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Abstract
The mazimum likelihood estimates of an ARMA model can be obtained by the Kalman

filter based on the state-space representation of the model. This paper presents an algorithm
for computing gradient of the log-likelihood by an extending the Kalman filter without resorting
to the numerical difference. Three examples of seasona ledjustment model and ARMA model
are presented to exemplified the specification of structural matrices and initaial matrices. An
extension of the algorithm to compute the Hessian matrix is also shown.

Key words ARMA model, state-space model, Kalman filter, log-likelihood, gradient, Hessian
matrix.

1 Introduction: The Maximum Likelihood Estimation of a State-
Space Model

We consider a linear Gaussian state-space model

xn = Fn(θ)xn−1 +Gn(θ)vn (1)

yn = Hn(θ)xn + wn, (2)

where yn is a one-dimensional time series, xn is an m-dimensional state vector, vn is a k-
dimesional Gaussian white noise, vn ∼ N(0, Qn(θ)), and wn is one-dimensional white noise,
wn ∼ N(0, Rn(θ)). Fn(θ), Gn(θ) and Hn(θ) are m × m matrix, m × k matrix and m vector.
respectively. θ is the p-dimensional parameter vector of the state-space model such as the
variances of the noise inputs and unknown coefficients in the matrices Fn(θ), Gn(θ), Hn(θ),
Qn(θ) and Rn(θ). For simplicity of the notation, hereafter, the parameter θ and the suffix n will
be omitted.

Various models used in time series analysis can be treated uniformly within the state-space
model framework. Further, many problems of time series analysis, such as prediction, signal
extraction, decompositoon, parameter estimation and interpolation, can be formulated as the
state estimation of a state-space model.

Given the time series YN ≡ {y1, . . . , yN} and the state-space model (1)nd and (2), the one-
step-ahead predictor xn|n−1 and the filter xn|n and their variance covariance matrices Vn|n−1 and
Vn|n are obtained by the Kalman filter (Anderson and Moore (2012) and Kitagawa (2020)):

One-step-ahead prediction

xn|n−1 = Fxn−1|n−1

Vn|n−1 = FVn−1|n−1F
T +GQnG

T (3)

Filter

Kn = Vn|n−1H
T (HVn|n−1H

T +R)−1

xn|n = xn|n−1 +Kn(yn −Hxn|n−1) (4)

Vn|n = (I −KnH)Vn|n−1.
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Given the data YN , the likelihood of the time series model is defined by

L(θ) = p(YN |θ) =
N∏

n=1

gn(yn|Yn−1, θ), (5)

where gn(yn|Yn−1, θ) is the conditional distribution of yn given the observation Yn−1 and is a
normal distribution given by

gn(yn|Yn−1, θ) =
1√
2πrn

exp

{
− ε2n
2rn

}
, (6)

where εn and rn are the one-step-ahead prediction error and its variance defined by

εn = yn −Hxn|n−1

rn = HnVn|n−1H
T
n +R (7)

Therefore, the log-likelihood of the state-space model is obtained as

ℓ(θ) = logL(θ) =
N∑

n=1

log gn(yn|Yn−1, θ)

= −1

2

{
N log 2π +

N∑
n=1

log rn +
N∑

n=1

ε2n
rn

}
. (8)

The maximum likelihood estimates of the parameters of the state-space model can be ob-
tained by maximizing the log-likelihood function. In general, since the log-likelihood function is
mostly nonlinear, the maximum likelihood estimates is obtained by using a numerical optimiza-
tion algorithm based on the quasi-Newton method. According to this method, using the value
ℓ(θ) of the log-likelihood and the first derivative (gradient) ∂ℓ/∂θ for a given parameter θ, the
maximizer of ℓ(θ) is automatically estimated by repeating

θk = θk−1 + λkB
−1
k−1

∂ℓ

∂θ
, (9)

where θ0 is an initial estimate of the parameter. The step width λk is automatically determined
and the inverse matrix H−1

k−1 of the Hessian matrix is obtained recursively by the DFP or BFGS
algorithms (Fletcher (2013)).

Here, the gradient of the log-likelihood function is usually approximated by numerical dif-
ference, such as

∂ℓ(θ)

∂θj
≈ ℓ(θj +∆θj)− ℓ(θj∆θj)

2∆θj
, (10)

where ∆θj is defined by C|θj |, for some small C such as 0.00001. The numerical difference
usually yields reasonable approximation to the gradient of the log-likelihood. However, since it
requires 2p times of log-likelihood evaluations, the amount of computation becomes considerable
if the dimension of the parameters is large. Further, if the the maximum likelihood estimates
lie very close to the boundary of addmissible domain, which sometimes occure in regularization
problems, it becomes difficlt to obtain the approximation to the gradient of the log-likelihood
by the numerical difference.

Analytic derivative of the log-likelihood of time series models were considered by many
authors. For example, Kohn and Ansley (1985) gave method for computing likelihood and its
derivatives for an ARMA model. Zadrozny (1989) derived analytic derivatives for estimation
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of linear dynamic models. Kulikova (2009) presented square-root algorithm for the likelihood
gradient evaluation to avoid numerical instatbility of the recursive algorithm for log-likelihood
computation. In this paper, the gradient and Hessian of the log-likelihood of linear state-space
model are given. Details of the implementation of the algorithm for standard seasonal adjustment
model, seasonal adjustment model with stationary AR component and ARMA model are given.
For each implementation, comparison with a numerical difference method is shown.

In section 2, we consider to obtain the gradient of the log-likelihood by extending the Kalman
filter algorith. Extension of the algorithm for computing the Hessian of the log-likelihood is
shown in section 3. Application of the method is exemplified with the three models, i.e., the
standard seasonal adjustment model, the seasonal adjustment model with autoregressive com-
ponent, and ARMA (autoregressive moving average model) are shown in section 4.

2 The Gradient and the Hessian of the log-likelihood

2.1 The gradient of the log-likelihood

From (8), the gradient of the log-likelihood is obtained by

∂ℓ(θ)

∂θ
= −1

2

N∑
n=1

{
1

rn

∂rn
∂θ

+ 2
εn
rn

∂εn
∂θ

− ε2n
r2n

∂rn
∂θ

}
, (11)

where, from (6), the derivatives of the one-step-ahead predition εn and the one-step-ahead
prediction error variance rn are obtained by

∂εn
∂θ

= −H
∂xn|n−1

∂θ
− ∂H

∂θ
xn|n−1

∂rn
∂θ

= H
∂Vn|n−1

∂θ
HT +

∂H

∂θ
Vn|n−1H

T +HVn|n−1
∂H

∂θ

T

+
∂R

∂θ
. (12)

To evaluate these quantity, we need the derivative of the one-step-ahead predictor of the state
∂xn|n−1

∂θ
and its variance covariance matrix

∂Vn|n−1

∂θ
which can be obtained recursively in parallel

to the Kalman filter algorithm:

[One-step-ahead-prediction]

∂xn|n−1

∂θ
= F

∂xn−1|n−1

∂θ
+

∂F

∂θ
xn−1|n−1

∂Vn|n−1

∂θ
= F

∂Vn−1|n−1

∂θ
F T +

∂F

∂θ
Vn−1|n−1F

T + FVn−1|n−1
∂F

∂θ

T

+G
∂Q

∂θ
GT +

∂G

∂θ
QGT +GQ

∂G

∂θ

T

. (13)

[Filter]

∂Kn

∂θ
=

(
∂Vn|n−1

∂θ
HT + Vn|n−1

∂H

∂θ

T
)
r−1
n − Vn|n−1H

T r−2
n

∂rn
∂θ

∂xn|n
∂θ

=
∂xn|n−1

∂θ
+Kn

∂εn
∂θ

+
∂Kn

∂θ
εn

∂Vn|n
∂θ

=
∂Vn|n−1

∂θ
− ∂Kn

∂θ
HVn|n−1 −Kn

∂H

∂θ
Vn|n−1 −KnH

∂Vn|n−1

∂θ
. (14)
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2.2 Hessian of the Log-likelihood of the State-space Model

The Hessian (the second derivative) of the log-likelihood is also obtained by a recursive formula,
since, from (11), it is given as

∂2ℓ(θ)

∂θ∂θT
= −1

2

N∑
n=1

{
1

rn

(
∂2rn
∂θ∂θT

+
∂εn
∂θ

∂εn
∂θT

)
− 1

r2n

(
∂rn
∂θ

∂rn
∂θT

− εn
∂rn
∂θ

∂εn
∂θT

−εn
∂εn
∂θ

∂rn
∂θT

+ ε2n
∂2εn
∂θ∂θT

+
ε2n
2

∂2rn
∂θ∂θT

)
− ε2n

r3n

∂rn
∂θ

∂rn
∂θT

}
, (15)

where, from (12),
∂2εn
∂θ∂θT

and
∂2rn
∂θ∂θT

are obtained by

∂2εn
∂θ∂θT

= −2
∂H

∂θ

∂xn|n−1

∂θT
−H

∂2xn|n−1

∂θ∂θT
− ∂2H

∂θ∂θT
xn|n−1

∂2rn
∂θ∂θT

= 2
∂H

∂θ

∂Vn|n−1

∂θT
HT +H

∂2Vn|n−1

∂θ∂θT
HT + 2H

∂Vn|n−1

∂θ

∂H

∂θT
(16)

+
∂2H

∂θ∂θT
Vn|n−1H

T + 2
∂H

∂θ
Vn|n−1

∂HT

∂θT
+HVn|n−1

∂2H

∂θ∂θT
+

∂2R

∂θ∂θT
.

Therefore, to evaluate the Hessian, the following computation should be performed along
with the recursive formula for thelog-likelihood and the gradient of the log-likelihood.

∂2xn|n−1

∂θ∂θT
= 2

∂F

∂θ

∂xn−1|n−1

∂θT
+ F

∂2xn−1|n−1

∂θ∂θT
+

∂2F

∂θ∂θT
xn−1|n−1

∂2Vn|n−1

∂θ∂θT
= 2

∂F

∂θ

∂Vn−1|n−1

∂θT
F T + F

∂2Vn−1|n−1

∂θ∂θT
F T + 2F

∂Vn−1|n−1

∂θ

∂F T

∂θT

+
∂2F

∂θ∂θT
Vn|n−1F

T + 2
∂F

∂θ
Vn|n−1

∂F T

∂θT
+ FVn|n−1

∂2F T

∂θ∂θT

+2
∂G

∂θ

∂Q

∂θT
GT +G

∂2Q

∂θ∂θT
GT + 2G

∂Q

∂θ

∂GT

∂θT

+
∂2G

∂θ∂θT
QGT + 2

∂G

∂θ
Q
∂GT

∂θT
+GQ

∂2GT

∂θ∂θT

∂2Kn

∂θ∂θT
=

(
∂2Vn|n−1

∂θ∂θT
HT + 2

∂Vn|n−1

∂θ

∂H

∂θT
+ Vn|n−1

∂2H

∂θ∂θT

)
r−1
n

−2

(
∂Vn|n−1

∂θ
HT + Vn|n−1

∂H

∂θ

T
)
r−2
n

∂rn
∂θT

+2Vn|n−1H
T r−3

n

∂rn
∂θ

∂rn
∂θT

− Vn|n−1H
T r−2

n

∂2rn
∂θ∂θT

(17)

∂2xn|n
∂θ∂θT

=
∂2xn|n−1

∂θ∂θT
+ 2

∂Kn

∂θ

∂εn
∂θT

+Kn
∂2εn
∂θ∂θT

+
∂2Kn

∂θ∂θT
εn

∂2Vn|n
∂θ∂θT

=
∂2Vn|n−1

∂θ∂θT
− ∂2Kn

∂θ∂θT
HVn|n−1 − 2

∂Kn

∂θ

∂H

∂θT
Vn|n−1 − 2

∂Kn

∂θ
H

∂Vn|n−1

∂θT

−Kn
∂2H

∂θ∂θT
Vn|n−1 − 2Kn

∂H

∂θ

∂Vn|n−1

∂θT
−KnH

∂2Vn|n−1

∂θ∂θT
.

3 Examples

In order to impliment the grafient filter, it is necessary to to specify the derivatives of F , G, H, Q
and R along with the original state-space model. In this section, we shall consider three typical
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cases. The first example is the standard seasonal adjeustment model, for which three matrics (or
vector), F , G andH do not contain unknown parameters and thus the derivatives of these matrics
becomes 0. This makes the algorithm for the gradient of the log-likelihood considerablly simple.
The second example is the seasonal adjustment model with AR component. For this model,
the matrix F depends on the unknown AR coefficients, but the derivative of F is very simple
and very sparse. On the other hand, if we use a nonlinear transformation of the parameters in
estimating the AR coefficients, to ensure the stationarity condition, it is necessary to consider
the effect of the transformation. The third example is the ARMA model. Since the variance
covariance matrix of the initial state vector is complex functions of the AR and MA parameter,
it is rather raborious work to detemine the initial matrix for the algorithm for the gradient of
the log-likelihood.

3.1 The standard seasonal adjustment model

This is a typical example of the case where only the noise covariances Q and R depend on the
unknown parameter θ. Consider a standard seasonal adjustment model

yn = Tn + Sn + wn, (18)

where Tn and Sn are the trend component and the seasonal component that typically follow the
following model

Tn = 2Tn−1 − Tn−2 + un,

Sn = −(Sn−1 + · · ·+ Sn−p+1) + vn. (19)

un, vn and wn are assumed to be Gaussian white noise with variances τ21 , τ
2
2 and σ2, respectively

(Kitagawa and Gersch (1984,1996) and Kitagawa (2020)).
This seasonal adjustment model with two component models can be expressed in state-space

model form as

xn = Fxn−1 +Gvn

yn = Hxn + wn (20)

with vn ∼ N(0, Q) and wn ∼ N(0, R) and the state vector xn and the matrices F , G, H, Q and
R are defined by

xn =



Tn

Tn−1

Sn

Sn−1
...

Sn−p+2


, F =



2 −1
1 1

−1 −1 · · · −1
1

. . .

1


, G =



1 0
0 0
0 1
0 0
...

...
0 0


(21)

H = [ 1 0 1 0 · · · 0 ]

Q =

[
τ21 0
0 τ22

]
, R = σ2. (22)

In this case, the parameter is θ = (τ21 , τ
2
2 , σ

2)T , and the F , G and H do not depend on the
parameter. Further, all of F , G, H, Q and R are time-invariant and do not depend on time n.

In actual likelihood maximization, since there are positivity constrains, τ21 > 0, τ22 > 0 and
σ2 > 0, it is frequently used a log-transformation,

θ1 = log(τ21 ), θ2 = log(τ22 ), θ3 = log(σ2). (23)
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In this case,

∂Q

∂θ1
=

[
τ21 0
0 0

]
,

∂Q

∂θ2
=

[
0 0
0 τ22

]
,

∂Q

∂θ3
=

[
0 0
0 0

]
, (24)

∂R

∂θ1
= 0,

∂R

∂θ2
= 0,

∂R

∂θ3
= σ2. (25)

Since F , G and H do not depend on θ and
∂F

∂θ
= 0,

∂G

∂θ
= 0 and

∂H

∂θ
= 0 hold, the recursive

algorithm for gradient of the log-likelihood shown in (49) and (50)become simple as follows:

∂εn
∂θ

= −H
∂xn|n−1

∂θ
∂rn
∂θ

= H
∂Vn|n−1

∂θ
HT +

∂R

∂θ
∂xn|n−1

∂θ
= F

∂xn−1|n−1

∂θ
∂Vn|n−1

∂θ
= F

∂Vn−1|n−1

∂θ
F T +G

∂Q

∂θ
GT

∂Kn

∂θ
=

∂Vn|n−1

∂θ
HT r−1

n − Vn|n−1H
T r−2

n

∂rn
∂θ

∂xn|n
∂θ

=
∂xn|n−1

∂θ

∂Kn

∂θ
εn +Kn

∂εn
∂θ

∂Vn|n
∂θ

= (I −KnH)
∂Vn|n−1

∂θ
− ∂Kn

∂θ
HVn|n−1.

For Whard (whole sale hardware) data (Kitagawa (2020)), N = 155, the standard seasonal
adjustment model with m1 = 2, m2 = 1 is estimated using the initial estimates of parameters,
θ = (log τ21 , log τ

2
2 , log σ

2) = (−12.20607265,−13.81551056,−0.69314718)T . The log-likelihood
of the model with these initial parameters is ℓ(θ) = 109.34479 and the Gradient obtained by the
numerical difference function FUNCND and the proposed method are shown in the Table 1. In
the numerical differentiation, C = 10−3is used. It can be seen that the numerical differentiation
coincides with the analytic derivative up to 5th digit.

Table 1: Comparison of numerical diffference and gradient

Numerical Difference Gradient
∂ℓ(θ)
∂τ21

1.07694445 1.07694205

∂ℓ(θ)
∂τ22

0.00091259 0.00091256

∂ℓ(θ)
∂σ2 70.91720451 70.91720448

3.2 Seasonal adjustment model with stationary AR component

Consider a seasonal adjustment model with statinary AR component

yn = Tn + Sn + pn + wn, (26)

where Tn and Sn are the trend component and the seasonal component introduced in the previous
subsection and pn is an AR component with order m3 defined my

pn =
m3∑
j=1

ajpn−j + v(t)n . (27)
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Here v
(t)
n is a Gaussian white noise with variance τ23 . The model contains 4+m3 parameters and

the parameter vector is given by θ = (θ1, . . . , θm3+4) ≡ (τ21 , τ
2
2 , τ

2
3 , σ

2, a1, · · · , am3)
T .

The matrices F , G, H, Q and R are defined by

xn =



Tn

Tn−1

Sn

Sn−1
...

Sn−p+2

pn−1

pn−2
...

pn−m3



, F =



2 −1
1 1

−1 −1 · · · −1
1

. . .

1
a1 a2 · · · am3

1
. . .

1



, G =



1 0 0
0 0 0
0 1 0
0 0 0
...

...
...

0 0 0
0 0 1
0 0 0
...

...
0 0 0



(28)

H = [ 1 0 1 0 · · · 0 1 0 · · · 0 ]

Q =

 τ21 0 0
0 τ22 0
0 0 τ23

 , R = σ2. (29)

In this case, all of F , G, H, Q and R are time-invariant and do not depend on time n. The
relation between the parameter θj and the variances and AR coefficients are as follows.

τ2j = eθj , (j = 1, . . . , 3), σ2 = eθ4 , βj = C
eθj+4 − 1

eθj+4 + 1
(30)

{a(m)
j = a

(m−1)
j − βma

(m−1)
m−j , j = 1, . . . ,m}, for m = 1, . . . ,m3 (31)

Note that the equation (31) is the relation between the AR coefficients of order m− 1 and those
of the order m used in the Levinson’s algorithm (Kitagawa (2020)).

In this case,

∂Q

∂θ1
=

 τ21 0 0
0 0 0
0 0 0

 , ∂Q

∂θ2
=

 0 0 0
0 τ22 0
0 0 0

 , ∂Q

∂θ3
=

 0 0 0
0 0 0
0 0 τ23

 ,
∂Q

∂θ4
=

 0 0 0
0 0 0
0 0 0

 , ∂R

∂θ1
= 0,

∂R

∂θ2
= 0,

∂R

∂θ3
= 0,

∂R

∂θ4
= σ2, (32)

(
∂F

∂θk

)
pq

=


∂ap
∂θq

if k > 4, p = 4, q = 5, . . . ,m3 + 4

0 otherwise
(33)

where

(
∂F

∂θk

)
pq

denotes the (p, q) component of the matrix

(
∂F

∂θk

)
, and

∂a
(m)
i

∂θj
is obtained by

∂a
(m)
i

∂θj
=

∂a
(m)
i

∂βj

∂βj
∂θj

= 2C
eθj

(eθj + 1)2
∂a

(m)
i

∂βj
, j = 1, . . . ,m (34)

and

∂βk
∂θj

=

 2C
eθj

(eθj + 1)2
for k = j

0 for k ̸= j

(35)
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∂a
(m)
i

∂βk
=



0 for i = m and k < m

1 for i = m = k

∂a
(m−1)
i

∂βk
− βm

∂a
(m−1)
m−i

∂βk
for i < m and k < m

−a
(m−1)
m−i for i < m and k = m.

(36)

Table 2 shows the gradients obtained by the numerical difference and the proposed method.
The initial estimates of the parameters are θ = (−12.20607265,−13.81551056,−9.72116600,
−0.69314718, 2.92316158,−1.20485737) and the log-likelihood of the model is ℓ(θ) = 109.39234337.
In this case as well, the numerical differentiation matches the analytic derivative up to the fifth
digit.

Table 2: Comparison of numerical diffference and gradient

Numerical Difference Gradient
∂ℓ(θ)
∂τ21

1.07570844 1.07570605

∂ℓ(θ)
∂τ22

0.00091252 0.00091249

∂ℓ(θ)
∂τ23

0.04739855 0.04739781

∂ℓ(θ)
∂σ2 70.87177866 70.87177864

∂ℓ(θ)
∂a1

0.03112269 0.03112271

∂ℓ(θ)
∂a2

-0.02850531 -0.02850530

3.3 ARMA Model

Consider a stationary ARMA model (autoregressive moving average model) of order (m, ℓ) (Box
and Jenkins (1970), Brockwell and Davis (1981))

yn =
m∑
j=1

ajyn−j + vn −
ℓ∑

j=1

bjvn−j , (37)

where vn is a Gaussian white noise with mean zero and variance σ2. Here, a new variable
ỹn+i|n−1 is defined as

ỹn+i|n−1 =
m∑

j=i+1

ajyn+i−j −
ℓ∑

j=i

bjvn+i−j , (38)

which is a part of yn+i that can be directly computable from the observations until time n− 1,
yn−1, yn−2, · · ·, and the noise inputs until time n, vn, vn−1, · · ·.

By setting k = max(m, ℓ+ 1) and defining the k-dimensional state vector xn as

xn = (yn, ỹn+1|n−1, · · · , ỹn+k−1|n−1)
T , (39)

the ARMA model can be expressed in the form of a state-space model (Kitagawa (2020)):

xn = Fxn−1 +Gvn

yn = Hxn. (40)
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Here k = max(m, ℓ + 1) and the k × k matrix F and the k-dimensional vectors G and H are
defined as

F =


a1 1

a2
. . .

... 1
ak

 , G =


1

−b1
...

−bk−1

 (41)

H = [ 1 0 · · · 0 ],

respectively, where ai = 0 for i > m and bi = 0 for i > ℓ.
The ARMA model of order (m, ℓ) has m+ℓ+1 unknown parameters σ2, a1, . . . , am, b1, . . . , bℓ.

However, the maximum likelihood estimate of the innovation variance is obtained by

σ̂2 =
1

N

N∑
n=1

ε2n
rn

, (42)

and the coefficents ai and bj can be estimated independent on the varaince. Therefore, hereafter
define the paramter vector as θ = (a1, . . . , am, b1, . . . , bℓ)

T . Then the log-likelihood of the ARMA
model is given by

ℓ(θ) = −1

2

{
N log 2π +N log σ̂2 +

N∑
n=1

log rn +N

}
. (43)

3.3.1 Gradient filter for ARMA model

For the state-space representation of the ARMA model, the derivative of the matrices F , G, and
Q are given by

∂Fij

∂θp
=

{
1 if 2 ≤ i ≤ m, j = 1, p ≤ m

0 otherwise
(44)

∂Gi

∂θp
=

{
−1 if i ≤ ℓ,m+ 1 ≤ p ≤ m+ ℓ

0 otherwise
. (45)

∂Q

∂θp
= 0, p = 1, . . . ,m+ ℓ (46)

From (43), the gradient of the log-likelihood of the ARMA model is obtained by

∂ℓ(θ)

∂θ
= −1

2

N∑
n=1

1

rn

∂rn
∂θ

− 1

σ̂2

N∑
n=1

εn
rn

∂εn
∂θ

+
1

2σ̂2

N∑
n=1

ε2n
r2n

∂rn
∂θ

, (47)

where the derivatives of the one-step-ahead predition error εn and the one-step-ahead prediction
error variance rn are obtained by

∂εn
∂θ

= −H
∂xn|n−1

∂θ
∂rn
∂θ

= H
∂Vn|n−1

∂θ
HT . (48)

Here
∂xn|n−1

∂θ
and

∂Vn|n−1

∂θ
can be evaluated by the following Kalman filter like recursive algo-

rithm

9



[One-step-ahead-prediction]

∂xn|n−1

∂θ
= F

∂xn−1|n−1

∂θ
+

∂F

∂θ
xn−1|n−1.

∂Vn|n−1

∂θ
= F

∂Vn−1|n−1

∂θ
F T +

∂F

∂θ
Vn−1|n−1F

T + FVn−1|n−1
∂F

∂θ

T

+
∂G

∂θ
QGT +GQ

∂G

∂θ

T

. (49)

[Filter]

∂Kn

∂θ
=

∂Vn|n−1

∂θ
HT r−1

n − Vn|n−1H
T r−2

n

∂rn
∂θ

∂xn|n
∂θ

=
∂xn|n−1

∂θ
+Kn

∂εn
∂θ

+
∂Kn

∂θ
εn

∂Vn|n
∂θ

=
∂Vn|n−1

∂θ
− ∂Kn

∂θ
HVn|n−1 −KnH

∂Vn|n−1

∂θ
(50)

To apply the above recursive agorithm, we need the initial values,
∂Vij

∂ap
and

∂Vij

∂br
, which

can be obtained from the initial variance covaiance matrix of the state-space representaion of
the ARMA model (Kitagawa (2020))

V11 = C0

V1i =
m∑
j=i

ajCj+1−i −
ℓ∑

j=i−1

bjgj+1−i

Vij =
m∑
p=i

m∑
q=j

apaqCq−j−p+i −
m∑
p=i

ℓ∑
q=j−1

apbqgq−j−p+i

−
ℓ∑

p=i−1

m∑
q=j

bpaqgp−i−q+j +
ℓ∑

p=i−1

bpbp+j−iσ
2, (51)

where the autocovariace function Ck, k = 0, 1, . . . , k and the impulse response function gk are
obtained by

[Impulse response function]

g0 = 1

gi =
i∑

j=1

ajgi−j − bi, i = 1, 2, · · · (52)

[Covariance function]

C0 =
m∑
i=1

aiCi + σ2
(
1−

ℓ∑
i=1

bigi

)
(53)

Ck =
m∑
i=1

aiCk−i − σ2
ℓ∑

i=k

bigi−k, k = 1, 2, · · · (54)
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3.3.2 Initial condition for the recursive computation

To apply this recursive agorithm shown in (49) and (50), we need the initial values,
∂Vij

∂ap
and

∂Vij

∂br
which are obtained as

∂V11

∂ap
=

∂C0

∂ap
,

∂V11

∂bp
=

∂C0

∂bp
,

∂V1i

∂ap
=

m∑
j=i

aj
∂Cj+1−i

∂ap
+ Cp+1−i −

ℓ∑
j=i−1

bj
∂gj+1−i

∂ap

∂V1i

∂bp
=

m∑
j=i

aj
∂Cj+1−i

∂bp
−

ℓ∑
j=i−1

bj
∂gj+1−i

∂bp
− gp+1−i

∂Vij

∂ar
=

m∑
p=i

apCr−j−p+i +
m∑
q=j

aqCq−j−r+i +
m∑
p=i

m∑
q=j

apaq
∂Cq−j−p+i

∂ar

−
ℓ∑

q=j−1

bqgq−j−r+i −
m∑
p=i

ℓ∑
q=j−1

apbq
∂gq−j−p+i

∂ar

−
ℓ∑

p=i−1

bpgp−i−r+j −
ℓ∑

p=i−1

m∑
q=j

bpaq
∂gp−i−q+j

∂ar
(55)

∂Vij

∂br
=

m∑
p=i

m∑
q=j

apaq
∂Cq−j−p+i

∂br
−

m∑
p=i

apgr−j−p+i −
m∑
p=i

ℓ∑
q=j−1

apbq
∂gq−j−p+i

∂br

−
m∑
q=j

aqgr−i−q+j −
ℓ∑

p=i−1

m∑
q=j

bpaq
∂gp−i−q+j

∂br

+
ℓ∑

p=i−1

br+j−iσ
2 +

ℓ∑
p=i−1

br−j+iσ
2. (56)

Here, from the definition of the impulse responce function (52) and the autocovariance func-
tion (53) and (54), their derivatives are obtained as follows:

∂g0
∂θj

= 0, j = 1, . . .m+ ℓ

∂gi
∂ap

=
i∑

j=1

aj
∂gi−j

∂ap
+ gi−p, i = 1, 2, · · · (57)

∂gi
∂bp

=



i∑
j=1

aj
∂gi−j

∂bp
, i = 1, 2, · · ·

i∑
j=1

aj
∂gi−j

∂bp
− 1, i = 1, 2, · · · , p = i

∂C0

∂ap
= Cp +

m∑
i=1

ai
∂Ci

∂ap
− σ2

ℓ∑
i=1

bi
∂gi
∂ap

(58)

∂C0

∂bp
=

m∑
i=1

ai
∂Ci

∂bp
− σ2

(
gp +

ℓ∑
i=1

bi
∂gi
∂bp

)
(59)
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∂Ck

∂ap
= Ck−p +

m∑
i=1

ai
∂Ck−i

∂ap
− σ2

ℓ∑
i=k

bi
∂gi−k

∂ap
, k = 1, 2, · · · (60)

∂Ck

∂bp
=

m∑
i=1

ai
∂Ck−i

∂bp
− σ2

(
gp−k +

ℓ∑
i=k

bi
∂gi−k

∂bp

)
, k = 1, 2, · · · (61)

Note that the equations (58) – (61) are expressed in the following form and can be solved in
the same way as the equations (53) and (54).

∂C0
∂ap

∂C1
∂ap
...

∂Ck
∂ap


=



0 a1 · · · ak

a1 a2 · · · ak−1

...
...

...

ak ak−1 · · · 0





∂C0
∂ap

∂C1
∂ap
...

∂Ck
∂ap


+



Cp − σ2∑ℓ
i=p bi

∂gi−p

∂ap

Cp−1 − σ2∑ℓ
i=p+1 bi

∂gi−p−1

∂ap
...

Cp−k − σ2bℓ
∂gℓ−i

∂ap


(62)



∂C0
∂bp

∂C1
∂bp
...

∂Ck
∂bp


=



0 a1 · · · ak

a1 a2 · · · ak−1

...
...

...

ak ak−1 · · · 0





∂C0
∂bp

∂C1
∂bp
...

∂Ck
∂bp


+



−σ2

(
gp +

∑ℓ
i=1 bi

∂gi
∂bp

)
−σ2

(
gp−1 +

∑ℓ
i=1 bi

∂gi−1

∂bp

)
...

−σ2

(
gp−k +

∑ℓ
i=1 bi

∂gi−k

∂bp

)


. (63)

3.3.3 Effect of transformation of parameters

In actual parameter estimation, however, to satisfy the stationarity and invertibility conditions,
we usually apply the following transformations of the parameters.

For the condition of stationarity for the AR coefficients a1, · · · , am, associated partial auto-
correlation coefficients β1, · · · , βm should satisfy −1 < βi < 1 for all i = 1, · · · ,m. It can be seen
that this condition is guaranteed, if the transformed coefficients αi defined by

αi = log

(
1 + βi
1− βi

)
, (64)

satisfy −∞ < αi < ∞ for all i = 1, · · · ,m.
Conversely, if βi is defined by

βi =
eαi − 1

eαi + 1
, (65)

for arbitrary (α1, · · · , αm)T ∈ Rm, then it can been seen that |βi| < 1 is always satisfied and the
corresponding AR coefficients satisfy the stationarity condition.

Similarly, to guarantee the invertibility condition of the MA coefficents for any (δ1, · · · , δℓ)T ∈
Rℓ, let γi be defined as

γi =
eδi − 1

eδi + 1
, (66)

and formally obtain the corresponding MA coefficients b1, · · · , bℓ by considering d1, · · · , dℓ to be
the PARCOR’s.

Then for arbitrary θ′′ = (α1, · · · , αm, γ1, · · · , γℓ)T ∈ Rm+ℓ, the corresponding ARMA model
will always satisfy the stationarity and invertibility conditions. It is noted that if the coefficient
needs to satisfy the condition that |βi| < C for some 0 < C < 1, we define

βi =
eαi − 1

eαi + 1
C, (67)
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instead of the equation (65).
For these transformations, the gradient of the log-likelihood is modified as follows.

∂ℓ(θ)

∂θj
=



m∑
i=1

∂ℓ(θ)

∂ai

∂ai
∂θj

for j = 1, . . . ,m

−ℓ∑
i=1

∂ℓ(θ)

∂bi

∂bi
∂θj

for j = m+ 1, . . . , ℓ

(68)

where
∂ai
∂θj

and
∂bi
∂θj

are obtained by

∂a
(m)
j

∂θj
=

∂a
(m)
i

∂βj

∂βj
∂θj

=
2Ceθj

(eθj + 1)2
∂a

(m)
i

∂βj
, j = 1, . . . ,m (69)

∂b
(m)
i

∂θm+j
=

∂b
(m)
i

∂γj

∂γj
∂θm+j

=
2Ceθm+j

(eθm+j + 1)2
∂b

(m)
i

∂γj
, j = 1, . . . , ℓ, (70)

and
∂a

(m)
i

∂βj
and

∂b
(m)
i

∂γj
are given by

∂a
(m)
i

∂βk
=



0 for i = m and k < m

1 for i = m = k

∂a
(m−1)
i

∂βk
− βm

∂a
(m−1)
m−i

∂βk
for i < m and k < m

−a
(m−1)
m−i for i < m and k = m.

(71)

∂b
(ℓ)
i

∂γk
=



0 for i = ℓ and k < ℓ

1 for i = ℓ = k

∂b
(ℓ−1)
i

∂γk
− γℓ

∂b
(ℓ−1)
ℓ−i

∂γk
for i < ℓ and k < ℓ

−b
(ℓ−1)
ℓ−i for i < ℓ and k = ℓ.

(72)

3.3.4 ARMA(2,1) and ARMA(5,3)

As numerical examples, we consider two ARMAmodels for the Hakusan yaw rate data (Kitagawa
(2020)). The first example is an ARMA(2,1) model. The initial estimates of the AR and MA
coefficents are a1 = 1.3, a2 = −0.6, b1 = 0.2. The log-likelihood of the ARMA model with
these initial parameters are −16.3976. Table 3 compare the gradients of the log-likelihood
computed by the numerical difference and the proposed gradient filter algorithm. The gradients
coincides until the fifth digit. By both algorithm, the maximum likelihood estimates of the
model are a1 = 1.4103, a2 = −0.6846, b1 = 0.3396, σ2 = 0.06663 and the maximum log-
likelihood ℓ(θ̂) = −15.7187, AIC = 39.4373.

The second example is the ARMA(5,3) model for the same data set. Initial estimates of
the parameters are a1 = 2.5, a2 = −3.0, a3 = 2.1, a4 = −1.0, a5 = 0.3, b1 = 2.1, b2 = −1.7,
b3 = 0.5 and the log-likelihood of the model with these parameters is ℓ = −156.5930. Table
4 compare the gradients of the log-likelihood computed by the numerical difference and the
proposed algorithm. The gradients coincides at least until the sixth digit. By both algorithm,
the maximum likelihood estimates of the model are a1 = 3.0705, a2 = −4.0905, a3 = 2.9810,
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Table 3: Comparison of numerical diffference and gradient for ARMA(2,1) model.

Numerical Difference Gradient
∂ℓ(θ)
∂θ1

−0.7848665 −0.7848652

∂ℓ(θ)
∂θ2

1.6988569 1.6988567

∂ℓ(θ)
∂θ3

−1.6783890 −1.6783890

a4 = −1.27978, a5 = 0.3035, b1 = 2.982, b2 = −1.6797, b3 = 0.5023, σ2 = 0.05743 and the
maximum log-likelihood ℓ(θ̂) = 0.8624, AIC = 16.2753. The AIC values indicate the ARMA(5,3)
is better than the ARMA(2,1) model.

Table 4: Comparison of numerical diffference and gradient for ARMA(5,3) model.

Numerical Difference Gradient
∂ℓ(θ)
∂θ1

−0.249927228× 103 −0.249927233× 103

∂ℓ(θ)
∂θ2

0.910195611× 101 0.910195568× 101

∂ℓ(θ)
∂θ3

−0.342739937× 102 −0.342739934× 102

∂ℓ(θ)
∂θ4

0.771826263× 102 0.771826264× 102

∂ℓ(θ)
∂θ5

0.231448005× 102 0.231448006× 102

∂ℓ(θ)
∂θ6

0.480755088× 102 0.480755057× 102

∂ℓ(θ)
∂θ7

−0.850532732× 102 −0.850532748× 102

∂ℓ(θ)
∂θ8

0.322328498× 102 0.322328498× 102

4 Summary

The gradient and Hessian of the log-likelihood of linear state-space model are given. Details of
the implementation of the algorithm for standard seasonal adjustment model, seasonal adjust-
ment model with stationary AR component and ARMA model are given. For each implemen-
tation, comparison with a numerical difference method is shown.
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