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Abstract

The accurate assessment of business conditions is a long-standing problem
in macroeconomics. To construct a coincident index of growth cycles from a
given set of indicators, we propose a new approach, the cyclical components
synthesization (CCS) approach. We refer to the coincident index of growth
cycles as the index of business cycles (IBC) of coincident economic indications.
The IBC based on the CCS approach has the following properties: (1) its mean
is globally stationary; (2) it is constructed as a common factor in the stationary
parts of the selected economic indicators; and (3) its variations are as large as
possible and, therefore, it contains a larger amount of information on business
fluctuations. We examine the performance of the proposed IBC by comparing
it with the composite index and the Nikkei Business Index. The results show
that the CCS approach has a number of advantages over existing methods.

Keywords: Business cycle index; Bayesian modeling; State space model;
Kalman filter; Composite index; Nikkei Business Index
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1 Introduction

Following the seminal work of Burns and Mitchell (1946), the measurement of busi-

ness cycles has been recognized as an important issue in macroeconomic studies.

Furthermore, favorable or unfavorable business conditions are of great interest to

many, as the assessment of business conditions has a significant influence on govern-

ment economic policies. However, conventional indexes may not accurately capture

business cycles. Therefore, the question that arises is: what is a better way to

produce useful and reliable indexes? This is a long-standing problem and was one

of the central questions addressed by Stock and Watson (1989). In this paper, we

aim to present an alternative approach to constructing a business cycle index using

coincident economic indicators. Specifically, we attempt to measure growth cycles

and apply the proposed method to Japanese data. As a monthly coincident index of

growth cycles in Japan is, to our knowledge, a new development, it may be of broad

interest to macroeconomists.

Conventionally, business conditions are assessed using summary measures for the

state of macroeconomic activity in Japan and the United States (US). The composite

index (CI) and diffusion index (DI) are representative summary measures. Although

both have the advantage of manageability, they have faced criticism because they

are not based on a strict statistical model. Given this, since the 1980s, there have

been many studies of statistical methods for business cycle analysis. Pioneering

works in this area are by Stock and Watson (1989, 1991), who developed a statis-

tical method to construct an index of business cycles (IBC) based on a state space

model. Stock and Watson (1989, 1991) define the business cycle as a co-movement

of macroeconomic variables, and the Stock–Watson index is constructed by extract-

ing the common factor hidden in multiple macroeconomic time series data. Thus,

their proposed model is commonly termed the dynamic factor model, and it was first

applied to analyze the US business cycle. Ohkusa (1992) and Fukuda and Onodera

(2001) have applied the Stock–Watson dynamic factor modeling approach to analyze

Japanese business cycles.

The dynamic factor modeling approach has since been extended by Kanoh and

Saito (1994), Mariano and Murasawa (2003, 2010), Watanabe (2003), and Urasawa

(2014). Kanoh and Saito (1994) extended the dynamic factor model to include

qualitative data from the Short-Term Economic Survey of Enterprises (abbreviated
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to Tankan), a statistical survey conducted by the Bank of Japan. Focusing on the

companies’ judgments about business conditions in Tankan, Kanoh and Saito (1994)

considered that if such judgments reflected an overall assessment of actual business

conditions, then a business index that statistically extracts the actual state of the

economy from such judgments would be a more appropriate measure of the overall

state of the economy than conventional indexes. They concluded that the peaks and

troughs projected by their proposed index have systematic relationships with the

business cycles identified by experts from the Japanese government. Mariano and

Murasawa (2003) pointed out that the CI and the Stock–Watson coincident index

have two shortcomings: first, they ignore information contained in quarterly indi-

cators, such as quarterly real gross domestic product (GDP); and second, they lack

economic interpretation. Therefore, Mariano and Murasawa (2003) extended the

Stock–Watson coincident index by applying a maximum likelihood factor analysis

to a mixed-frequency series of quarterly real GDP and monthly coincident business

cycle indicators. The resulting index is related to latent monthly real GDP. Fur-

thermore, Mariano and Murasawa (2010) estimated Gaussian vector autoregression

(VAR) and factor models for latent monthly real GDP and other coincident indica-

tors using observable mixed-frequency series. For the maximum likelihood estima-

tion of a VAR model, the expectation-maximization algorithm helps to identify a

good starting value for a quasi-Newton method. Mariano and Murasawa (2010) con-

cluded that the smoothed estimate of latent monthly real GDP is a natural extension

of the Stock–Watson coincident index. To obtain early estimates of Japan’s quar-

terly GDP growth in real time, Urasawa (2014) estimated a dynamic factor model

using mixed-frequency data on GDP, industrial production, employment, private

consumption, and exports. The results of a real-time forecasting exercise suggested

that the model performs well.

Another prominent approach that differs from dynamic factor modeling is the

regime-switching modeling approach developed by Hamilton (1989). Whereas dy-

namic factor modeling is associated with a CI-type index, the regime-switching mod-

eling is associated with a DI-type index. Kim and Nelson (1998) developed a method

that combined the above two approaches. Watanabe (2003) applied the approach of

Kim and Nelson (1998) to the Japanese economy, and estimated a dynamic Markov

switching factor model using macroeconomic data.

Here, we note a data treatment problem regarding the Stock–Watson dynamic
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factor modeling approach and its extensions. Specifically, many earlier studies used

differencing in time series data to obtain stationariness in cases where nonstationary

data (e.g., the mean) was used for convenience. This may result in a loss of signifi-

cant information. In this paper, we propose an alternative approach to construct a

coincident IBC via the decomposition of time series data into several possible com-

ponents. In contrast to the Stock–Watson index, we consider an IBC that has the

following properties: (1) it is globally stationary in mean; (2) it is constructed using

the common factor of all the relevant coincident indicators; and (3) it has variations

that are as large as possible and, therefore, it contains a larger amount of informa-

tion on business cycle fluctuations. The IBC based on our proposed approach has

a higher correlation with the cyclical component of GDP than the CI or the Nikkei

Business Index (NBI). That is, the results show that our index performs better than

either of these indexes.

The remainder of this paper is organized as follows. In Section 2, we present a

brief review of some existing approaches. In Section 3, we explain the framework

of our new approach for constructing a business cycle index. Then, we describe the

parameter estimation procedure in Section 4. In Section 5, we compare the perfor-

mance of the IBC based on the newly-proposed approach with the CI of coincident

indicators and the NBI using Japanese economic data. In Section 6, we discuss our

new approach. We present our conclusions in Section 7.

2 Brief review of existing approaches and evaluation

2.1 Diffusion index, composite index, and the MTV model

There is no uniform set of official indicators used to determine business conditions

among developed countries. For example, the CI has a central role in measuring

business cycles in the US, the United Kingdom, and Italy, whereas the growth rates

of GDP are emphasized in the measurement of business cycles in Canada.

In Japan, business conditions are typically measured using business cycle indica-

tors such as the CI and DI, which are compiled by the Economic and Social Research

Institute (ESRI) of the Japanese Cabinet Office. Since April 2008, the ESRI has

placed greater emphasis on the CI than on the DI in assessing business conditions

in Japan.

According to the Cabinet Office, the indicators for indexes of business conditions
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are re-examined after each business cycle and changed if it is expected that the per-

formance of the indexes will be improved. The DI and CI complied by Japan’s ESRI

consist of three indexes: a leading index (which is constructed based on 11 indica-

tors), a coincident index (based on 10 indicators), and a lagging index (based on

nine indicators). The DI represents the ratio of a series that increased in value dur-

ing the most recent 3-month period. The coincident DI is considered an important

index of peaks and troughs: its 50% line is frequently used to identify the turning

point of a business cycle. However, official reference dates are determined by the

ESRI on the basis of much broader information, including other economic indicators

and professional opinions. The CI uses the same data series as the DI. However,

unlike the DI, which only considers the direction of changes in indicators, the CI

takes into account the degree of change. Therefore, the CI is considered useful in

measuring the speed and magnitude of a business cycle. Originally, the CI and DI

were developed by the National Bureau of Economic Research (NBER) in the US

and the business cycle indicators of the Japanese Cabinet Office are based on the

NBER calculation method. Although these business cycle indexes are widely used,

it is recognized that they suffer from various defects. In particular, they are not

derived from any sound statistical methods (Kanoh and Saito, 1994).

Kariya (1988, 1993) proposed a multivariate time series variance component

model known as the MTV model. The basic concept of this model is that it uses

principal component analysis with time series data on macroeconomic variables.

When we apply the MTV model to coincident indicators, a principal component of

these indicators can be regarded as an IBC. Note that the MTV model may lead

to different results depending on the component on which it focuses. Therefore,

a definite conclusion cannot be obtained unless there is some objective criterion

justifying a focus on the obtained principal component.

2.2 Approach of Stock and Watson

Stock and Watson (1989, 1991) proposed a more reliable index of business cycles

that measures the state of the economy using a time series model. In this approach,

the signal for business fluctuations is generally expressed by a co-movement of se-

lected macroeconomic variables. Thus, Stock and Watson suggested decomposing

macroeconomic variables into common factors and unique (idiosyncratic) factors.

The common factor is considered to be derived by a single unobservable dynamic
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variable, which is called the state of the economy.

Specifically, a macroeconomic time series xin, for one ofm indicators, is expressed

as:

∆xin = µi + γi∆cn + uin, (1)

ϕ(L)∆cn = ηn, (2)

di(L)uin = ϵin (i = 1, 2, . . . ,m), (3)

where µi is an unknown parameter, γi is the unknown factor loading for the ith

indicator, ∆cn and uin are the common and unique factors of ∆xin, respectively,

with i = 1, 2, . . . ,m, and ϕ(L) and di(L) are polynomials with appropriate orders.

Here, L denotes a lag operator, such as Lj∆cn = ∆cn−j , with ∆ as the difference

operator defined by ∆ = 1 − L. Moreover, ηn and ϵin are usually assumed to be

Gaussian white noise sequences, which are independent of each other.

Thus, the models in Eqs (2) and (3) are autoregressive (AR) models for ∆cn and

uin. To obtain good properties for estimates, it is assumed that ∆cn and uin are

stationary in mean; therefore, ∆xin is also stationary in mean. For most practical

situations, time series data for the indicators show distinct trends and, therefore, it is

necessary to take the first difference of the time series xin so that ∆xin is stationary.

Note that the difference ∆cn for factor cn ensures the correspondence between xin

and cn. When the time series xin is considered stationary, ∆xin in Eq. (1) can be

replaced with xin, and ∆cn in Eqs (1) and (2) can be replaced with cn.

The above dynamic factor models can be expressed by a state space representa-

tion. Thus, the Kalman filter algorithm can be applied to estimate the parameters

and the common factor ∆cn and, hence, cn. The estimate for cn is called the Stock–

Watson index (SWI).

2.3 Evaluation

As mentioned in Fukuda (1994) and Komaki (2001), the approaches used to con-

struct business cycle indexes can be classified in terms of whether they consider

deterministic or stochastic trends and the cyclical components of time series data.

Specifically, DI, CI, and MTV modeling approaches are based on a deterministic

perspective. In contrast, dynamic factor modeling is based on a stochastic perspec-

tive. An advantage shared by the DI and CI is their simplicity of construction.

However, because they are not based on a clear statistical assumption, there can
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be difficulties in using them for prediction. The MTV modeling approach is based

on a model involving principal component analysis. However, in general, the data

structure is not clearly defined. Furthermore, principal component analysis often

results in interpretation difficulties.

Conversely, the Stock–Watson dynamic factor modeling approach is based on a

state space model and the Kalman filter. Therefore, this approach is based on a set

of statistical models expressing the structure of the data. However, to satisfy the

assumption of stationarity for the data used, many earlier methods take an ad hoc

approach to the treatment of data, such as the use of differences for the time series.

Another problem with the Stock–Watson approach is the difficulty of determining

whether to use differencing.

Moreover, because of the treatment of the data, it may be difficult to interpret

the SWI results from an economic perspective. Consider here a case, as in Eq. (1),

where the difference in the data is used. Let the polynomial ϕ(L) in Eq. (2) be

given by:

ϕ(L) = α0 +
p∑

j=1

αjL
j

with α0 ̸= 0. Then, from Eq. (2), we can see that the estimated SWI is a result of

the autoregressive integrated moving average model given by:

cn = cn−1 −
1

α0

p∑
j=1

αjL
j(cn − cn−1) +

1

α0
ηn. (4)

Thus, the behavior of the estimated SWI is very complicated because it is a weighted

random walk process. Therefore, we agree with Mariano and Murasawa (2003) that

the results of the SWI cannot be interpreted from an economic perspective. More-

over, a further difficulty of the Stock–Watson approach is that both the stationary

and nonstationary indicators are included in the coincident indicators.

It is widely accepted that GDP is an inclusive measure of an economy’s perfor-

mance and, therefore, that it can be used as a real business cycle index. However,

using GDP in this way does pose a number of problems, largely due to a lack of statis-

tical sufficiency and the conflict between the need for immediate reports and the fact

that GDP statistics are made quarterly, not monthly, and there is a long lag prior

to their publication. It should be noted that Mariano and Murasawa (2003, 2010)

added GDP together with coincident indicators to construct a business cycle index.

Although this is an excellent concept, the problem inherent in the Stock–Watson
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approach cannot be completely resolved because it remains based on dynamic factor

modeling.

3 Proposed approach

3.1 Model construction

Let yi(n) denote a monthly time series, which is one of m coincident indicators with

i = 1, 2, . . . ,m. Generally, it is considered that each indicator (or transformed indica-

tor) comprises nonstationary and stationary parts. Furthermore, the nonstationary

part contains a trend component (which expresses the long-term tendency) and a

seasonal component (which expresses a patterned variation that appears repeatedly

every year). In contrast, the stationary part is considered to have a cyclical compo-

nent (which is caused by business cycles) and an irregular component. In Kitagawa

(2010) and Kitagawa and Gersh (1984), it is assumed that the cyclical component

can be expressed by a stationary AR model, also called the AR component.

Let g(yi(n)) be a one-to-one transformation of the time series yi(n) for the i-th

indicator. Based on the above consideration, the model for g(yi(n)) can be written

as:

g(yi(n)) = ti(n) + si(n) + ai(n) + εi(n) (i = 1, 2 . . . ,m), (5)

where ti(n), si(n), and ai(n) denote the trend, seasonal, and cyclical components,

respectively, and εi(n) is the irregular component, also called the observation error.

Note that the function g is determined so that g(yi(n)) can be reasonably expressed

in an additive multi-component form, as expressed in Eq. (5). As an example, a

logarithmic function is frequently applied to g.

In this paper, we consider a case in which the time series yi(n) has been seasonally

adjusted. Therefore, the seasonal component si(n) does not necessarily need to be

taken into account. Thus, the model in Eq. (5) is rewritten as follows:

g(yi(n)) = ti(n) + ai(n) + εi(n) (i = 1, 2 . . . ,m), (6)

where the observation error εi(n) is a random variable distributed with εi(n) ∼
N(0, σ2i ). To obtain meaningful estimates for every component, we employ a Bayesian

approach and treat ti(n) and ai(n) as random variables. Thus, we need to introduce

prior models based on the assumptions about the structure of each component.
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As is typical for economic analysis, we assume that the trend component varies

smoothly over time and that the cyclical component is globally stationary. There-

fore, we introduce a second-order stochastic difference equation as follows:

ti(n) = 2ti(n− 1)− ti(n− 2) + ωi(n) (i = 1, 2, . . . ,m), (7)

where ωi(n) is a random error distributed with ωi(n) ∼ N(0, τ2i ). Furthermore, we

use an AR model for ai(n) as follows:

ai(n) =
qi∑
j=1

β
(i)
j ai(n− j) + ψi(n) (i = 1, 2, . . . ,m), (8)

where qi is the model order, {β(i)j ; j = 1, 2, . . . , qi} are the AR coefficients, and ψi(n)

is a Gaussian white noise distributed with ψi(n) ∼ N(0, η2i ).

The model in Eq. (6) is an observation model for the time series g(yi(n)), and

the models in Eqs (7) and (8) can be considered as a set of prior models for the

trend ti(n) and cyclical ai(n) components, respectively. Obviously, Eqs (6)–(8) take

the form of a Bayesian linear Gaussian model for the trend and cyclical components.

For the case where the model for each value of i is individually managed, Kitagawa

(2010) developed a maximum likelihood method to estimate the parameters σ2i , τ
2
i ,

η2i , and {β(i)j ; j = 1, 2, . . . , qi} based on the Kalman filter algorithm.

As mentioned in Section 1, Stock and Watson (1989, 1991) defined the SWI as

co-movements in a set of macroeconomic variables. Therefore, it is constructed by

extracting a common factor that is hidden in multiple macroeconomic time series

data.

In contrast to the Stock–Watson approach, we consider that economic cycles can

be organized using the basic classification of short- and long-term cycles. Short-term

cycles generally mean business cycles or business fluctuations. Thus, to simplify the

analysis of business fluctuations, it is necessary to separate business cycles from

other economic cycles in the longer term.

Therefore, we expect that an index for business fluctuations would have the

following properties:

1. It is globally stationary in mean.

2. It is based on a common factor from the stationary parts of all of the economic

indicators used.
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3. It has variations that are as large as possible and, therefore, it contains a larger

amount of information on business fluctuations.

Thus, to construct an IBC using a common factor extracted from a set of cyclical

components in a time series for coincident indicators, we take the common factor

of the cyclical components {ai(n); i = 1, 2 . . . ,m}. This can be easily achieved by

applying the method of principal component analysis to the data for {ai(n); i =

1, 2 . . . ,m}.
To derive an index that is free from the scale of the data, we construct the IBC

based on the results of normalized cyclical components. That is, we normalize the

cyclical components by:

a∗i (n) =
ai(n)

SD{ai(n)}
(i = 1, 2, . . . ,m). (9)

where SD{ai(n)} is the standard deviation of the time series {ai(n)}. Then, we

construct the IBC using the first principal component of the normalized cyclical

components {a∗i (n); i = 1, 2, . . . ,m} as follows:

b(n) =
m∑
i=1

wia
∗
i (n), (10)

where {wi; i = 1, 2, . . . ,m} is the principal component loadings for the first principal

component, in which
∑m

i=1w
2
i = 1.

Hereinafter, the index b(n) defined in Eq. (10) is referred to as the IBC, and the

method to construct the IBC is called the cyclical components synthesization (CCS)

approach. In a procedure to estimate the parameters, the cyclical component can

be estimated as a stationary AR process with mean zero, so that the IBC becomes

a stationary process with mean zero. Thus, as with the CI, the IBC can measure

the speed and magnitude of business fluctuations. Moreover, the zero value of the

IBC can be regarded as the midpoint between states of prosperity and depression.

3.2 Modeling and parameter estimation

For the models in Eqs (6)–(8), we make the following assumptions:

1. εi(n), ωi(n), and ψi(n) are independent of one another for all values of i, n.

2. εi(n1) and εℓ(n2) are independent of each other when i ̸= ℓ or n1 ̸= n2.

3. ωi(n1) and ωℓ(n2) are independent of each other when i ̸= ℓ or n1 ̸= n2.
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4. ψi(n1) and ψℓ(n2) are independent when n1 ̸= n2 but may be dependent when

i ̸= ℓ.

5. The parameters σ2i , τ
2
i , η

2
i , and {β(i)j ; j = 1, 2, . . . , qi} are constants over time.

Under the above assumptions, we can see that except for ti(n) and ai(n), we

have qi + 3 parameters for each indicator. When the values of these parameters are

given, we can obtain the estimates for ti(n) and ai(n). Hereafter, for each value of

i, based on Bayesian modeling, we refer to ti(n) and ai(n) as stochastic parameters.

The other parameters, that is, σ2i , τ
2
i , η

2
i , and {β(i)j ; j = 1, 2, . . . , qi}, are called the

hyperparameters.

The fourth assumption is based on the consideration that among the cyclical

components ai(n) with i = 1, 2, . . . ,m, there is a common factor to be estimated.

Thus, in principle, ti(n) and ai(n) should be estimated simultaneously for all time

points and all values of i = 1, 2, . . . ,m. That is, when the sample size for the time

series yi(n) is N , it is necessary to estimate {ti(n);n = 1, 2, . . . , N ; i = 1, 2, . . . ,m},
and {ai(n);n = 1, 2, . . . , N ; i = 1, 2, . . . ,m} simultaneously based on the estimates

for the
∑m

i qi + 3m hyperparameters. This is very difficult to do in practice.

To mitigate the difficulties in estimating hyperparameters, we develop a new es-

timation technique combining the maximum likelihood method and principal com-

ponent analysis. A key quantity is the ratio of variances for error in the cyclical

component to that in the trend component, that is, for i = 1, 2, . . . ,m, the propor-

tion:

λi =
τ2i
η2i

(11)

is a key parameter for the present problem. Introducing this parameter, we can

control the relative variations in the trend and cyclical components and, therefore,

maintain the balance between the variances of errors in the models for the two

components.

As mentioned in the preceding subsection, the first objective of this study is to

obtain the IBC in Eq. (10) with a larger variance, and the second is to ensure the

goodness of fit of the models to the data. Thus, we have two criteria for the modeling

and parameter estimation: the first criterion is the variance of the constructed IBC

and the second is the likelihood of the parameters. In the present paper, we first

estimate the ratio λi by maximizing the contribution rate (CR) of the IBC, which is
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constructed as a principal component. Then, we estimate the other hyperparameters

by maximizing the likelihood based on the constructed model.

Moreover, as will be shown in the following section, a set of initial estimates

for the cyclical components ai(n) is necessary in an algorithm for parameter esti-

mation, even though these initial estimates are tentative. As the initial estimates

for ai(n)(i = 1, 2, . . . ,m), we will use the differences between yi(n) and its moving

average with term 2L+ 1:

âi(n)
(0) = yi(n)−

1

2L+ 1

L∑
ℓ=−L

yi(n+ ℓ) (12)

for n = L+ 1, L+ 2, . . . , N − L; otherwise, we will use âi(n)
(0) = 0.

3.3 Standard score of a business cycle

The scale of the IBC is not essential for its application because it may change ac-

cording to the data used. Thus, it is necessary to determine a standard to compare

different IBC scales. To ensure easy understanding and application, we utilize the

concept of a standard score (e.g., as used to evaluate students) and define the stan-

dard score of a business cycle (SSBC) as:

SSBC(n) = 50 +
10

SD{b(n)}
b(n)

with SD{b(n)} being the standard deviation of b(n). Because the mean of b(n) is

zero, we can see that the mean and the standard deviation of SSBC(n) are 50 and

10, respectively. That is, the level of the SSBC is 50, representing the midpoint

between the states of prosperity and depression.

To avoid conceptual confusion, we mainly focus on the IBC below.

4 Method for parameter estimation

4.1 Estimating the trend and cyclical components

To simplify the estimation problem, we tentatively assume that the parameters can

be estimated individually for the model of each indicator with i = 1, 2, . . . ,m. To

express the model in a state space representation, we define the state vector based

on related quantities in the trend and cyclical components as:

x(i)
n = (ti(n), ti(n− 1), ai(n), ai(n− 1), · · · , ai(n− qi + 1))T,
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and we use the following matrices:

F (i) =



2 −1 0 · · · · · · · · · 0
1 0 0 · · · · · · · · · 0

0 0 β
(i)
1 β

(i)
2 · · · · · · β

(i)
qi

...
... 1 0 · · · · · · 0

...
... 0 1

. . .
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 1 0


, G =



1 0
0 0
0 1
0 0
...

...
...

...
0 0


, H =



1
0
1
0
...
...
0



T

.

Moreover, to reduce the number of parameters, which will be estimated using nu-

meric methods, we follow Kitagawa (2010) and combine:

ε̃i(n) =
εi(n)

σi
, ω̃i(n) =

ωi(n)

σi
, ψ̃i(n) =

ψi(n)

σi
,

with:

τ̃2i =
τ2i
σ2i
, η̃2i =

η2i
σ2i
. (13)

Then, the models in Eqs (6)–(8) can be expressed by the following state space

representation:

x(i)
n = F (i)x

(i)
n−1 +Gv(i)

n , (14)

yi(n) = Hx(i)
n + εi(n), (15)

where v
(i)
n = (ω̃i(n), ψ̃i(n))

T. In the state space model comprising Eqs (14) and (15),

the time-varying stochastic parameters ti(n) and ai(n) are included in the state

vector x
(i)
n . Therefore, their estimates can be obtained from the estimate of x

(i)
n ,

under the assumption that the AR model order qi and the hyperparameters, τ̃2i , η̃
2
i ,

β(i) = (β
(i)
1 , β

(i)
2 , and . . . , β

(i)
qi )

T, are given.

Let x
(i)
0 denote the state at the initial time point and let Y

(i)
k = {yi(1), yi(2), . . . , yi(k)}

denote a set of observations for yi(n) up to the time point k. Assume that x
(i)
0 ∼

N(x
(i)
0|0,C

(i)
0|0). It is well known that the density function f(x

(i)
n |Y (i)

k ) for the state

x
(i)
n , conditional on Y

(i)
k , is Gaussian and, therefore, it is only necessary to obtain

the mean x
(i)
n|k and the covariance matrix C

(i)
n|k of x

(i)
n with respect to f(x

(i)
n |Y (i)

k ).

When we are given the values of qi, τ̃
2
i , η̃

2
i , and β(i), the distribution N(x

(i)
0|0,C

(i)
0|0)

for x
(i)
0 , and a set of observations for yi(n) up to the time point N , then the estimates

for the state x
(i)
n can be obtained using the well-known Kalman filter (for n =

1, 2, . . . , N) and fixed-interval smoothing (for n = N − 1, N − 2, . . . , 1) recursively

as follows (see Kitagawa, 2010):

13



[Kalman filter]

x
(i)
n|n−1 = F (i)x

(i)
n−1|n−1,

C
(i)
n|n−1 = F (i)C

(i)
n−1|n−1(F

(i))T +GQiG
T.

L(i)
n = C

(i)
n|n−1H

T(HC
(i)
n|n−1H

T +Ri)
−1,

x
(i)
n|n = x

(i)
n|n−1 +L(i)

n (yn −Hx
(i)
n|n−1),

C
(i)
n|n = (I −L(i)

n H)C
(i)
n|n−1.

[Fixed-interval smoothing]

P (i)
n = C

(i)
n|n(F

(i))T(C
(i)
n+1|n)

−1,

x
(i)
n|N = x

(i)
n|n + P (i)

n (x
(i)
n+1|N − x

(i)
n+1|n),

C
(i)
n|N = C

(i)
n|n + P (i)

n (C
(i)
n+1|N −C

(i)
n+1|n)(P

(i)
n )T.

Here, Ri = 1, Qi = diag(τ̃2i , η̃
2
i ), and I denotes an identity matrix.

Then, the posterior distribution of x
(i)
n can be defined using x

(i)
n|N and C

(i)
n|N .

Subsequently, the estimates for the time-varying stochastic parameters ti(n) and

ai(n) can be obtained because the state space model described by Eqs (14) and (15)

incorporates ti(n) and ai(n) in the state vector x
(i)
n . Hereinafter, the estimates of

ti(n) and ai(n) are denoted by t̂i(n) and âi(n), respectively.

4.2 Estimating the hyperparameters

For i = 1, 2, . . . ,m, Eqs (11) and (13) lead to:

λi =
τ̃2i
η̃2i
.

Thus, we have:

τ̃2i (λi) = λiη̃
2
i ,

that is, τ̃2i corresponds with λi one-to-one for the given value of η̃2i . Therefore,

we regard λi as a hyperparameter instead of τ̃2i . When the values of qi, σ
2
i , and

λi, together with the time series data Y
(i)
N = {yi(1), yi(2), . . . , yi(N)}, are given, a

likelihood function for the hyperparameters η̃2i and β(i), which is derived from the

algorithm of the Kalman filter, is as follows:

f (i)(Y
(i)
N |σ2i , τ̃2i (λi); η̃2i ,β(i)) =

N∏
n=1

f (i)n (yi(n)|Y (i)
n−1, σ

2
i , τ̃

2
i (λi); η̃

2
i ,β

(i)),
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where f
(i)
n (yi(n)|Y (i)

n−1, σ
2
i , τ̃

2
i (λi); η̃

2
i ,β

(i)) is the conditional density function of yi(n)

given the past history Y
(i)
n−1 = {yi(n− 1), yi(n− 2), . . .} and λi. Assume that Y

(i)
0 =

{yi(0), yi(−1), . . .} is an empty set. Then, we have:

f
(i)
1 (yi(1)|Y (i)

0 , σ2i , τ̃
2
i (λi); η̃

2
i ,β

(i)) = f
(i)
1 (yi(1)|σ2i , τ̃2i (λi); η̃2i ,β(i)).

By taking the logarithm of f (i)(Y
(i)
N |σ2i , τ̃2i (λi); η̃2i ,β(i)), the log-likelihood is obtained

as:

LLi(η̃
2
i ,β

(i)|σ2i , λi) = log f (i)(Y
(i)
N |σ2i , τ̃2i (λi); η̃2i ,β(i))

=
N∑

n=1

log f (i)n (yi(n)|Y (i)
n−1, σ

2
i , τ̃

2
i (λi); η̃

2
i ,β

(i)). (16)

As given by Kitagawa (2010), when using the Kalman filter, the conditional

density f
(i)
n (yi(n)|Y (i)

n−1, σ
2
i , τ̃

2
i (λi); η̃

2
i ,β

(i)) has a normal density given by:

f (i)n (yi(n)|Y (i)
n−1, σ

2
i , τ̃

2
i (λi); η̃

2
i ,β

(i)) =
1√

2πσ2iw
(i)
n|n−1

exp

{
−

(yi(n)− ŷ
(i)
n|n−1)

2

2σ2iw
(i)
n|n−1

}
,

(17)

where ŷ
(i)
n|n−1 is the one-step ahead prediction for yn and w

(i)
n|n−1 is the variance of

the predictive error. They are given, respectively, by:

ŷ
(i)
n|n−1 = Hx

(i)
n|n−1, w

(i)
n|n−1 = HC

(i)
n|n−1H

T + σ2i .

Thus, for a given value of λi, the estimates of the hyperparameters η̃2i and β(i)

can be obtained numerically using the maximum likelihood method. That is, the

hyperparameters can be estimated numerically by maximizing LLi(η̃
2
i ,β

(i)|σ2i , λi)
in Eq. (16) together with Eq. (17). Furthermore, based on Kitagawa (2010), the

estimate σ̂2i for σ2i is obtained analytically by:

σ̂2i =
1

N

N∑
n=1

(yi(n)− ŷ
(i)
n|n−1)

2

w
(i)
n|n−1

. (18)

It is notable that we can increase the efficiency of estimating β(i) when we apply the

fast recursive estimation method proposed by Kyo and Noda (2011). Additionally,

let ̂̃τ2i and λ̂i denote the estimates of τ̃2i and λi, respectively. Then, from the above

settings, the estimates for η2i and τ2i are given, respectively, by:

η̂2i = σ̂2i
̂̃η2i , τ̂2i = λ̂iη̂

2
i . (19)
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It is obvious that the estimates for the hyperparameters η̃2i and β(i) depend on

the value of λi. Furthermore, from the algorithm of the Kalman filter, we can see

that the estimates for the elements of the state vector are a set of functions of λi.

That is, under a given value of λi, we can estimate the hyperparameters η̃2i and

β(i). Thus, as a function of λi, the estimate for the cyclical component ai(n) can

be obtained using the Kalman filter and fixed-interval smoothing. Assume that

the estimates of the cyclical components for the other indicators (except that of

the i-th) are given in advance. Then, we apply the principal component method for

normalized estimates of the cyclical components and we can obtain the first principal

component as the IBC b(n), as defined in Eq. (10).

As mentioned in subsection 3.1, as a signal of business fluctuations, we expect

that our IBC will have larger variations. Therefore, we estimate the hyperparameter

λi by numerically maximizing the variance Var{b(n)} of b(n). In the same way, the

value of the AR model order qi is determined by the maximization of Var{b(n)}.

4.3 The algorithm

To summarize the scheme for parameter estimation, the algorithm for the CCS

approach is obtained as follows:

1. Assume s = 0, set an appropriate value for L, and then give the initial esti-

mates:

{âi(n)(0);n = 1, 2, . . . , N ; i = 1, 2, . . . ,m}

for the cyclical components using Eq. (12), with N being the length of the

time series data.

2. For i = 1, 2, . . . ,m, perform the following steps.

3. Replace the value of s with s+ 1.

(a) Estimate the hyperparameters η̃2i and β(i) numerically by maximizing the

log-likelihood in Eq. (16) together with Eq. (17) under the given value

of λi.

(b) Compute the estimate of σ2i using Eq. (18).

(c) Obtain the estimates {âi(n)(s);n = 1, 2, . . . , N} for the cyclical compo-

nent ai(n) by the Kalman filter and a fixed-interval smoothing algorithm.
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(d) Compute the normalized values {â∗i (n)(s);n = 1, 2, . . . , N} for {âi(n)(s);
n = 1, 2, . . . , N} using Eq. (9).

(e) Perform the principal component analysis for:

a∗(n)(i,s) =



(â∗1(n)
(s), â∗2(n)

(s−1), . . . â∗m(n)(s−1))T if i = 1,

(â∗1(n)
(s), â∗2(n)

(s), â∗3(n)
(s−1), . . . â∗m(n)(s−1))T if i = 2,

(â∗1(n)
(s), . . . , â∗i (n)

(s),

â∗i+1(n)
(s−1), . . . â∗m(n)(s−1))T if 2 < i < m− 1,

(â∗1(n)
(s), . . . , â∗m−1(n)

(s), â∗m(n)(s−1))T if i = m− 1,

(â∗1(n)
(s), â∗2(n)

(s), . . . , â∗m(n)(s))T if i = m,

Treat {a∗(n)(i,s);n = 1, 2, . . . , N} as a set of m-variate time series data,

and then obtain:

b(n)(i,s) = wTa∗(n)(i,s)

as the first principal component of a∗(n)(i,s) with w = (w1, w2, . . . , wm)T

being the vector of the principal component loadings, and Var{b(n)(i,s)}
being its variance.

(f) Estimate λi and qi by numerically maximizing Var{b(n)(i,s)}.

4. When the value of Var{b(n)(m,s)} almost converges to a fixed level, proceed to

the next step; otherwise, return to the beginning of step 2.

5. End the calculation and take the estimates corresponding to the values of λi

and qi as the final results.

6. Calculate the estimates for η2i and τ2i using Eq. (19).

5 Evaluation of the IBC for the analysis of Japanese
business cycles

5.1 Comparing the performance with the coincident CI

The main aim of the coincident CI is to measure the speed and magnitude of eco-

nomic fluctuations in a particular period. It is designed to be a useful tool to analyze

current business conditions. Thus, it is important that we compare the performance

of the IBC with that of the coincident CI.

Figure 1 shows the coincident CI in Japan from January 1985 to December 2015.

We can observe that the CI varies around a horizontal level of 100; that is, the CI

is almost stationary in mean for the observed period.
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Figure 1: Time series data for the CI in Japan (January 1985 to December 2015);
Source: ESRI, Cabinet Office, Government of Japan

The coincident CI comprises the quantitative changes in indicators that are sensi-

tive to business cycle movements. The following 10 indicators were used to construct

the CI:

C1: Index of industrial production (mining and manufacturing)

C2: Index of producers’ shipments (producer goods for mining and manufacturing)

C3: Index of producers’ shipments of durable consumer goods

C4: Index of nonscheduled working hours (industries covered)

C5: Index of producers’ shipments (investment goods excluding transport equip-

ment)

C6: Retail sales value (change from previous year)

C7: Wholesale sales value (change from previous year)

C8: Operating profits (all industries)

C9: Index of shipments in small and medium-sized enterprises

C10: Effective job offer rate (excluding new graduates)

The functions used to transform the indicators in the model in Eq. (6) are

given in Table 1. To express each function g(·) using the additive multi-components

form in Eq. (6) and to equalize the error variance for each component over time, a
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Table 1: Functions for transforming the indicators

Name of indicator C1 C2 C3 C4 C5

Indicator y1 y2 y3 y4 y5
Function g(·) log(y1) log(y2) log(y3) log(y4) log(y5)

Name of indicator C6 C7 C8 C9 C10

Indicator y6 y7 y8 y9 y10
Function g(·) y6 y7 log(y8) log(y9) log(y10)

C1: log(y1)
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Figure 2: Time series data for g(yi(n)) (January 1975 to June 2016); Source for
yi(n): ESRI, Japanese Government’s Cabinet Office

logarithmic transformation is employed for most indicators, excluding C6 and C7.

(Note that for C6 and C7, the identical transformation is used because there are

some negative values in the data sets, which means that a logarithmic transformation

cannot be applied.)

Figure 2 shows the transformed time series data for each indicator for the period

January 1975 to June 2016. Note that to correspond with the end time point of the

CI series, in the following analysis we only used part of the data set, namely the

data for the period January 1975 to December 2015.
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As mentioned in the algorithm in subsection 4.3, the computation for parameter

estimation is based on a set of initial estimates of the cyclical components. The

value of L used in Eq. (12) to obtain the initial estimates of the cyclical components

is determined as L = 12.

The computation for parameter estimation is achieved by repetition. Figure 3

shows the variation of the CR for the first principal component with respect to the

number of repetitions. It can be seen that the CR converges to a limited larger value

(approximately 0.725) and it steadies from the sixth repetition.

2 4 6 8 10

0.
68

0.
69

0.
70

0.
71

0.
72

Number of repetition

C
R

Figure 3: The contribution rate for each iteration

For reference purposes, the estimated hyperparameters at each iteration are listed

in Table 2.

Table 2: Main results for hyperparameter estimation

i 1 2 3 4 5

qi 10 10 10 1 2

σ̂2i 3.75× 10−8 8.74× 10−8 1.04× 10−4 4.80× 10−6 1.03× 10−7

τ̂2i 5.23× 10−8 4.24× 10−8 6.42× 10−8 1.90× 10−7 3.79× 10−7

η̂2i 3.03× 10−4 3.12× 10−4 1.30× 10−3 1.39× 10−4 4.81× 10−4

i 6 7 8 9 10

qi 2 12 7 1 1

σ̂2i 5.36× 10−2 7.19× 10−4 1.69× 10−5 6.11× 10−8 4.90× 10−5

τ̂2i 5.58× 10−5 1.58× 10−4 2.35× 10−7 1.69× 10−7 1.02× 10−6

η̂2i 5.48 7.19 1.07× 10−3 2.53× 10−4 4.63× 10−4
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Figure 4: Estimated trend components (January 1975 to December 2015)

Figure 4 shows the estimated trend components for each transformed indicator.

We can see that the behavior of each trend is distinct and, therefore, it may be

difficult to extract a common factor from the estimated trend components.

Figure 5 shows estimated cyclical components for each transformed indicator.

The correlation matrix for the estimated cyclical components is given in Table 3.

(Please note that because the matrix is symmetric, only the elements below the

diagonal are shown.) This table illustrates that there is a very high positive corre-

lation between pairs among the estimated cyclical components. Thus, it is possible

to extract a common factor using the first principal component composed of the

estimated cyclical components with a very high CR.

Thus, to construct the IBC, we use principal component analysis based on the

correlation matrix shown in Table 3. The largest eigenvalue for the correlation

matrix is 7.247, and the corresponding eigenvector is:

w = (0.363, 0.341, 0.296, 0.335, 0.336, 0.164, 0.294, 0.338, 0.342, 0.309)T.

From these results, we can see that the CR for the first principal component is 72.47%
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Figure 5: Estimated cyclical components (January 1975 to December 2015)

Table 3: Correlation matrix for the estimated AR components

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1
C2 0.942 1
C3 0.827 0.746 1
C4 0.865 0.794 0.667 1
C5 0.880 0.750 0.653 0.813 1
C6 0.358 0.324 0.289 0.375 0.344 1
C7 0.707 0.709 0.523 0.646 0.657 0.429 1
C8 0.876 0.852 0.702 0.798 0.767 0.376 0.732 1
C9 0.919 0.900 0.688 0.788 0.851 0.297 0.735 0.774 1
C10 0.769 0.622 0.587 0.800 0.851 0.331 0.572 0.737 0.694 1

because the sum of the variances for each of the normalized cyclical components is

10. Moreover, w is equivalent to the vector of the principal component loadings for

the IBC. An element in the vector of the principal component loadings expresses

how the IBC depends on the corresponding indicator. For example, w1 = 0.363 is
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the maximum element and w9 = 0.342 is the second maximum element in the vector

of principal component loadings. Hence, we can say that the index of industrial

production (C1) has the largest effect on the IBC, the index of shipments in small

and medium-sized enterprises (C9) has the second largest effect, and so on.

Based on the normalized estimates for the cyclical components and the vector of

principal component loadings w, the estimated IBC, say b(n), is computed using Eq.

(12). Figure 6 shows the time series of the estimated IBC for the period January

1975 to December 2015. Here, the estimated IBC is temporarily called the IBC-10

because it is obtained based on the 10 indicators. It can be observed that the IBC-

10 varies around zero, and then drops suddenly in the first half of 2009 after the

collapse of the Lehman Brothers.
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5

Figure 6: Time series for IBC-10 (January 1975 to December 2015)

To illustrate how the IBC-10 correlates with the coincident CI, we create a scatter

diagram (see Figure 7) for the period January 1985 to December 2015. Note that

the correlation coefficient between these two indexes is 0.8966. This implies that

there is a very high positive correlation between the IBC-10 and the CI.

An important issue is: how well does the IBC-10 express the state of business

fluctuations? It is difficult to examine the performance of a business index because

we have no objective standard that expresses the level of business fluctuations. How-

ever, as mentioned in subsection 2.3, it is widely accepted that GDP is an inclusive

measure of economic performance and Mariano and Murasawa (2010) used real GDP

to measure business cycles. Thus, we use real GDP as an expediential reference for

business cycles.
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Figure 7: Scatter diagram of IBC-10 and CI (January 1985 to December 2015)

Similar to the model in Eq. (1), we employ the following model:

log(yn) = tn + sn + an + εn, εn ∼ N(0, σ2),

where yn denotes the quarterly time series data on real GDP in Japan, and tn, sn, and

an express the trend, seasonal, and cyclical components, respectively. Furthermore,

εn is the irregular component. We use the following trend component, seasonal

component, and AR models, respectively:

tn = 2tn−1 − tn−2 + vn1, vn1 ∼ N(0, τ21 ),

sn = −(sn−1 + sn−2 + sn−3) + vn2, vn2 ∼ N(0, τ22 ),

an =
q∑

j=1

βjan−j + vn3, vn3 ∼ N(0, τ23 ),

to express the priors for each component. Then, the logarithm of real GDP (log-

GDP) can be decomposed into the trend, seasonal, and cyclical components together

with the irregular component. A detailed explanation of the modeling and parameter

estimation can be found in Kitagawa (2010).
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Figure 8: Results for decomposition of log-GDP in Japan (Q1, 1994 to Q1, 2015)

Figure 8 shows the results for the decomposition of log-GDP in Japan for the

first quarter (Q1) of 1994 to Q1 of 2015.

Here, we take the cyclical component of log-GDP as a measure of a business cycle,

abbreviated to cyclical log-GDP. Thus, the performance of an IBC can be measured

using its correlation with the cyclical log-GDP. We compare the performance of the

IBC-10 and CI by comparing their correlation coefficients with the cyclical log-GDP

from Q1 1994 to Q1 2015. Note that for the correspondence to the quarterly GDP

data, we take the average for the 3 months as the value for each quarter for the

IBC-10 and CI. The line graphs for the time series data on the cyclical log-GDP,
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the IBC-10, and the CI are shown in Figure 9. The graphs show that the behaviors

for these three time series have a high level of similarity.
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Figure 9: Cyclical log-GDP, IBC-10, and CI (Q1, 1994 to Q1, 2015

Figure 10 shows scatter diagrams for the cyclical log-GDP with the CI (left

diagram) and the IBC-10 (right diagram). The correlation coefficients of the cyclical

log-GDP with the CI and IBC-10 are 0.7181 and 0.8524, respectively. Thus, the IBC-

10 has a higher correlation with the cyclical log-GDP than the CI, which implies

that the IBC-10 performs better than the coincident CI.

5.2 Comparing the performance with the NBI

Now, we compare the performance of the proposed IBC, based on the CCS approach,

with a Stock–Watson index. The NBI is constructed based on the Stock–Watson

dynamic factor model by the Nihon Keizai Shimbun Inc. in Japan. Thus, we can

compare the performance of our CCS approach with the Stock–Watson approach,

using the dynamic factor modeling method, by comparing the performance of the

IBC with that of the NBI.

26



−0.06 −0.02 0.02

8
0

9
0

1
0
0

1
1
0

Cyclical log−GDP

C
I

−0.06 −0.02 0.02

−
5

−
3

−
1

0
1

2
Cyclical log−GDP

IB
C

−
1
0

Figure 10: Scatter diagrams of the cyclical log-GDP with CI and IBC-10 (Q1, 1994
to Q1, 2015)

Figure 11 shows a set of monthly time series data for the NBI for January 1973

to June 2016. This data set was obtained from the Nihon Keizai Shimbun, Inc.

website (http://www.nikkei.com/biz/report/nkidx/). From the figure, we can

see that the NBI time series is not globally stationary in mean; that is, a trend

component exists in the NBI series. Thus, compared with the IBC, the time series

for NBI is difficult to explain because its behavior is somewhat complicated.
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Figure 11: Time series data for NBI (January 1973 to June 2016); Source: Nihon
Keizai Shimbun, Inc.

The NBI is constructed using time series data for the following four indicators:
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NBI-y1: Index of industrial production (mining and manufacturing), C1

NBI-y2: Index of nonscheduled working hours (industries covered), C4

NBI-y3: Effective job offer rate (excluding new graduates), C10

NBI-y4: Total retail and wholesale sales value (ratio to the same month of the

previous year, in %)

Note that the first three indicators, NBI-y1, NBI-y2, and NBI-y3, are the same as

C1, C4, and C10, respectively. Because these indicators were used to construct the

current CI and IBC-10, which we have illustrated in Figure 2, we need only show the

data for NBI-y4. The monthly time series data for NBI-y4 from January 1980 to June

2016 are shown in Figure 12. Note that this data set is obtained from the website of

the Ministry of Economy, Trade, and Industry (http://www.meti.go.jp/statistics/index.html).

The logarithmic transformation is applied to all four indicators.
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Figure 12: Time series data for NBI-y4 (January 1980 to June 2016); Source: Min-
istry of Economy, Trade and Industry

To compare the performance of the IBC with the NBI under the same conditions,

we construct the IBC following our CCS approach. The IBC is based on the data

for the above four indicators for January 1980 to June 2016, corresponding with

the period of the NBI-y4 data. The initial settings are very similar to those for

constructing the IBC-10. The main estimates for the hyperparameters are given in

Table 4 for the models of g(yi(n))(i = 1, 2, 3, 4).

Figures 13 and 14 show the estimated trend and cyclical components for all

indicators.
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Table 4: Main results for hyperparameter estimation

i 1 2 3 4

qi 10 10 12 1

σ̂2i 3.31× 10−8 2.74× 10−5 5.41× 10−8 8.35× 10−5

τ̂2i 4.40× 10−7 2.42× 10−7 2.68× 10−7 2.83× 10−6

η̂2i 3.31× 10−4 7.03× 10−5 5.41× 10−4 2.53× 10−4
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Figure 13: Estimated trend components (January 1980 to June 2016)

NBI−y1

1980 1990 2000 2010

−0
.2

−0
.1

0.
0

0.
1

NBI−y2

1980 1990 2000 2010

−0
.1

5
−0

.0
5

0.
05

NBI−y3

1980 1990 2000 2010

−0
.2

−0
.1

0.
0

0.
1

NBI−y4

1980 1990 2000 2010

−0
.2

5
−0

.1
5

−0
.0

5
0.

05

Figure 14: Estimated cyclical components (January 1980 to June 2016)

Figure 15 shows the estimated time series of the IBC, termed the IBC-4.

Figure 16 shows a scatter diagram for the IBC-4 and NBI from January 1980 to
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Figure 15: Time series for IBC-4 (January 1980 to June 2016)

June 2016. Note that the correlation coefficient between these two indexes is 0.6509.

These results indicate that the correlation coefficient is not very high, which may be

a result of the trend component of the NBI.
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Figure 16: Scatter diagram for IBC-4 and NBI (January 1980 to June 2016)

We compare the performance of the IBC-4 and NBI by using the cyclical log-

GDP as a reference. However, to obtain the stationary part of the NBI and, thus, to

ensure that the NBI has a higher correlation with the cyclical log-GDP, we remove

the trend component from the NBI series.
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The top graph in Figure 17 shows the quarterly time series data for the NBI,

which are obtained as the averages over the corresponding 3 months from Q1 1994

to Q1 2015. From this graph, we can see a declining trend in the NBI time series.
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Figure 17: Result for decomposing the NBI (Q1, 1994 to Q1, 2015)

Let yn and xn be the values of the NBI and the trend at time point n (quarter),

respectively. Then, we can compute the adjusted NBI by:

zn = yn − xn, (n = 1, 2, . . . , N1)

with N1 = 85 being the length of the time series data from Q1 1994 to Q1 2015.

Thus, to ensure that the short-term variations in the adjusted NBI remain as pow-

erful as possible, we express the trend of the NBI as a straight line:

xn = a+ bn, (n = 1, 2, . . . , N1).

Then, we estimate the parameters a and b by maximizing the correlation coefficient

between the adjusted NBI and the cyclical log-GDP under the condition that:

N1∑
n=1

zn = 0.
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Note that the estimates for the parameters are â = 105.31 and b̂ = −0.0295.

The graphs for the estimates of the trend in the series of the NBI and the adjusted

NBI are plotted in Figure 17.

Thus, we can employ correlation analysis for the cyclical log-GDP with the NBI,

adjusted NBI, and IBC-4. Figure 18 shows the scatter diagrams of the cyclical log-

GDP with the NBI (left diagram), adjusted NBI (center), and IBC-4 (right). Note

that the correlation coefficients of the cyclical log-GDP with these three indexes are

0.8277, 0.8355, and 0.8466, respectively. That is, the correlation coefficient of the

cyclical log-GDP with the adjusted NBI is higher than that with the NBI, and the

correlation coefficient with the IBC-4 takes the highest value. These results reveal

that our CCS approach performs well.
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Figure 18: Scatter diagrams of the cyclical log-GDP with all indexes (Q1, 1994 to
Q1, 2015)

6 Discussions

To summarize Sections 4 and 5, our results show that our CCS approach has many

advantages when compared with existing approaches. These are discussed below.

1. Our approach is systematic. As previously mentioned, when using the Stock–

Watson dynamic factor modeling approach, it is necessary to transform the

data to be stationary by differencing the time series data. However, it is often

difficult to determine whether it is appropriate to do this and, even when

differencing is necessary, there is no clear criterion to determine the order

of difference. Thus, the Stock–Watson dynamic factor modeling approach is
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somewhat ad hoc regarding the use of data. Moreover, the MTV modeling

method is ad hoc in the interpretation of results. As shown in Figure 4, under

the CCS approach, the model in Eq. (2) can generally be applied for indicators

with various types of trends, so long as these are smooth. Even where the time

series data are stationary in mean, it can be ensured that the estimates for the

trend component are obtained as a constant.

2. The results of our approach are clear and easy to apply. As shown in Eq. (4),

in most cases following the Stock–Watson approach, the behavior of an esti-

mated IBC is complicated because it comprises stationary and nonstationary

parts. In contrast, the structure of the IBC is very simple, ensuring greater

understanding because of global stationarity.

3. Our approach has a strong performance in analyzing and predicting business

conditions. The results shown in the preceding section imply that the IBC

can better explain the variation in GDP than the CI and NBI. Moreover, the

models using the CI approach do not have clear structures, making it difficult

to predict future business conditions. In contrast, each cyclical component of

our approach is estimated using the Kalman filter, which is well known for its

good predictive abilities.

In addition, if we use the model in Eq. (5) instead of that in Eq. (6) and add

a prior model for the seasonal component, we can process the time series data in

advance without the need for a seasonal adjustment. Thus, our CCS approach can

be widely applied as a more general method.

7 Conclusions

In this paper, to construct a coincident index of growth cycles from a given set

of indicators, we proposed an alternative approach, which we refer to as the CCS

approach, to develop an IBC of coincident economic indications.

The framework of the CCS approach can be summarized as follows: (1) We used

the same time series data as the CI and DI compiled by the ESRI; (2) Seasonally

adjusted data were decomposed into a trend, cyclical, and irregular components; and

(3) We constructed the IBC based on the first principal component of the normalized

estimates for the cyclical components.

33



We examined whether the constructed coincident IBC performs better than ex-

isting indexes. The correlation coefficients of the cyclical component of real GDP

were 0.7181 and 0.8524 for the CI and IBC, respectively, which indicates that the

IBC performed better than the CI. Focusing on the adjusted NBI and IBC, the

correlation coefficients of the cyclical component of GDP were 0.8355 and 0.8466,

respectively, indicating that IBC performed better than the NBI. Therefore, the

results show that the CCS approach has a number of advantages over existing meth-

ods.
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