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1. Introduction

In financial econometrics, several statistical methods have been proposed to esti-

mate the integrated volatility and co-volatility from high-frequency data. The inte-

grated volatility is one type of Brownian functionals and the realized volatility (RV)

estimate has been often used when there does not exist any micro-market noise and

the underlying diffusion process is directly observed. The asymptotic distribution of

the RV estimator depends on the fourth-order integrated Brownian functional and

then we need to estimate the fourth-order integrated moments to make statistical

inference on the integrated volatility when the number of observations increases in a

fixed interval. However, it has been known that the RV estimator is quite sensitive

to the presence of micro-market noise in high-frequency financial data. Then sev-

eral statistical methods have been proposed to estimate the integrated volatility and

co-volatility. See Zhang, L., Per A. Mykland, and Y. Ait-Sahalia (2005), Bandorff-

Nielsen, Hansen, Lunde and Shepard (2008), Jacod, J., Y. L., Per A. Mykland, M.

Podolskijc, and M. Vetter (2009), Ait-Sahalia and Jacod (2014) for the detail of re-

cent developments of financial econometrics. In particular, Malliavin and Mancino

(2009) have developed the Fourier series method while independently Kunitomo,

Sato and Kurisu (2018), referred as KSK (2018), developed the SIML (separating

information maximum likelihood) estimation. We shall use the latter formulation in

this paper, which is closely related to the former method. (See Mancino, Recchioni

and Sanfelici (2017).)

When the market micro-structure noise cannot be ignored in high-frequency

financial data, KSK (2018) have developed the SIML method for estimating the

volatility and co-volatilities of security prices when the underlying processes are the

class of diffusion processes. In this paper we extend the SIML method and develop

the local SIML (LSIML) estimation method for estimating higher-order Brownian

and Jump functionals such as the fourth-order integrated moments and the jump

part of quadratic variation. The LSIML method was originally suggested in Chapter

8 of KSK (2018), but they did not give its detailed exposition. (To avoid the possible
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duplication of explanations on the SIML method, we will sometimes refer to the

corresponding parts of KSK (2018), and Kunitomo and Kurisu (2021, referred as

KK (2021).) The main motivation for developing the LSIML method is to improve

the SIML method and to estimate some Brownian and jump functionals, which are

general than the volatility and co-volatility. For instance, the fourth order integrated

moments appear as the asymptotic variance of the limiting distribution of several

estimation methods including the SIML estimation. Since the main purpose here

is to propose the use of the LSIML method, we shall try to make our formulation

not in the most general case, but concentrate on the simple cases, which make the

results easy to be understood.

In this paper, we show that the LSIML method has some desirable asymptotic

properties such as the consistency and asymptotic normality, and more importantly,

there could be some application to the jump-diffusion cases. It also has reasonable

finite sample properties, which are illustrated by several simulations. Since the

LSIML method is a straightforward extension of the SIML estimation and it is quite

simple, it will be useful for practical applications. Although there could be other

methods for estimating higher-order Brownian functionals and jump functionals,

the LSIML method has some merits such as its simplicity and desirable asymptotic

properties.

In Section 2, we discuss the framework of estimation problem of some Brownian

and jump functionals when we have market micro-structure noise in high-frequency

financial data. In Section 3, we generalize the estimation problem of realized volatil-

ity and explain the method of local estimation in our study. Then, in Section 4, we

propose the LSIML method under market micro-structure noise, which is a general-

ization of the SIML method originally developed by KSK (2018). In Section ,5 we

investigate the asymptotic properties of the local SIML method such as consistency

as well as the asymptotic normality. Then, in Section 6 we discuss the problem

of selecting key parameters needed in the LSIML estimation method. In Section

7 we discuss the possible generalizations of our results in more general settings in-

cluding the jump-diffusion and the multivariate models. In Section 8, we give some
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finite sample properties of the LSIML estimation based on a set of Monte Carlo

simulation, and as an illustration we give an empirical result of high frequency data

analysis. In Section 9, we give some concluding remarks. Mathematical details are

given in the Appendix.

2. Estimation of Brownian and Jump Functionals

To see the essential feature of the local estimation method in this paper, we

first consider the basic and simple time-varying cases when p = 1 (where p is the

dimension). Let

Y (t
(n)
i ) = X(t

(n)
i ) + ϵnv(t

(n)
i ) (i = 1, · · · , n)(2.1)

be the (one dimensional) observed (log-)price at t
(n)
i (0 = t

(n)
0 ≤ t

(n)
1 ≤ · · · ≤ t(n)n = 1)

and v(t
(n)
i ) (= vi) be a sequence of i.i.d. random variables with E[vi] = 0 and

E[v2i ] = σ2
v (> 0). We consider the case when

ϵn =
1

nδ
,(2.2)

where δ (≥ 0) is a constant. When δ = 0, it is the market micro-structure noise

model, while it is the high-frequency financial model without micro-market noise

when δ = +∞. When 0 < δ < +∞, it corresponds to the small-noise high-frequency

model.

The underlying continuous-time Brownian martingale is given by

X(t) = X(0) +
∫ t

0
σsdBs (0 ≤ s ≤ t ≤ 1) ,(2.3)

which is independent of v(t
(n)
i ), σs is the (instantaneous) volatility function, which

is bounded and Lipschitz-continuous and Bs is the standard Brownian motion.

Although it may be possible to apply the LSIML method to more general Itô semi-

martingales, we first consider this situation because it gives the essential feature of

the LSIML method in a simple way. (See Section 7 for its possible extensions.) We

assume that when the volatility process is stochastic, it has a representation of Ito’s
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Brownian semi-martingale as

σ2
t = σ0 +

∫ t

0
µσ
sds+

∫ t

0
ωσ
s dB

σ
s (0 ≤ s ≤ t ≤ 1) ,(2.4)

where Bσ
s is another Brownian motion, which may be correlated with Bs, and µσ

s

and ωσ
s are the drift and diffusion coefficients which are assumed to be deterministic,

bounded and Lipschitz-continuous. They can be relaxed to some extent, but this

paper will not pursue the generalization of the underlying process except some in

Section 7.

The first problem of our interest is how to estimate Brownian functionals of the

form

V (g, 2r) =
∫ 1

0
g(s)σ2r

s ds(2.5)

for any positive integer r and a known function g(s) from a set of observations of

Y (tni ) (i = 1, · · · , n). We denote V (2r) = V (g, 2r) when g(s) = 1 (0 ≤ s ≤ 1) for

convenience.

There are important examples of this type of Brownian functionals. An obvious

example is the integrated volatility that corresponds to the case when r = 1.

Example 1 : When r=1, we have the integrated volatility, which is given by

V (2) =
∫ 1

0
σ2
sds .(2.6)

Example 2 : The asymptotic variance of the SIML estimator of integrated volatility

V (2) is given by

2V (4) = 2
∫ 1

0
σ4
sds .(2.7)

It should be noted that the estimation of V (4) with r = 2 under market micro-

structure noise is a non-trivial task. Zhang, L., Per A. Mykland, and Y. Ait-Sahalia

(2005), Bandorff-Nielsen, Hansen, Lunde and Shepard (2008), Jacod, J., Y. L.,

Per A. Mykland, M. Podolskijc, and M. Vetter (2009), and Ait-Sahalia and Jacod

(2014) discussed different estimation methods of the integrated quarticity (
∫ 1
0 σ4

udu),

a higher-order Brownian functional with different g(s) functions, but it seems that
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they are more complicated than the method developed herein.

One important class of continuous time processes is Ito’s jump-diffusion process.

A simple process may be expressed as

X(t) = X(0) +
∫ t

0
σsdBs +

∑
0≤s≤t

∆Xs (0 ≤ s ≤ t ≤ 1) ,(2.8)

where the jump term with Xt − Xt− ̸= 0 and ∆X = Xt − Xt−, which is inde-

pendent of Bs (the Brownian motion). The term
∑

0≤s≤t ∆Xs is formally defined

as
∫ t+
0

∫
X f1(s, x, ·)Np(dsdx) +

∫+t
0

∫
X f2(2, x.·)N̂p(ds, dx) with measurable functions

fi (i = 1, 2), Poisson random measure Np(dtdx) and the compensator N̂p(dtdx).

(See Chapter II of Ikeda and Watanabe (1989).)

In this study, we shall use the simple cases when the number of jumps is finite in

[0, 1], the sizes of jumps fi (i = 1, 2) are bounded, and we often treat as if they were

fixed in the following analysis for the resulting simplicity.

Since we have the market micro-structure noise, which could be regarded as jump

component at each observation, there is a difficulty to distinguish the jump term in

the underlying the Ito’s semi-martingales from the market micro-structure noise, or

measurement error in the statistical terminology. In the general theory of stochastic

processes, there can be small jumps as well as large jumps. (See Ikeda and Watan-

abe (1989), Jacod and Protter (2012) for the detail.) Our interpretation of jumps

in the present study would be to detect large jumps of Ito’s semi-martingales from

noisy high-frequency observations.

In this situation, the fundamental quantity of the stochastic process is Quadratic

Variation (QV), which is an extension of the integrated volatility, given by

V (2) =
∫ 1

0
σ2
sds+

∑
0≤s≤1

(∆Xs)
2 .(2.9)

Example 3 : When we have jumps under market micro-structure noise, we may

be interested in the continuous part of QV by

VC(2) =
∫ 1

0
σ2
sds(2.10)

6



and the jump part of QV by

VJ(2) =
∑

0≤s≤1

(∆Xs)
2 ,(2.11)

respectively.

When there exists market micro-structure noise, it may be difficult to distinguish the

random jump process from it. For many applications, however, the roles of stochastic

jumps and market micro-structure noise (or measurement error) are different, and

it is important to estimate them in high-frequency finanical data.

3. Local Estimation for the No-Market Microstructure-Noise

Case

For simplicity, we take t
(n)
j − t

(n)
j−1 = 1/n (j = 1, · · · , n) and tn0 = 0. We divide

(0, 1] into b(n) sub-intervals and in every interval we allocate c(n)∗ observations. We

consider the sequence c∗(n) such that c∗(n) → ∞ and we can take b(n) → ∞ and

b(n) ∼ n/c∗(n) as n → ∞. A typical choice of observations in each interval would

be c∗(n) = [nγ] (0 < γ < 1), whereupon b(n) ∼ n1−γ. Because there are some extra

observations (n may not be equal to b(n)c∗(n)) and b(n) is a positive integer, we

need to adjust the number of terms in each interval c(n) = c∗(n) + (several terms).

Although there can be finite sample effects, we will ignore the effects of extra terms

in the following development because they are asymptotically negligible and hence

we take b(n)c(n) = n.

When there exsts market micro-structure noise, we simply use the log-return

process rj = y(t
(n)
j ) − y(t

(n)
j−1) from the log-price process y(t

(n)
j ). We order the data

rj in each sub-intervals and denote rk,(i) (k = 1, · · · , c(n); i = 1, · · · , b(n)).
When p = 1, let the 2nd moment of rk,(i) in the i-th interval be

M2,(i) =
c(n)∑
k=1

[rk,(i)]
2 .(3.1)

Then we define the local realized moment (LRM) estimator of V ∗(2r) by

V̂ ∗(2r) = nr−1
b(n)∑
i=1

M r
2,(i) .(3.2)
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When r = 1, it is the realized volatility (RV).

In this construction of the local realized moment (LRM) estimation, we need to

normalize the sample moment due to the scale factor nr−1 and to use the local

Gaussianity of underlying continuous martingales.

For the LRM estimator, we have the next result on the asymptotic properties,

which could be obtained straight-forwardly by extending the standard arguments

developed in the existing literature to the present case. (See Section 3.4 of Ait-

Sahalia and Jacod (2014) on the standard arguments, for example.)

Proposition 1 : Assume that there is no market micro-structure noise, i.e. ϵn = 0

with p = 1 and r ≥ 1 in (2.1), (2.3) and (2.4). Also assume that Y (t
(n)
i ) = X(t

(n)
i )

and σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous.

(i) As n −→ ∞
V̂ ∗(2r)− V (2r)

p−→ 0 .(3.3)

(ii) As n −→ ∞
√
n
[
V̂ ∗(2r)− V (2r)

] L−s→ N [0,W ] ,(3.4)

where L − s means the stable convergence and

W = 2r2
∫ 1

0
σ4r
s ds .(3.5)

We notice that we have used the stable-convergence in Proposition 1 because W is

a random variable when the volatility function is stochastic in general. We shall use

the stable-convergence in the following analysis and we give a brief discussion on

the CLT(central limit theorem) and stable-convergence at the end of the Appendix.

4. Local SIML Estimation

We consider the estimation problem of some Brownian and jump functionals

when we have the market micro-structure noise as (2.1), (2.2) with δ ≥ 0, and

(2.3) or (2.8). We utilize the same localization of the estimation method in Section
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3, and divide (0, 1] into b(n) sub-intervals and at every interval we allocate c∗(n)

observations. We consider the sequence c∗(n) such that c∗(n) → ∞ and we take

b(n) → ∞ and b(n) ∼ n/c∗(n) as n → ∞. We choose that the observations in each

interval would be c∗(n) = [nγ] (0 < γ < 1), whereupon b(n) ∼ n1−γ and we assume

n = b(n)c(n).

Then we apply the SIML method developed by KSK (2018) to each sub-intervals.

To use the SIML transformation in each local interval, we set mc = [c(n)α] (0 < α <

0.5) in the i-th interval (i = 1, · · · , b(n)) and the transformed data are denoted as

zk,(i) as the k-th data in the i-th interval Ic(i) (k = 1, · · · , c(n); i = 1, · · · , b(n)). Here
we explain the procedure for the general case when p ≥ 1 by following the notations

in Chapter 3 of KSK (2018) for the p−dimensional stochastic process y(t
(n)
i ). In

each sub-intervals, we transform c(n) × p observation matrix Yc(n),(i) to c(n) × p

matrix Zn,(i) (= (z
′

k,(i))) (i = 1, · · · , b(n)) by

Zc(n),(i) = h
−1/2
c(n) Pc(n)C

−1
c(n)

(
Yc(n),(i) − Ȳ0,(i)

)
(4.1)

where hc(n) = 1/c(n), and c(n)× c(n) matrices

C−1
c(n) =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


,(4.2)

Pc(n) = (pjk) , pjk =

√√√√ 2

c(n) + 1
2

cos

[
2π

2c(n) + 1
(k − 1

2
)(j − 1

2
)

]
.(4.3)

The initial conditions are given by the p× 1 vector y0,(i) and

Ȳ0,(i) = 1c(n) · y
′

0,(i) .(4.4)

Then we have the spectral decomposition

C−1
c(n)C

′−1
c(n) = Pc(n)Dc(n)P

′

c(n) ,(4.5)
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whereDc(n) is a diagonal matrix with the k-th element dk = 2
[
1− cos(π( 2k−1

2c(n)+1
))
]
(k =

1, · · · , c(n)). We define

ak,c(n) = c(n)dk = 4c(n) sin2

[
π

2

(
2k − 1

2c(n) + 1

)]
(k = 1, · · · , n) .(4.6)

When p = 1 and for any positive integer r, let the 2nd moment in the i-th sub-

interval be

M2,(i) =
1

mc

mc∑
k=1

[zk,(i)]
2 .(4.7)

Then, we define the LSIML estimator of V (2r) by

V̂ (2r) = b(n)r−1
b(n)∑
i=1

[M2,(i)]
r .(4.8)

If we take c(n) = n, b(n) = 1 and r = 1, then we have the SIML estimator for

integrated volatility as a special case. In this construction of the LSIML estimator,

we have c(n) observations in each interval and then we need to normalize (4.8)

because the scale factor is c(n)/n = b(n)−1.

5. Asymptotic Properties of Local SIML

We consider the case when σs is a time-varying continuous and bounded function

when p = 1. First, we consider the asymptotic properties of the LSIML estimation

for the case of r = 1. Then we shall discuss the case when r ≥ 2. The SIML

estimation method was originally developed for the case of constant volatility, but it

has some desirable asymptotic properties when the instantaneous volatility is time-

dependent and also stochastic in the form of (2.4). The LSIML estimation shares

these asymptotic properties of the SIML method. Since we need some arguments

based on the stable convergence (SC) and the martingale central limit theorem

(MCLT) in the stochastic case, we explain the asymptotic properties in this section

as if the time-varying volatility was deterministic function. Some discussion on SC

will be given at the end of Appendix.

(i) The case when r = 1
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First, we consider the asymptotic behavior of the quantityM2,(i) = (1/mc)
∑mc

k=1 z
2
k,(i)

in the i-th interval Ic(i) = ((i− 1) c(n)
n
, i c(n)

n
] (we use the notation t

(n)
i−1 = (i− 1) c(n)

n
,

and t
(n)
i = i c(n)

n
(i = 1, · · · , b(n))), when we take n = b(n)c(n), mc = [c(n)α] (0 <

α < 0.5) and mc → ∞ as n → ∞. We summarize the result for the case of r = 1,

which corresponds to Proposition 1 without any market micro-structure noise. This

presentation may be useful to understand the results in more general cases with

market micro-structure noise. The derivation is given in the Appendix.

Theorem 2 : When r = 1 and p = 1 in (2.1), (2.2), (2.3) and (2.4) with δ ≥ 0.

Also assume that v(t
(n)
i ) is a sequence of i.i.d. random variables with E[vi] = 0,

E[v4i ] < +∞, σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. We set α∗
1 =

1 + [4δ − 1]/[3γ], α∗
2 = 1 + [4δ − 3]/[5γ], and 0 < γ < 1.

Then we have the following asymptotic properties of the LSIML estimator with

0 < γ < 1.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1}, as n −→ ∞

V̂ (2)− V (2)
p−→ 0 .(5.1)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
2}, as n −→ ∞

√
mcb(n)

[
V̂ (2)− V (2)

] L−s→ N [0,W ](5.2)

in the stable convergence sense, where

W = 2
∫ 1

0
σ4
sds .(5.3)

If we take δ = 0.0 and γ = 3/4 (4/5), then the first condition for consistency implies

0 < α < 1/4 (3/8) while the second condition for asymptotic normality implies

0 < α < 1/5 (1/4).

(ii) The case when r ≥ 2

We investigate the asymptotic properties of the Local-SIML estimator when p = 1

and r ≥ 2. As a generalizeation of Theorem 2 when r ≥ 2 and p = 1 as follows,
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which is the summary of the asymptotic properties of the LSIML estimation. The

derivation is given in the Appendix.

Theorem 3 : When p = 1 and r ≥ 2 in (2.1), (2.2), (2.3) and (2.4) with δ ≥
0, assume that v(t

(n)
i ) is a sequence of i.i.d. random variables with E[vi] = 0,

E[v4ri ] < +∞ and σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. We define

α∗
1 = 1 + [4δ − 1]/[3γ], α∗

2 = 1 + [4δ − 3]/[5γ], and 0 < γ < 1. Then, we have the

following asymptotic properties of the LSIML estimator.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1r} ((α∗

1 > 0), as n −→ ∞

V̂ (2r)− V (2r)
p−→ 0 .(5.4)

(ii) We assume the additional condition γα > 1−γ and 0 < γ < 1. For mc = [c(n)α]

and 0 < α < min{0.4, α∗
2r} (α∗

2 > 0), as n −→ ∞
√
mcb(n)

[
(V̂ (2r)− V (2r)) + (V (2r)− V ∗(2r))

] L−s→ N [0,W ](5.5)

in the stable convergence sense, where

W = 2r2
∫ 1

0
σ4r
s ds ,(5.6)

and

V ∗(2r) = [b(n)]r−1
b(n)∑
i=1

(
∫ (n)

i

t
(n)
i−1

σ2
sds)

r .(5.7)

When r ≥ 2, an asymptotic bias term as (5.5) and (5.7) in the limiting distribution

appears. As we will show in the Appendix, we have some complications in the

evaluation of stochastic orders in this case. When r = 1, however, there does not

exist any bias term and we have the result in Theorem 2.

When γ = 3/4 (or4/5), the condition γα > 1−γ in Part (ii) implies α > 1/3 (or1/4).

It may be interesting to find that the form of the asymptotic variance for the LSIML

estimation is the same as the one for RV as in Proposition 1 when there is no market

micro-structure noise except that n (= b(n)c(n)) is replaced by b(n)mc.
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6. An Optimal Choice of α and γ

Because the properties of the LSIML estimation method depends crucially on

the choice of c(n) and mc, which are dependent on n, we need to investigate the

asymptotic effects as well as the small-sample effects of their choice.

As we will explaine in the derivation of Theorem 2 in the Appendix ((A.17),

(A.26), and (A.27)), the asymptotic bias of the LSIML estimator is proportional to

ABn ∼ [b(n)× m2
c

c(n)
](ϵn)

2(6.1)

and the asymptotic is proportional to

AVn ∼ 1

mcb(n)
=

1

n
[c(n)]1−α .(6.2)

Hence when n is large, we may approximate the mean squared error of the LSIML

estimator as

gn = c1g
1

n
[c(n)]1−α + c2g[b(n)×

m2
c

c(n)
]2(ϵn)

4 ,(6.3)

where c1g and c2g are some constants.

By setting c(n) = nγ and b(n) = n1−γ]; (0 < γ < 1), we can rewrite

g∗n = c1g
1

n
[c(n)]1−α + c2g

[
n2(1−γ)−2γ+4αγ−4δ

]
.(6.4)

Then, by ignoring the difference of c(n) = [n]γ and nγ and similar terms and dif-

ferentiating MSE with respect to α we have the condition such that n−1c(n)1−α (=

n−1+γ(1−α)) is proportional to n−[2(1−γ)−2γ+4αγ−4δ]. By rearranging the related terms,

we have the next result.

Theorem 4 : When p = 1 and r = 1 in (2.1), (2.2), (2.3) and (2.4) with δ ≥ 0,

assume that v(t
(n)
i ) is a sequence of i.i.d. random variables with E[vi] = 0 and

E[v4ri ] < +∞, and σs (0 ≤ s ≤ 1) is bounded and Lipschitz-continuous. An optimal

choice of mc = [c(n)α] and c(n) = [nγ] (with ϵn = n−δ (0 < γ < 1 and δ ≥ 0) to

minimize MSE when n is large, is approximately given by

1− γ(1− α) = 2(1− γ)− 2γ + 4αγ + 4δ ,(6.5)
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which means the choice as

α∗ =
1− γ − 2(1− γ) + 4δ

3γ
= 1 +

4δ − 1

3γ
.(6.6)

For example, when δ = 0, α∗ = 1 − 1/[3γ]. When δ = 0 and we take α∗, then the

MSE is proportional to n−[1−γ+γα∗], which is

MSE ∼ n−2/3 .(6.7)

Because the MSE in Proposition 1 is proportional to n−1, we have some loss of

efficiency when we have market micro-structure noise in high-frequency data

When r ≥ 2, the result of Theorem 4 holds if the volatility function is constant

in [0, 1]. In the general case, however, we need slightly different conditions and there

may be a further complication. It is because we have an additional bias term due

to V (2r)− V ∗(2r) of (5.5) in Part (ii) of Theorem 3 in the general case.

7. Possible Extensions

There are possible generalizations of our results in the previous sections. We will

discuss two cases of the jump-diffusion process and the multivariate diffusion models.

7.1 Continuous-Part and Jump-Part of Quadratic Variation

We consider the estimation problem in Example 3 in Section 2. When there is no

market micro-structure noise in the continuous-time Ito-process as X(t) = X(0) +∫ t
0 σsdBs +

∑
0≤s≤t∆Xs (0 ≤ s ≤ t ≤ 1), the method of estimating the continuous

and jump parts of quadratic variation has been known. For instance, Chapters 9

and 13 of Jacod and Protter (2012) have developed the truncation functionals and

reported many theoretical results in the high-frequency asymptotics. When there

is some market microstructure noise, however, it seems that there has not been
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an unified method available. The LSIML method gives a useful solution for this

purpose. In this subsection, we investigate the simple case of diffusion-jump model

and assume that p = 1, the jump-size is bounded, and there can be a finite number

of jumps in [0, 1]. The discussion is based on Section 2 of KK (2021), and the general

discussion of diffusion-jump processes has been given in Jacod and Protter (2012).

We consider the truncated functionals of the LSIML estimation. From Section

3, when p = 1 and r = 1, let the 2nd moment in the i-th sub-interval be M2,(i) =

1
mc

∑mc
k=1[zk,(i)]

2. We define the truncated LSIML functionals VJ(2) and VC(2) by

V̂J(2) =
b(n)∑
i=1

M2,(i)I(M2,(i) > un)(7.1)

and

V̂C(2) =
b(n)∑
i=1

M2,(i)I(M2,(i) ≤ un) ,(7.2)

respectively, where I(·) is the indicator function.

Here we take the truncation parameter un (a sequence of positive constants) such

that

An =
1

u2
[

1

b(n)
+

b(n)

c(n)2−4α
]

p−→ 0 .(7.3)

(See Lemma A-3 in the Appendix.) Then, we can estimate the continuous-part and

jump-part of the quadratic variation in a simple way.

We summarize the asymptotic properties of the truncated LSIML estimator as the

next result. The proof is given in the Appendix.

Theorem 5 : When r = 1 and p = 1 in (2.1), (2.2), (2.4) with δ ≥ 0, and (2.8)

instead of (2.3), assume that v(t
(n)
i ) is a sequence of i.i.d. random variables with

E[vi] = 0, E[v4i ] < +∞, and σs (0 ≤ s ≤ 1) is Lipschitz-continuous, and jumps are

bounded. We also assume that α∗
1 > 0, α∗

2 > 0 in Theorem 2, and the condition (7.3)

on An. Then we have the following asymptotic properties of the trancated LSIML

estimator with 0 < γ < 1.

(i) For mc = [c(n)α] and 0 < α < min{0.5, α∗
1}, as n −→ ∞

V̂C(2)− VC(2)
p−→ 0(7.4)
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and

V̂J(2)− VJ(2)
p−→ 0 .(7.5)

(ii) For mc = [c(n)α] and 0 < α < min{0.4, α∗
1}, as n −→ ∞√

mcb(n)
[
V̂J(2)− VJ(2)

] L−s→ N [0,WJ ](7.6)

and √
mcb(n)

[
V̂C(2)− VC(2)

] L−s→ N [0,WJ ](7.7)

in the stable convergence sense, where

WJ = 4
∑

0<s≤1

σ2
s(∆X(s))2(7.8)

and

WC = 2
∫ 1

0
σ4
sds ,(7.9)

respectively.

For example, if we take c(n) = nγ, b(n) = n1−γ, andmc = [c(n)]α, [b(n)]−1u2
n[c(n)]

2−4α =

u2
nn

−1+γ(3−4α). It is possitive and can converges to zero if we set α = .39 and γ = .75

because of −1 + γ(3− 4α) < 0.

KK (2021) have derived the central limit theorem (CLT) for the SIML estimation

when the underlying process is the class of Ito’s jump-diffusion process in the mul-

tivariate case. When p = 1, in their Corollary 2.1, the asymptotic variance of the

limiting distribution is given by

W = 2

∫ 1

0
σ4(s)ds+ 2

∑
0<s≤1

σ2(s)(∆X(s))2

 .(7.10)

Since W = WJ + WC , it can be regarded as a decomposition of the variance and

Theorem 5 is an extension of Theorem 2.1 of KK (2021).

7.2 Multivariate Processes

There are possible generalizations to multivariate processes when p ≥ 1. Let

Y(t
(n)
i ) = X(t

(n)
i ) + ϵnv(t

(n)
i ) (i = 1, · · · , n)(7.11)
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be the (p-dimensional) observed (log-)prices Y(t
(n)
i ) = (Yj(t

(n)
i )) at tni (0 = tn0 ≤

t
(n)
1 ≤ · · · ≤ t(n)n = 1) and v(t

(n)
i ) (= (vj(t

(n)
i )) be a sequence of (p× 1) i.i.d. random

vectors with E[v(t
(n)
i )] = 0 and E[v(t

(n)
i )v(t

(n)
i )

′
] = Σv (> 0).

As the underlying continuous-time process, we consider the class of multi-dimensional

diffusion processes. As the theory of continuous-time stochastic processes X(t
(n)
i ) (=

(Xj(t
(n)
i )), a general form of the SDE for the p-dimensional continuous-time stochas-

tic processes is given by

dX = µtdt+ σtdBt ,(7.12)

which has been called the diffusion-type continuous process, where µ(s) is the p× 1

drift vector, σ(s) is the p × q1 diffusion matrix, and Bt is the q1 × 1 Brownian

motions. It also has the representation as

X(t) = X(0) +
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dBs ,(7.13)

where the first term is an integration in the sense of Riemann while the second term

is an Itô’s stochastic integration with respect to the Brownian motion Bt (q1 × 1

vector).

We need some regularity conditions on µ(·) and σ()̇. A detailed theory of stochastic

differential equation (SDE) and stochastic integration has been explained by Ikeda

and Watanabe (1989). When the volatility process σ(t) = (σij(t)) is stochastic, we

take a diffusion type process as

σij(t) = σij(0) +
∫ t

0
µσ
ij(s)ds+

∫ t

0
ωσ

ij(s)dB
σ
s (0 ≤ s ≤ t ≤ 1) ,(7.14)

where µij(s) is the drift coefficient, ωω
ij(s) is 1 × q2 diffusion coefficients and Bσ

s is

another q2 × 1 Brownian motion vector, which may be correlated with Bs.

An example of the estimation problem, we may assume p×p variance-covariance

(or the integrated volatility) matrix Σx =
∫ 1
0 σsσ

′
sds, which is the same as V(2) =

(Vgh(2)) in our notation. In this case, the terms (1/mc)
∑mc

k=1[zk,(i)]
2 and the asymp-

totic variance 2
∫ 1
0 [σx(s)]

4 ds in Section 5 are replaced by

V̂ (g, h; 2) =
b(n)∑
i=1

1

mc

mc∑
k=1

[zg,k,(i)zh,k,(i)](7.15)
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and ∫ 1

0

[
σ(x)
gg (s)σ

(x)
hh (s) + (σ

(x)
gh (s))

2
]
ds ,(7.16)

where we set p = 2 and

Σx =
∫ 1

0
Σx(s)ds =

 σ(x)
gg σ

(x)
gh

σ
(x)
gh σ

(x)
hh

 .

The most important fact is that both the SIML method and the LSIML method are

simple and it is straightforward to use them when the dimension p of underlying

processes is large. This aspect is quite different from other methods proposed in the

past. Recently, KK (2021) have considered a statistical procedure to detect factors

of the hidden covariation rx when it is substantially less than the dimension p, for

instance. We expect that under a set of regularity conditions, we have the similar

results on the asymptotic properties of the local SIML estimator in more general

settings.

8. Simulations and An Empirical Data Analysis

8.1 Simulations

We have done some simulation when r = 1 and r = 2 on the estimation of the true

parameters of V (2), V (4), VC(2) and VJ(2). We note that the estimated variance of

the SIML estimator of integrated volatility corresponds to 2V̂ (4) in the univariate

case. In our simulations we set b(n) = [n1−γ], c(n) = [nγ] such that b(n)c(n) = n

and the number of replications is 3,000. Also we have investigated several cases in

which the instantaneous volatility function σ2
s is given by

σ2
s = σ2

0

[
a0 + a1s+ a2s

2
]
,(8.1)

where ai (i = 0, 1, 2) are constants and we have some restrictions such that σs > 0 for

s ∈ [0, 1]. This is a typical time-varying (but deterministic) case and the integrated

volatility V (2) is given by

V (2) =
∫ 1

0
σ2
sds = σx(0)

2
[
a0 +

a1
2

+
a2
3

]
.(8.2)
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In this case we have taken several intra-day volatility patterns including the flat

(or constant) volatility, the monotone (decreasing or increasing) movements and the

U-shaped movements.

(i) As the first exercise, we take (2.1), (2.2), and (2.3) with δ = 0.0. In Tables 8.1-8.5,

the true parameter values of V(2) and V(4) are
∫ 1
0 σ2

sds and
∫ 1
0 σ4

sds, respectively.

In Tables mean and Var are the mean and variance of simulated variables for

V̂ (2r) = b(n)r−1
b(n)∑
i=1

(M2,(i))
r(8.3)

and

V̂ ∗∗(2r) =
b(n)r−1

ar

b(n)∑
i=1

M2r,(i)(8.4)

where

M2r,(i) =
1

mc

mc∑
k=1

[zk,(i)]
2r(8.5)

and ar =
2r!
r! 2r

.

In Tables, AV stands for the limiting variances calculated from (5.2)-(5.3) and (5.5)-

(5.6). (Kunitomo and Sato (2018) discussed V̂ ∗∗(2r) in some detail.)

If we take c(n) = n, b(n) = 1 and r = 1, then we have the SIML estimator for

integrated volatility as a special case.

In this construction of the LSIML estimator, we have c(n) observations in each

interval and then we need to normalize (8.3) and (8.4) because the scale factor

is c(n)/n = b(n)−1 while we need the local Gaussianity for underlying continuous

martingales. Tables 8.1 and 8.2 correspond to the case of flat volatility while other

tables correspond to the case of time-varying, but non-stochastic volatility.

Table 8.1 : Estimation of integrated fourth-order functional

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 5, c(n) = 521; α = 0.4, γ = 0.795)

n=2,605 V (2) = 2.0 V (4) = 4.0

mean 2.001 4.671

Var 0.133 2.837

AV 0.133 3.10

n=2,605 V (2) = 2.0 V (4) = 4.0

mean 2.009 4.053

Var 0.134 2.837

AV 0.133 2.843
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Table 8.2 : Estimation of integrated fourth-order functional

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 10, c(n) = 1, 000; α = 0.33, γ = 0.75)

n=10,000 V (2) = 2.0 V (4) = 4.0

mean 2.012 4.950

Var 0.092 2.400

AV 0.090 2.400

n=10,000 V (2) = 2.0 V (4) = 4.0

mean 2.013 4.056

Var 0.092 1.973

AV 0.089 1.895

Table 8.3 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
v = 0.0005, b(n) = 10, c(n) = 1, 000; α = 0.33, γ = 0.75)

n=10,000 V (2) = 2.0 V (4) = 7.2

mean 2.012 8.700

Var 0.160 19.400

AV 0.160 17.056

n=10,000 V (2) = 2.0 V (4) = 7.2

mean 2.023 7.167

Var 0.160 15.093

AV 0.160 17.056

Table 8.4 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
v = 0.0005, b(n) = 40, c(n) = 1, 261; α = 0.45, γ = 0.66)

n=50,440 V (2) = 2.0 V (4) = 7.2

mean 2.069 8.100

Var 0.015 1.510

AV 0.015 1.599

n=50,440 V (2) = 2.0 V (4) = 7.2

mean 2.070 7.457

Var 0.016 1.650

AV 0.015 1.599

Table 8.5 : Estimation of integrated fourth-order functional

(a0 = 6.0, a1 = −24.0, a2 = 24.0;σ2
v = 0.0005, b(n) = 18, c(n) = 5, 622; α = 0.33, γ = 0.75)

n=101,196 V (2) = 2.0 V (4) = 7.2

mean 2.021 8.124

Var 0.048 5.057

AV 0.047 5.016

n=101,196 V (2) = 2.0 V (4) = 7.2

mean 2.022 7.273

Var 0.049 5.128

AV 0.047 5.016
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In Tables 8.1-8.5 we first confirm that the LSIML method work well for the esti-

mation of the integrated volatility. Although there may be some loss of estimation

accuracy when the underlying true stochastic process is known, the LSIML method

gives desirable finite and asymptotic properties. The most important result in our

simulation is the estimation of 2V(4), which is the asymptotic variance of the SIML

estimator of integrated volatility. As we see in Tables, the mean and SD (standard

deviation) have reasonable values.

To investigate the asymptotic distribution of the LSIML estimator, we give some

typical empirical distribution of a set of simulated data in Figure 8.1 (r = 1, b(n) =

14, c(n) = 3371, α = 0.4, a0 = 6.0, a1 = −24.0, a2 = 24.0) and Figure 8.2 (r =

2, b(n) = 76, c(n) = 677, α = 0.4, a0 = 6.0, a1 = −24.0, a2 = 24.0). We confirm that

we have the asymptotic normality of the SIML estimator and the limiting normal

distribution gives a reasonable approximation of the finite sample distribution. Also

we found that when r = 2, we have a small bias with the limiting normal distribution,

which is consistent to Theorem 3.

(ii) As the second example, we give Tables 8.6-8.10 for the jump-diffusion case under

market micro-structure noise. We set the true parameter values of VC(2) = 2.0 and

λ = 3/n for the diffusion-Poisson-jump model with the intensity λ/n. In Tables

mean and Var are the mean and variance of simulated.

In Tables 8.6-8.10 we confirm that the LSIML estimation method of the continuous

and jump parts work well. In our experiment, after some trials we have set the

threshhold value as

un = (mean of M2,(i)) +Q995× SD(M2,(i) < mean of M2,(i)) ,(8.6)

where SD(·) is the standard deviation and Q995 is the .995 quantile.

We also show the emipirical distribution of the continupus-part and jump-part of

the LSIML estimator under market micro-structure noise in Figure 8.3. We confirm

that the limiting normal distribution in Theorem 5 gives reasonable approximation

to the finite sample distributions of estimator of continuous part and the jump part

of quadratic variation.
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Figure 8.1: Normalized Histogram and Normalized Distribution (r = 1)
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Figure 8.2: Normalized Histogram and Normalized Distribution (r = 2)
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Table 8.6 : Estimation of V(2)l

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 100, c(n) = 1000;

α = 0.4, λ = 3/n, size =0.7)

n=100,000 VC(2) = 2.0 VJ(2)

mean 2.107 0.030

Var 0.007 0.001

Table 8.7 : Estimation of V(2)

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 10, c(n) = 10, 000;

α = 0.4, λ = 3/n, size =0.7)

n=10,000 VC(2) = 2.0 VJ(2)

mean 1.991 0.0209

Var 0.026 0.006

Table 8.8 : Estimation of V(2)

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 100, c(n) = 1, 000;

α = 0.4, λ = 3/n, size =0.7)

n=100,000 VC(2) = 2.0 VJ(2)

mean 2.073 1.52

Var 0.007 0.803

Table 8.9 : Estimation of V(2)

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 10, c(n) = 10, 000;

α = 0.4, λ = 3/n, size =0.7)

n=100,000 VC(2) = 2.0 VJ(2)

mean 2.875 0.623

Var 1.214 0.372
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Figure 8.3: Normalized Histogram of LSIML estimator of VC(2) and VJ(2).

Table 8.10 : Estimation of V(2)

(a0 = 1.0, a1 = 0.0, a2 = 0.0;σ2
v = 0.0005, b(n) = 200, c(n) = 500;

α = 0.4, λ = 3/n, size =0.7)

n=100,000 VC(2) = 2.0 VJ(2)

mean 2.257 1.502

Var 0.005 0.808

(iii) From our simulations we found that the LSIML estimator of integrated volatil-

ity V(2) and V(4) perform quite well as we expected. We also have confirmed that

the estimation of continuous part and jump-part of the quadratic variation in the

presence of market micro-structure noise is possible. The behaviors of the LSIML

24



estimator for higher Brownian and jump functionals as r = 1 and r = 2 are reason-

able given the difficulties of the problem involved because of the presence of market

micro-structure noise.

8.2 An Empirical Data Analysis

As an illustration for the use of the method we have discussed in previous sections,

we give an empirical result of high-frequency data analysis in Table 8.11. For the

comparative purpose, we have used the same data set in Section 4 of KSK (2018),

which is the high-frequency tick-data of Nikkei-225 Futures at April 16, 2007 traded

at OSE (Osaka Stock Exchange). The data are 1s, 5s and 10s (see Kunitomo et al.

(2018) for more details) and we have taken α = 0.4, 1.0 and several values of γ.

There are several interesting findings. The estimated values of the LSIML esti-

mator are fairly stable and they do not depend on the choice of observation lengths

(1s, 5s and 10s) except the case when α = 1.0. (The last case does not satisfy the

conditions in Section 5.) The estimated standard deviation of V (2) is
√
2V̂ (4)/mn,

where V̂ (4) is an estimated value of V(4)), and its values are highly significant in

all cases. The estimated values of V(2) are quite similar to the estimated values of

the SIML estimator reported in Section 4 of KSK (2018).

The estimated values of RV correspond to the case when α = 1.0, and the

estimated values of RV on V(2) and V(4) are significantly different from the LSIML

estimates. (Note that V̂ (4) is asymptotically the same as V̂ ∗(4) although there are

small differences in finite samples.) This finding suggests that the estimated values

of RV for V(4) as well as V(2) have significant biases due to market micro-structure

noise, and the use of RV may cause some problems in applications such as the risk

managements.
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Table 8.11 : Estimatation Result of Local SIML for Nikkei-225 Future

1s alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=1

γ=0.66 γ=0.7 γ=0.75 γ=0.8 γ=0.85 γ=1

V(2) 5.64E-05 5.02E-05 5.21E-05 5.27E-05 5.28E-05 4.95E-04

V(4) 4.07E-09 2.88E-09 2.54E-09 3.32E-09 3.35E-09 2.74E-07

5s alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=1

γ=0.66 γ=0.7 γ=0.75 γ=0.8 γ =0.85 γ=1

V(2) 4.86E-05 4.50E-05 4.80E-05 5.33E-05 4.17E-05 2.60E-04

V(4) 3.76E-09 2.14E-09 2.68E-09 2.86E-09 2.55E-09 8.19E-08

10s alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=0.4 alpha=1

γ=0.66 γ=0.7 γ=0.75 γ=0.8 γ=0.85 γ=1

V(2) 5.11E-05 4.98E-05 4.78E-05 4.21E-05 3.79E-05 1.76E-04

V(4) 4.20E-09 3.80E-09 2.56E-09 2.60E-09 1.70E-09 3.82E-08

9. Concluding Remarks

In this paper, we have developed the Local SIML (LSIML) method for estimating

higher-order Brownian functionals and second-order jump functionals, which is a

new statistical method. We extend the separating information maximum likelihood

(SIML) method, which was proposed by KSK (2018). The main motivation of the

LSIML method is to estimate higher order Brownian and jump functionals including

the integrated volatility and co-volatility when we have market micro-structure noise

in high-frequency financial data. We have shown that the LSIML method has desir-

able asymptotic properties such as the consistency and asymptotic normality in the

stable-convergence sense, and it also has reasonable finite sample properties, which

are illustrated by several simulations and an empirical data analysis. Although there

could be other methods for estimating higher-order Brownian and jump functionals,

the LSIML method is simple and it has desirable asymptotic properties. Hence it

should be useful for practical application including the measurement of financial β

with possible jumps under market micro-structure noise. Some empirical applica-

tions are currently under investigation.
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APPENDIX : Mathematical Derivations

In this Appendix, we give some details of the derivations of the results in Section 5

and Section 7. Since we have used the stable convergence in Theorem 2, Theorem 3,

and Theorem 5, we will give some discussion how we can apply the basic arguments

of the CLT and stable-convergence to our situation at the end of this Appendix. We

will use some notation of KSK (2018) and KK (2021).

1. Some Lemmas

Lemma A-1 : Let r be any positive integer and ak,c(n) is given by (4.6). Then

1

mc

mc∑
k=1

ark,c(n) ∼ (
π2r

2r + 1
)
m2r

c

c(n)r
(A.1)

as c(n),mc → ∞ and mc/c(n) → 0.

Proof of Lemma A-1 : Since mc/c(n) → 0 as n → ∞ and sin x ∼ x when x is

small, we can evaluate

1

mc

mc∑
k=1

ark,c(n) = [π]2r
m2r

c

c(n)r

[
1

mc

mc∑
k=1

(
k

mc

)2r + o(1)

]

=
π2r

2r + 1

[
m2r

c

c(n)r
+ o(1)

]
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because
1

mc

mc∑
k=1

(
k

mc

)2r −
∫ 1

0
x2rdx = o(1) .

(QED)

Lemma A-2 : Let

bkj =
√
c(n)[pkj − pk,j+1] =

2
√
c(n)√

2c(n) + 1
cos θkj −

2
√
c(n)√

2c(n) + 1
cos θk,j+1(A.2)

for k = 1, · · · , c(n); j = 1, · · · , c(n)− 1 and

bk,c(n) =
2
√
c(n)√

2c(n) + 1
cos θk,c(n) , θkj =

2π

2c(n) + 1
(k − 1

2
)(j − 1

2
) .

Then

c(n)∑
j=1

[bkj]
2 = [1 +O(

1

c(n)
)]ak,c(n) ,

c(n)∑
j=1

[bkj]
4 = [

3

2c(n)
+ o(

1

c(n)
)][ak,c(n)]

2 ,

and for any positive integers k1, k2 there exists a constant K1 such that

c(n)∑
j=1

[bk1j]
2[bk2j]

2 ≤ K1

ak1,c(n)ak2,c(n)
c(n)

.

Proof of Lemma A-2 : We use the decomposition as

2c(n) + 1

c(n)

c(n)−1∑
j=1

[bkj]
2 =

c(n)−1∑
j=1

[(1− eiθk)eiθkj ]2 +
c(n)−1∑
j=1

[(1− e−iθk)e−iθkj ]2

+2(c(n)− 1)(1− eiθk)(1− e−iθk) ,

where θk = [2π/(2c(n) + 1)](k − 1/2) (k = 1, · · · , c(n)).
and θkj = [2π/(2c(n) + 1](k − 1/2)(j − 1/2). Then we use the relation

c(n)∑
j=1

[eiθkj ]2 = eiθk
1− ei(4π/(2c(n)+1))(k−1/2)c(n)

1− e2iθk
(A.3)

= eiθkj
1− eiπ(2k−1)e−iθk

1− e2iθk
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because we have

ei(4π/(2c(n)+1)(k−1/2)c(n) = ei(π/(2c(n)+1)(2k−1)(2c(n)+1−1) = eiπ(2k−1)e−iθk .

We use the relation eiθkc(n)+e−iθkc(n) = eiπ(k−1/2)[e−iθk−eiθk ] = 2 sin θk = 4 sin(θk/2) cos(θk/2)

for the last term bk,c(n) of (A.3). Then, by arranging each terms and use the relation

(1− eiθk)(1− e−iθk) = (e−i
θk
2 − ei

θk
2 )(ei

θk
2 − e−i

θk
2 ) ,

we have the result.

By using the similar but tedious arguments for the fourth-powers, after some calcu-

lations (we only need to evaluate the dominant terms), we find that

[2c(n) + 1]2

c(n)2

c(n)−1∑
j=1

[bkj]
4 =

c(n)−1∑
j=1

[eiθkj(1− eiθk) + e−iθkj(1− e−iθk)]4

= [6c(n) +O(1)]× 42 sin4 θk
2

.

The last evaluation follows by applying the Chaucy-Schwartz inequality to

c(n)∑
j=1

[bk1j]
2[bk2j]

2 ≤ [
c(n)∑
j=1

[bk1j]
4]1/2[

c(n)∑
j=1

[bk1j]
4]1/2 ,

and by using the above relation.

(Q.E.D.)

Lemma A-3 : Assume the conditions in Theorem 2 for the diffusion-plus-noise

model. Let M2,(i) =
1
mc

∑mc
k=1[zk,(i)]

2 (k = 1, · · · , c(n); i = 1, · · · , b(n)).
Then

E[(M2,(i))
2] = O(

1

(b(n))2
+

m4
c

(c(n))2
) .(A.4)

Also
b(n)∑
i=1

P (∥M2,(i)∥ > un)
p−→ 0(A.5)

if

An =
1

u2
n

[
1

b(n)
+

b(n)

c(n)2−4α
]

p−→ 0 .(A.6)
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Proof of Lemma A-3 : (i) Let M
(1)
2,(i) = 1

mc

∑mc
k=1[zk,(i)]

2 for z
(1)
k,(i) = zk,(i) when

ϵn = 0. Then by using (A.10) and (A.11) below, we decompose

M
(1)
2,(i) =

c(n)∑
k,l=1

[δ(k, l)
∫ tnk (i)

tn
k−1

(i)
σ2
sds+ (cklrk,(i)rl,(i) − δ(k, l)

∫ tnk (i)

tn
k−1

(i)
σ2
sds)] .(A.7)

Since the first term is of the order Op(c(n)/n) and the second term is of the order

Op(1/[b(n)
√
b(n)mc]).

Let M
(2)
2,(i) =

1
mc

∑mc
k=1[zk,(i)]

2 for z
(2)
k,(i) = zk,(i) when σs = 0 (0 ≤ s ≤ 1). We need to

evaluate the expected vales of ( 1
mc

)2
∑mc

k,k‘=1(
∑c(n)

j=1 bk,jvj)
2(
∑c(n)

j‘=1 bk‘,jvj‘)
2 . Then, by

using Lemma A-2, we can find a constant K1 such that

E[M
(2)
2,(i)]

2 ≤ K1[
1

mc

c(n)∑
k=1

ak,c(n)]
2 .(A.8)

By using Lemma A-1, we have the first result under the conditions in Theorem 2.

(ii) By using the Markov inequality,

b(n)∑
i=1

P (∥M2,(i)∥ > un) =
b(n)∑
i=1

P (∥M2,(i)∥2 > u2
n)(A.9)

≤
b(n)∑
i=1

E[(M2,(i))
2]

u2
n

= O(
1

u2
n

b(n)[
1

b(n)2
+

(mc)
4

c(n)2
]) .

and b(n) = n1−γ, we have the result.

(Q.E.D.)

2. Derivation of Theorem 2 :

With the transformation (4.1) when p = 1 in the set Ic(i) = (t
(n)
i−1, t

(n)
i ], we write

zk,(i) = z
(1)
k,(i) + z

(2)
k,(i), where z

(1)
k,(i) and z

(2)
k,(i) correspond to the k−th elements of

Z
(1)
c(n),(i) = h

−1/2
c(n) Pc(n)C

−1
c(n)(Xc(n),(i) − ȳ0,(i)) and Z

(2)
c(n),(i) = h

−1/2
c(n) Pc(n)C

−1
c(n)Vc(n),(i),

respectively, where Xc(n),(i) and Vc(n),(i) are the c(n)× 1 state vector and the noise

vector in Ic(i) (i = 1, · · · , b(n)). Then, we have E[Z
(1)
c(n),(i)] = 0 and E[Z

(2)
c(n),(i)] = 0

and

E[Z
(2)
c(n),(i)Z

(2)′

c(n),(i)] = σ2
vh

−1
c(n)D

(2)
c(n) ,(A.10)
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where D
(2)
c(n) = diag(dk) (k ∈ Ic(i)). (We take the interval (t

(n)
i (k− 1), t

(n)
i (k)] ∈ Ic(i)

(i = 1, · · · , c(n); k = 1, · · · , c(n), and we have t
(n)
i (k)− t

(n)
i (k − 1) = 1/n.)

When σs is a time-varying and deterministic function,

E[Z
(1)
c(n),(i)Z

(1)′

c(n),(i)] = h−1
c(n)Pc(n)D

(1)
c(n)Pc(n) ,(A.11)

where D
(1)
c(n) = diag(σ2(t

(n)
k (i)) (for k ∈ Ic(i)) and σ2(t

(n)
k (i)) =

∫ t(n)
k

(i)

t
(n)
k−1

(i)
σ2
sds, which is

σ2
s at s = t

(n)
k−1(i).

When σs is stochatic under the assumption that it is bounded and Lipschitz-continuous,

we can use the similar argument based of the standard approximation in stochastic

calculus for
∫ t(n)

k
(i)

t
(n)
k−1

(i)
σ2
sds by σ2(t

(n)
k−1(i))[t

(n)
k (i)− t

(n)
k−1(i)]. (See (A.30) below for some

details.)

We use the decomposition

M2,(i) =
1

mc

mc∑
k=1

[z
(1)
k,(i) + z

(2)
k,(i)]

2(A.12)

=
1

mc

mc∑
k=1

[z
(1)
k,(i)]

2 +
1

mc

mc∑
k=1

[z
(2)
k,(i)]

2 + 2
1

mc

mc∑
k=1

[z
(1)
k,(i)z

(2)
k,(i)]

2

= M
(1)
2,(i) +M

(2)
2,(i) + 2M

(12)
2,(i) (, say) .

For the third term, we utilize the well-known inequality that [M
(12)
2,(i)]

2 ≤ M
(1)
2,(i)M

(2)
2,(i),

and we find that the effects M
(12)
2,(i) (i = 1, · · · , b(n)) are stochastically negligible.

In Ic(i) we write z
(2)
k,(i) =

∑c(n)
j=1 bkjvj(i), vj(i) are noise terms in Ic(i) (i =

1, · · · , b(n)) and bkj are the corresponding coefficients of h
−1/2
c(n) Pc(n)C

−1
c(n). We re-

write

z
(1)
k,(i) =

√√√√ 4c(n)

2c(n) + 1

c(n)∑
j=1

skjrj,(i) ,(A.13)

skj = cos θkj and θkj = (2π/(2mc + 1))(k − 1/2)(j − 1/2) (j, k = 1, · · · , c(n)).

We use the relations of trigonometric functions for z
(1)
k,(i) and rewrite

M
(1)
2,(i) =

1

mc

mc∑
k=1

[z
(1)
k,(i)]

2 =
c(n)∑
k,l=1

cklrk,(i)rl,(i) ,(A.14)
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where rk,(i) (= X(t
(n)
i (k)) − X(t

(n)
i (k − 1))) are returns in the interval (t

(n)
i (k −

1), t
(n)
i (k)] ∈ Ic(i) (i = 1, · · · , c(n); k = 1, · · · , c(n)). and ckl = (2/mc)

∑mc
j=1 skjslj.

Due to the basic properties of ckl (k, l = 1, · · · , c(n)) (see Lemmas 5.1 and 5.2 of KSK

(2018)), (A.12) is a consistent estimator of the hidden volatility
∫
Ic(i)

σ2
sds[c(n)/n]

in a sense although we need the last term c(n)/n due to the fact that the total

sample size is n while we use its fraction in the intervals Ic(i) (i = 1, · · · , b(n)) in

the local estimation. When there exist the market micro-structure noise, however,

we further need to evaluate the effects of noise in M2,(i). (We used the notations

and derivations of the asymptotic properties of the SIML method in Chapter 5 of

KSK (2018) when p = 1, which corresponds to the case when ϵn = 1.)

By using the analogous arguments as Chapter 5 of KSK (2018) to the local interval

Ic(i) (i = 1, · · · , b(n)), we evaluate the conditions that the effects of noises are

negligible and the proper order of the stochastic part around the volatility

√
mc

c(n)∑
k,l=1

[cklrk,(i)rl,(i) − δ(k, l)
∫ tni (k)

tni (k−1)
σ2
sds](A.15)

which is of the order Op(c(n)/n). Since each term with i (i = 1, · · · , b(n)) are

asymptotically uncorelated, the normalized stochastic part around the volatility

should be in the form of√
mcb(n)

b(n)∑
i=1

c(n)∑
k,l=1

[cklrk,(i)rl,(i) − δ(k, l)
∫ tni (k)

tni (k−1)
σ2
sds] ,(A.16)

Next, we use Lemma A-1 in the Appendix (see the proof of Lemma 5.3 of KSK

(2018)) to evaluate the asymptotic bias. If σs = 0 (0 ≤ s ≤ 1) and ϵn (= ϵ)

is a fixed constant, by using (4.5) and (4.6), the bias term is proportional to

E[m−1
c

∑mc
k=1[z

(2)
k,(i)]

2] in all intervals and it is given as ϵ2n σ2
v times

1

mc

mc∑
k=1

ak,c(n) = O(
1

mc

× m3
c

c(n)
) = O(

m2
c

c(n)
) .

In the general case with micro-market noises, we use the transformation (4.1) in

the local SIML estimation and then the bias term of
∑b(n)

i=1 [1/mc]
∑mc

k=1 z
2
k,(i) in each

interval is asymptotically equivalent to a constant ((π2/3)σ2
v) times

AB1n = b(n)
(mc)

2

c(n)
[ϵn]

2 .(A.17)
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Because σs is Lipschitz-continuous, in Ic(i) (i = 1, · · · , b(n)), we can take a positive

constant K2 such that∣∣∣∣∣
∫
s∈(t(n)

i−1,t
(n)
i ]

σ2
sds− σ2(t

(n)
i−1)[

c(n)

n
]

∣∣∣∣∣ ≤ K2

∣∣∣∣∣
∫
s∈(t(n)

i−1,t
(n)
i

[s− (i− 1)
c(n)

n
]ds

∣∣∣∣∣
= Op

(
(
c(n)

n
)2
)

,

which is Op(1/b(n)
2). Then we have the relation thatb(n)∑

i=1

1

mc

mc∑
k=1

z2k,(i)

− ∫ 1

0
σ2
sds

p−→ 0 ,(A.18)

provided that the bias can be negligible, that is max{ 1
b(n)

, 1
mc

} −→ 0 and AB1n → 0

as n → ∞.

For the asymptotic normality of V̂ (2) without any asymptotic bias term, we use the

fact that the dominant factor of (A.14) is a martingale part. A sufficient condition

for the asymptotic normality (see Theorem 3.3 of KSK (2018)) would be

AB2n =
√
mcb(n)b(n)

(mc)
2

c(n)
[ϵn]

2 −→ 0(A.19)

as n → ∞.

If we set c(n) = nγ, b(n) = n1−γ and mc = [c(n)]α, then

AB1n = n1−2γ+2γα−2δ ,(A.20)

and

AB2n = n
1−γ
2

+αγ
2
+1−2γ+2γα−2δ = n1−2δ+ 5

2
αγ+ 1

2
(1−5γ) .(A.21)

By setting α∗
1 = 1 + [2δ − 1]/[2γ], and α∗

2 = 1 + [4δ − 3]/[5γ], we have the result on

the asymptotic distribution of the local SIML estimation in the simplest case.

The CLT in the stable-convergence sense will be discussed at the end of the Ap-

pendix.
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3. Derivation of Theorem 3 :

(i) For r ≥ 2, we decompose

V̂ (2r)− V (2r)(A.22)

= [b(n)]r−1
b(n)∑
i=1

[M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds+

∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

r − V (2r)

= [b(n)]r−1
b(n)∑
i=1

[
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

r − V (2r)

+[b(n)]r−1
b(n)∑
i=1

rC1[
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

r−1[M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

+[b(n)]r−1
b(n)∑
i=1

r∑
j=2

rCj[
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

r−j[M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

j .

There are three terms in (A.22) and we evaluate each term from the representation

M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds = [M

(1)
2,(i) −

∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds] + [M

(2)
2,(i) +M

(12)
2,(i)] .

First, we consider the effects of M
(1)
2,(i) −

∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds (i = 1, · · · , b(n)) as if it were

M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds in the above expression.

Under the assumption of Lipschitz-condition on σ2
s , we can use the evaluation

[
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds − σ2(t

(n)
i−1)[t

(n)
i − t

(n)
i−1]| = Op([

1
b(n)

]2). Then, the first tem of (A.22)

converges to zero in probability because σ2
s is bounded and

|
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds| = Op([t

(n)
i − t

(n)
i−1]) = Op(

c(n)

n
) = Op(

1

b(n)
) .

For the second and third terms of (A.22), we use the fact that

b(n)[M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds] = Op(1/

√
mc) from the proof of Theorem 2. Then, by

evaluating the orders of other terms and using Theorem 2, we have the consistency.

(ii) For the asymptotic normality of the LSIML estimator, we want to evaluate the

stochastic behavior of
√
b(n)mc)[V̂ (2r)− V (2r)] (r ≥ 2). When r ≥ 2, we have the

term

V (2r)∗ = [b(n)]r−1
b(n)∑
i=1

[
∫
(t

(n)
i−1,(t

(n)
i ]

σ2
sds]

r .

Then, we find that V ∗(2r)− V (2r) = Op(1/b(n)), and
√
b(n)mc)[V

∗(2r)− V (2r)] =

Op(
√

mc

b(n)
) is not necessarily negligible in the general case. (It is zero when the volatil-

ity function is constant.) Hence we need to normaliz
√
b(n)mc)[V̂ (2r) − V (2r) +
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(V (2r)− V ∗(2r))] .

Then we can evaluate the limiting distribution of the normalized LSIML estima-

tor from the second term of (A.22). It is approximately equivalent to the random

variable

AMn(2r) =
√
b(m)mc

b(n)∑
i=1

r[σ(t
(n)
i−1)]

2(r−1)[M
(1)
2,(i) −

∫
(t

(n)
i−1,(t

(n)
i ]

σ2
sds] ,(A.23)

and its asymptotic variance is given by

AV(2r) = r2 × 2
∫ 1

0
σ4(r−1)+4
s ds .

The order of the third term of (A.22) multiplied by
√
b(m)mc is Op(

√
b(m)mc) ×

Op((1/
√
mc)

2) = Op(
√
b(n)/

√
mc). Then, it goes to zero if b(n)/mc → 0 as n → ∞.

A sufficent condition is 1− γ − γα < 0.

(iii) It remains to show that the effects of the bias due to the presence of market

micro-structure on M
(2)
2,(i) M

(12)
2,(i) (i = 1, · · · , b(n)) in the third term of (A.22) are

stochastically negligible for the asymptotic normality of (A.23). We use the relation

that for any positive integer r ≥ 2,

[M2,(i) −
∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

r =
r∑

j=0

rCj[M
(1)
2,(i) −

∫
(t

(n)
i−1,t

(n)
i ]

σ2
sds]

j[M
(2)
2,(i) +M

(12)
2,(i)]

r−j .

and evaluate the order of each term.

We need straight-forward, but tedious calculations for each each term involving

M
(2)
2,(i) (i = 1, · · · , b(n)). We prepare the following lemma.

Lemma A-4 : Under the assumptions in Theorem 3, for any positive integer r ≥ 2,

there exists a constant K∗
r such that

E[(M2,(i))
r] ≤ K∗

r [
1

mc

mc∑
k=1

ak,(i)]
r (i = 1, · · · , b(n)) .

Then, we have

[b(n)]r−1
b(n)∑
i=1

E[(M2,(i))
r] ≤ K∗

r [AB1n]
r ,(A.24)
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where AB1n is given by (A.17).

We state Lemma A-4 for the general case, but we only illustrate a typical evalu-

ation for the case r = 2 with the terms involving [M
(2)
2,(i)]

2. Because E[M2,(i)] =

(1/mc)
∑mc

k=1 ak,(i) and we have fourth-order moments of market noise, by using

Lemma A-2 and lengthy (but elementary) calculations, we can evaluate the result

as E[(M2,(i))
2] = [E(M2,(i)))]

2+E[M2,(i)−E(M2,(i)))]
2. Then, we can find a constant

K∗
21 (= K∗

2 − 1) such that

E[mc(M2,(i) − E(M2,(i)))]
2(A.25)

= [
mc∑
k=1

E[(z
(2)
k,(i))

2 − E((z
(2)
k,(i))]

2

=
mc∑

k1,k2=1

E([
c(n)∑
j1=1

b2k1,j1(vj1(i)
2 − σ2

v) +
∑
j1 ̸=j2

bk1,j1bk1,j2vj1(i)vj2(i)]

×[
c(n)∑
j3=1

b2k2,j3(vj3(i)
2 − σ2

v) +
∑
j3 ̸=j2

bk2,,j3bk2,,j4vj3(i)vj4(i)])

≤ K∗
21[

mc∑
k=1

ak,(i)]
2 ,

where we denote vj(i) is the j-th market noise in the set Ic(i) (i = 1, · · · , b(n)).
The effects of M

(12)
2,(i) (i = 1, · · · , b(n)) are evaluated in a similar way. After the

results of many evaluations, we find that the third term of (A.22) is asymptotically

negligible for the asymptotic normality of (A.23).

From (A.22) and (A.23), we find that the dominant factor of the normalized LSIML

estimator is a linear combination of M
(1)
2,(i) (i = 1, · · · , n), which is essentially the

same as (A.14) and (A.15) in the derivation of Theorem 2. By using (A.17) and

(A.19), the condition for consistency of the LSIML estimator of V (2r) becomes

AB1n −→ 0 .(A.26)

Since the asymptotic bias from the third term of (A.22) is
√
b(n)mc × [AB1n]

2 =

AB1n × AB2n at most and other terms are of higher orders, the condition for the

asymptotic normality without bias becomes

AB2n −→ 0 .(A.27)
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(iv) In the general case of stochastic volatility, we need the stable-convergence be-

cause the limiting terms as
∫ 1
0 σ2r

s ds are stochastic. Since we are considering higher

order Brownian motions of the form (2.5) under (2.4) and the dominant terms are

martingale differences, it is possible to show the stable-convergence. Some dscussion

on the CLT and the stable-convergence will be given at the end of the Appendix

4. Proof of Theorem 5 :

We use the decomposition method for the diffusion part and jump part, which was

used in the derivation of Theorem 2 in Section 5 and Theorem 2.1 of KK (2021).

In the set Ic(i) = (t
(n)
i−1, t

(n)
i ], (i = 1, · · · , b(n)) we set zk,(i) = z

(1)
k,(i) + z

(2)
k,(i), where

z
(1)
k,(i) and z

(2)
k,(i) (k = 1, · · · , c(n)) correspond to the k−th elements of

Z
(1)
c(n),(i) = h

−1/2
c(n) Pc(n)C

−1
c(n)(Xc(n),(i) − ȳ0,(i)) and Z

(2)
c(n),(i) = h

−1/2
c(n) Pc(n)C

−1
c(n)Vc(n),(i)

(Xc(n),(i) and Vc(n),(i) are the c(n)×1 state vector and the noise vector, respectively,

in Ic(i) (i = 1, · · · , b(n))). We use the decomposition M2,(i) = M
(1)
2,(i)+[M

(2)
2,(i)+M

(12)
2,(i)

as in the derivation of Theorem 2.

Because M
(2)
2,(i)I(M2,(i) ≤ u) ≤ M

(2)
2,(i), we can apply Conditions in Theorem 2 to

M
(2)
2,(i) = (1/mc)

∑mc
k=1[z

(2)
k,(i)]

2 and then the asymptotic bias ABn in (A.17) is asymp-

totically negligible. Also we can use |M (12)
2,(i)I(M2,(i) ≤ u)| ≤ |M (12)

2,(i)|, and we find that

the effects M
(12)
2,(i) (i = 1, · · · , b(n)) are stochastically negligible.

Next, we use the representation

M
(1)
2,(i) =

1

mc

mc∑
k=1

[z
(1)
k,(i)]

2 =
c(n)∑
k,l=1

cklrk,(i)rl,(i) ,(A.28)

where rk,(i) (= X(tni (k))−X(tni (k−1))) are returns in the interval (tni (k−1), tni (k)] ∈
Ic(i) (i = 1, · · · , c(n); k = 1, · · · , c(n)).
Here we take tni (k)−tni (k−1) = 1/n, ckl = (2/mc)

∑mc
j=1 skjslj, and then approximate

rk,(i) (= X(t
(n)
k (i)))−X(t

(n)
k−1(i))) by

r
(n)
k,(i) = σ(t

(n)
k (i))∆B(t

(n)
k (i) +

∑
s∈Ik(i)

∆X(s) ,(A.29)

where ∆B(t
(n)
k (i)) = B(t

(n)
k (i))−B(t

(n)
k−1(i)) and Ik(i) = (t

(n)
k−1(i), t

(n)
k (i)].

In this approximation, by using Lipschitz condition on σs in (t
(n)
k−1(i), t

(n)
k (i)](k =
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1, · · · , c(n); i = 1, · · · , b(n)), we can evaluate

|
∫ t

(n)
k

(i)

t
(n)
k−1

(i)
σsdB − σ(t

(n)
k−1(i))∆B(t

(n)
k (i)| = Op(

1

n
√
n
)(A.30)

and hence we will ignore the differences of approximations, which are of the higher

orders.

Let

QVi =
∫ t

(n)
k

(i)

t
(n)
k−1

(i)
σ2
sds+

∑
s∈Ik(i)

(∆X(s))2(A.31)

and we decomose

M
(1)
2,(i) −QVi =

c(n)∑
k=l=1

[
(rk,(i))

2 −QVi

]
=

n∑
k=l=1

(ckk − 1)
[
(rk,(i))

2 −QVi

]

+
n∑

k ̸=l1

ckl

rk,(i)rl,(i) − ∑
s∈Ik(i)

∆X(s)
∑

s∈lk(i)
∆X(s)


+

n∑
k ̸=l1

ckl

 ∑
s∈Ik(i)

∆X(s)
∑

s∈lk(i)
∆X(s)


= (I) + (II) + (III) + (IV ) (, say) .

By using the similar evaluations (which are straight-forward, but tedious) as the

proof of Theorem 2.1 of Kunitomo and Kurisu (2021), we have

[(I) + (II) + (III) + (IV )]
p−→ 0(A.32)

under Condition (i) of Theorem 2. For (IV), because we have a finite number of

jumps, we can take the jump times 0 < i1(n) < · · · < iM < n and we can take

0 < s1 < · · · < sM < 1 such that ij(n)/n → sj (j = 1, · · · ,M). Then

√
mc

b(n)∑
i=1

c(n)∑
k ̸=l=1

clk

 ∑
s∈Ik(i)

∆X(s)
∑

s∈Il(i)
∆X(s)

 = op(
1

√
mc

)(A.33)

as mc → ∞ because

ckl =
1

2m
(

2c(n)

2c(n) + 1
)

sin 2πmc(
k+l−1
2c(n)+1

)

sin(π k+l−1
2c(n)+1

)
+

sin 2πmc(
l−k

2c(n)+1
)

sin(π l−k
2c(n)+1

)

 (k ̸= l) .
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Next, for QV (i = 1, · · · , b(n)) the first term is of the order c(n) × (1/n) = 1/b(n)

and the second term is of the order c(n). Then we find that for any positive constant

QViI(M2(i) < u) is of the order 1/b(n) when n is large. Hence, as n → ∞ for any

positive fixed constant u,

b(n)∑
i=1

[
M

(1)
2,(i)I(M2,(i) < u)

]
−
∫ 1

0
σ2
sds

p−→ 0(A.34)

and
b(n)∑
i=1

[
M

(1)
2,(i)I(M2,(i) > u)

]
−

∑
0≤s≤1

(∆Xs)
2 p−→ 0 .(A.35)

By using Lema A-3 in the Appendix, we have the consistency of the continuous part

and jump part of the quadratic variation.

(ii) For the asymptotic distribution, we consider

b(n)∑
i=1

c(n)∑
k ̸=l=1

ckl
[
rk,(i)rl,(i)

]
=

b(n)∑
i=1

c(n)∑
k ̸=l

ckl
[
σ(t

(n)
k−1(i))σ(t

(n)
l−1(i))∆B(t

(n)
k (i))∆B(t

(n)
l (i))

+σ(t
(n)
k−1(i))∆B(t

(n)
k (i))

∑
s∈Il(i)

∆X(s)

+σ(t
(n)
l−1(i)))∆B(t

(n)
l (i))

∑
s∈Ik(i)

∆X(s)

 ,

Then we need to evaluate the asymptotic behaviors of the continuous part of the

limiting disrtribution of

√
b(n)mc

b(n)∑
i=1

c(n)∑
k ̸=l

ckl
[
σ(t

(n)
k−1(i))σ(t

(n)
l−1(i))∆B(t

(n)
k (i))∆B(t

(n)
l (i))

]
,(A.36)

and the jump part of the limiting disrtribution of

√
b(n)mc

b(n)∑
i=1

c(n)∑
k ̸=l

ckl

σ(t(n)k−1(i))∆B(t
(n)
k (i))

∑
s∈Il(i)

∆X(s)(A.37)

+σ(t
(n)
l−1(i)))∆B(t

(n)
l (i))

∑
s∈Ik(i)

∆X(s)

 .
Two parts of the limiting random variables in (A.36) and (A.37) are asymptotically

independent. By using Lemma 5.6 of KSK (2018), we can derive the variances of
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the limiting distributions as (7.9) and (7.8). (See Lemma 8.3.3 of Anderson (1971)

for the Feje-kernel operation.) Finally, we apply lengthy arguments for CLT, which

are similar to the derivation of Theorem 2 in Section 2 and the proof of Theorem

2.1 in KK (2021). By using Lemma A-3 in the Appendix. We have the asymptotic

normality of (A.36) and (A.37) in the stable-convergence sense. (We have omitted

some details, but we give a discussion on the CLT and the stable convergence in the

next subsection.)

(Q.E.D.)

5. On Stable Convergence and MCLT :

We give an outline of the underlying arguments of the CLT and stable-convergence

in Theorem 2, Theorem 3, and Theorem 5. We consider the simple diffusion model of

(2.1)-(2.4) when µσ
s and ωσ

s in (2.3) and (2.4) are bounded and Lipschitz-continuous

with p = r = 1 and b(n) = 1. Then we denote c(n) = n and mc = mn as in KSK

(2018) under the conditions as mn → ∞ and mn = O(nα) (0 < α < .4). (For jump

terms, we need some additional arguments on the validity of asymptotic normality

in the sense of stable convergence.)

By using Itô’s formula, we can represent

σ4
t = σ4

0 +
∫ t

0
µσ∗
s ds+

∫ t

0
ωσ∗
s dBσ

s (0 ≤ s ≤ t ≤ 1) ,(A.38)

where µσ∗
s and ωσ∗

s are the drift and diffusion coefficients and Bσ
s is Brownian motion,

which may be correlated with Bs.

For 0 = tn0 < tn1 < · · · < tnn = 1 we write

V (4) = σ4
0 +

n∑
j=1

[
∫ tnj

tnj−1

(
∫ t

0
µσ∗
s ds)dt+

∫ tnj

tnj−1

(
∫ t

0
ωσ∗
s dBσ

s )dt] .(A.39)

Then, V (4) is a diffusion process and the last term of V (4) becomes the sum of

V n
i =

∫ tni

tni−1

(
∫ 1

s
dt)ωσ∗

s dBσ
s (i = 1, · · · , n).(A.40)

By using the standard arguments, we can show that the effects of drift terms are

negligible as n → ∞. By using the similar arguments in Chapter 5 of KSK (2018),
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the leading martingale term of the SIML estimator is

Un =
n∑

j=2

Un
j ,(A.41)

where Un
j = [

∑j−1
i=1 2

√
mncijri]rj, rj = X(tnj )−X(tnj−1), cij = (2/mn)

∑mn
k=1 skiskj and

sij = cos
[

2π
2c(n)+1

(i− 1
2
)(j − 1

2
)
]
(i, j = 1, · · · , n).

Then, we can evaluate the conditional expectations as

W n
j = E[Un

j V
n
j |Fj−1,n] = [

j−1∑
i=1

2
√
mcijri]

∫ tnj

tnj−1

σs(1− s)ωσ∗
s ds ,(A.42)

where Fj−1,n is the σ−field generated at tnj−1 (j = 1, · · · , n). We notice that for

any j (j = 1, · · · , n)
∫ tnj
tnj−1

σs(1− s)ωσ∗
s ds = Op(n

−1), which can be approximated as

[σ(tnj−1)(1− tnj−1)ω
σ∗(tnj−1)][B(tnj )−B(tnj−1)] with the error order being O(n−2). By

using (2.4) with t = tnj−1 for each j, σ(tnj−1) can be further represented as the sum

of drift terms and Brownian motion parts given Fi−1,n for tnj−1 > tni−1 (j = 1, · · · , n).
By re-writing the sum of conditional expectations as

n∑
j=2

W n
j =

n−1∑
i=1

[
n∑

j=i+1

√
mncij

∫ tnj

tnj−1

σs(1− s)ωσ∗
s ds]ri ,(A.43)

it is possible to show that as n −→ ∞
n∑

j=2

W n
j

p−→ 0 .(A.44)

In order to show this convergence, we use several facts that the function σs(1−s)ωσ∗
s

is bounded and Lipschitz-continuous, σs is a Brownian semi-martingale with (2.4) for

any s, and rnj =
∫ tnj
tnj−1

σsdBs can be approximated by r∗nj = σ(tnj−1)(B(tnj )−B(tnj−1))

with errors order being O(n−2). We also have the representation for i ̸= j

cij =
1

2mn

[
sin π

2n+1
(i+ j − 1)mn

sin π
2n+1

(i+ j − 1)
+

sin π
2n+1

(i− j)mn

sin π
2n+1

(i− j)
](A.45)

(see Section 3.2 and Lemma 5.2 of KSK (2018)).

By using the Fejé-kernel as the proof of Theorem 5 for [
√
mncij]

2, we can derive the

asymptotic variances of the normalized random variables. (See Lemma 5.6 and the
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derivation of the asymptotic variance of the SIML estimator in KSK (2018). It may

be straight-forward to find the (Lyapunov-type) condition

n∑
j=2

E[(Un
j )

4] −→ 0 ,(A.46)

as n → ∞.

By using the convergence of each term and applying Theorem 2.2.15 of Jacod and

Protter (2012) to the martingale parts, we have the stable convergence for a se-

quence of random variables. (The derivation of the CLT for the main term in the

normalized SIML estimator Un, which has been given in Chapter 5 of KSK (2018).)

We write the normalized SIML estimator in the form of Un =
∑n

j=2 U
n
j and it

is asymptotically uncorrelated with V (4) (=
∫ 1
0 σ4

sds) (and higher order Brownian

functionals). Then, we have the stable convergence of the martingale Un to the lim-

iting normal random variable given
∫ 1
0 [σx(s)]

4ds and Un/
√∫ 1

0 [σx(s)]4ds
w−→ N(0, 1)

(the standard normal distribution) in the standard weak-convergence.

As a typical example. we have that as n −→ ∞

√
mn

[
V̂ (2)− V (2)

] L−s→ N [0,W ] ,(A.47)

where

W = 2
∫ 1

0
σ4
sds .(A.48)

It is tedious, but straight-forward to extend the above arguments to more general

cases. (See Jacod ad Protter (2012), and Hausler and Luschgy (2015) for the details

of stable convergence.)

Finally, in Theorem 5 for the jump-diffusion model, we need to show that the

CLT can be applicable to (A.36) and (A.37) in the stable-converge sense. As (A.39)-

(A.41) in the diffusion model, it is possible to re-write it as the sum of martingale

different sequences and we can use the similar arguments. It is because both of

(A.36) and (A.37) are linear combinations of the underlying Brownian Motions.
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