5 of Kunitomo, Sato and Kurisu (2018).)
Finally, for the third term, we need to consider the variance of

(z
(s+v)
kg )2 − E[(z

(s+v)
kg )2]

=
n∑

j,j′=1

bkjbk,j′
[
(vjg + v

(s)
jg )(vj′ ,g + v

(s)

j′ ,g)− E[(vjg + v
(s)
jg )(vj′ ,g + v

(s)

j′ ,g)]
]
.

Then by using the assumption we have after some evaluations, we find a positive
constant K4 such that

E

[
1

mn

mn∑
k=1

((z
(s+v)
kg )2 − E[(z

(s+v)
kg )2])

]2

(A.68)

=
1

m2
n

mn∑
k1,k2=1

E

[
n∑

j1,j2,j3,j4=1

bk1,j1bk1,j2

(
(v

(s)
j1,g

+ vj1,g)(v
(s)
j2,g

+ vj2,g)

−E(v
(s)
j1,g

+ vj1,g)(v
(s)
j2,g

+ vj2,g)
)

×bk2,j3bk2,j4

(
(v

(s)
j3,g

+ vj3,g)(v
(s)
j4,g

+ vj4,g)− E(v
(s)
j3,g

+ vj3,g)(v
(s)
j4,g

+ vj4,g)
)]

≤ K4
1

m2
n

[
mn∑
k=1

a∗kn]
2 = O(

1

m2
n

× (
m3

n

n2
)2) ,

which is O(m4
n/n

4) by straight-forward calculations.
Here we just give an illustration of our derivations when p = 1 and si = 0 (i =
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1, · · · , n). We re-write (3.12) as vi =
∑∞

j=0 cje
(v)
i−j and we evaluate

(
1

m
)2

m∑
k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4

×E{[vj1vj2 − E(vj1vj2)][vj3vj4 − E(vj3vj4)]}

= (
1

m
)2

m∑
k1,k2=1

∑
j1,j2,j3,j4

bk1,j1bk1,j2bk2,j3bk2,j4

∞∑
l1,l2,l3,l4=0

cl1cl2cl3cl4

×E{[ej1−l1ej2−l2 − E(ej1−l1ej2−l2)][ej3−l3ej4−l4 − E(ej3−l3ej4−l4)]} .

We need to evaluate the corresponding terms for four cases when (i) j1−l1 = j2−l2 =
j3− l3 = j4− l4, (ii) j1− l1 = j2− l2 �= j3− l3 = j4− l4, (iii) j1− l1 = j3− l3 �= j2− l2 =
j4− l4, (iv) j1− l1 = j4− l4 �= j2− l2 = j4− l4. By using the condition in the general

case that ‖C(s)
j ‖ = O(ρj), ‖C(v)

j ‖ = O(ρj) (j ≥ 0, 0 ≤ ρ < 1), we have
∑∞

j=0 |cj| < ∞
in this special case. We also utilize the relation such as

∑n
j=1 bkjbk′j = δ(k, k

′
)a∗kn

in the general case and we have used the notation that bk,j = 0 for k = 1, · · · ,m,
j < 0, j > n and cj = 0 (j < 0).
Then in each (i)-(iv) case, we can take a positive constant K5 such that (A.68) is
less than

K5(
1

m
)2

m∑
k1,k2=1

[
n∑

j1=1

b2k1,j1 ]
1/2[

n∑
j2=1

b2k1,j2 ]
1/2[

n∑
j3=1

b2k2,j3 ]
1/2[

n∑
j4=1

b2k2,j4 ]
1/2 .

The above evaluation methd works in the general case with a complication of no-
tations. Therefore, by using (68), the third term of (A.63) is negligible if we set α
such that 0 < α < 1. (Q.E.D)

APPENDIX B : Some Figures

We now present figures used in Section 7. As we have explained in Section 2, all
data are official data published by ESRI (Economic and Social Research Institute),
Cabinet Office of Japan, METI, and Statistics Bureau, Ministry of Internal Affairs
and Communications. They are available from the government official website :
e.stat.
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Figure 5: Orthogonal Process zk for Original Series. (Without differencing C−1
n

we used the transformation Pn of data and then calculated zk (k = 1, · · · , n). Data are the
quarterly real consumption between 1994Q1-2018Q2, published in 2018 by the Economic Social
Research Institute (ESRI), Cabinet Office, Japan.)
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Figure 6: Orthogonal Process zk for Quarterly Consumption. (We used
the transformation Kn of data and then calculated zk (k = 1, · · · , n). Data are the quarterly
real consumption between 1994Q1-2018Q2, published in 2018 by the Economic Social Research
Institute (ESRI), Cabinet Office, Japan.)
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Figure 7: Squared Orthogonal Process z2k for Quarterly Consumption. (We
calculated the cumulative sum of squares of the transformed orthogonal z2n from the data.)

0.0 0.1 0.2 0.3 0.4 0.5

−
20

00
0

20
00

40
00

60
00

freq

R
C

O
N

Figure 8: Orthogonal Process zk for Seasonally Differenced Consumption.
(After seasonal differencing instead of C−1

n , we used the transformation Pn on the differenced data
and calculated the orthogonal elements.)
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Figure 9: Seasonally Ajusted Series. (The official seasonally adjusted (S.A.) series are
constructed using X-12-ARIMA and we compared the SIML filtered value. Data are the quarterly
real GDP between 1994Q1-2018Q2, published in 2018 by the Economic Social Research Institute
(ESRI), Cabinet Office, Japan.)

Figure 10: Monthly Consumption Series. (We compared the original series and the
SIML filtered value. Data are the monthly real consumption between 2002M1-2016M12, published
in 2017 by the Statistics Bureau, Japan.)
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Figure 11: Monthly Consumption Series. (We compared the original series and the
SIML filtered value. Data are the monthly consumptions between 2002M1-2016M12, published in
2017 by Ministry of Economy, Trade and Industry (METI), Japan.)

Figure 12: Consumption Series. (Data are the quarterly real consumption between
1994Q1-2018Q2, published in 2018 by the Economic Social Research Institute (ESRI), Cabinet
Office, Japan.)
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Figure 13: Predicted Series. (The predicted and monthly consumption state variable are
shown between 1994Q1-2018Q2.)

42


