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GRAPH-THEORETIC ALBANESE MAPS REVISITED

MOTOKO KOTANI AND TOSHIKAZU SUNADA

1. Introduction

In [6], [5], we introduced the notion of Albanese maps in the graph-
theoretic context (see also [7], [8]). An Albanese map is a harmonic
map of a finite graph as a 1-dimensional singular space into a flat torus
which, together with the flat metric, is characterized by a minimizing
property for certain energy functional, and is related to asymptotic
behaviors of random walks on crystal lattices. On the other hand, the
notion of Abel-Jacobi maps was brought in graph theory by R. Bacher,
P. De La Harpe, and T. Nagnibeda [1] (see also [3]). A graph version
of Abel-Jacobi maps is a certain class of harmonic functions defined on
vertices with values in finite abelian groups. The aim of this note is to
give a relationship between these notions.

2. Albanese maps

We first explain Albanese maps in a bit different way from the orig-
inal one given in [8].

Let X = (V,E) be a finite graph with a set of vertices V and a set
of oriented edges E. By o(e) (resp. t(e)) we denote the origin (resp.
terminus) of e ∈ E. The symbol e stands for the inverse edge of e.
Define the bilinear form on C1(X, Z), the group of 1-chains on X, by

(1) 〈e, e′〉 =





1 (e = e′)
−1 (e = e′)
0 (otherwise),

where e, e′ ∈ E, oriented edges in X. This extends to an inner prod-
uct on C1(X, R), and is restricted to the homology group H1(X, R) =
Ker ∂, where ∂ : C1(X) −→ C0(X) is the boundary map. The Albanese
torus A(X) is defined to be the flat torus H1(X, R)/H1(X, Z) with the
flat metric induced from this inner product.

The Albanese map Φal : X −→ A(X) is defined as follows. Let P :
C1(X, R) −→ H1(X0, R) be the orthogonal projection. Fix a reference
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point x0 ∈ V , and let c = (e1, · · · , en) be a path with o(c) = x0, t(c) =
x. Then put Φal(x0) = 0 and

Φal(x) = P (e1 + · · ·+ en) = P (e1) + · · ·+ P (en) (mod H1(X,Z)).

If c′ = (e′1, · · · , e′m) be another path joining x0 and x, then

e1 + · · ·+ en − (e′1 + · · ·+ e′m) ∈ H1(X,Z),

so that

P (e1 + · · ·+ en) = P (e′1) + · · ·+ P (e′m) (mod H1(X,Z)).

Hence Φal as a map from V into A(X) is well-defined. We extend Φal to
edges as a piecewise linear maps. The map Φal : X −→ A(X) obtained
in this way is a harmonic map in the sense that

∆Φal(x) =
∑
e∈Ex

[
Φal(te)− Φal(oe)

]
= 0,

where Ex = {e ∈ E; o(e) = x}. In fact, for any closed path c =
(e1, · · · , en) in X, ∑

e∈Ex

〈e, c〉 = 0

since, if t(ei) = o(ei+1) = x, then 〈ei, c〉+ 〈ei+1, c〉 = 0. Hence
∑
e∈Ex

e ∈ H1(X,R)⊥,

and ∆Φal(x) = P
( ∑

e∈Ex
e
)

= 0.

3. Abel-Jacobi maps into finite abelian groups

There are several definitions of Abel-Jacobi maps. We take up a
definiton which resembles the classical one in algebraic geometry.

Define the group of divisors of degree zero by

Div0(X) = {
∑
x∈V

axx ∈ C0(X,Z)|
∑

x

ax = 0}

and the group of principal divisors by

Prin(X) = ∂∂∗
(
C0(X,Z)

)

where ∂∗ is the adjoint of ∂ with respect to the inner products on
C0(X,R)

x · y =

{
1 (x = y)

0 (x 6= y)
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and the one on C1(X,R) defined in the previous section. The Picard
group is defined as

Pic(X) = Div0(X)/Prin(X).

The order |Pic(X)| coincides with κ(X), the number of spanning trees
in X. The discrete Abel-Jacobi map Φaj : V −→ Pic(X) is defined by

Φaj(x) = [x− x0].

4. Discrete Albanese tori and Abel’s theorem

Let us now establish a relationship between Albanese maps and dis-
crete Abel-Jacobi maps.

The homology group H1(X,Z) with coefficients in Z is an integral
lattice in H1(X,R) with respect to the inner product (1). Denote by
H1(X,Z)# the dual lattice of H1(X,Z) in H1(X,R). Since the lattice
H1(X,Z) is integral, we have H1(X,Z) ⊂ H1(X,Z)#. The discrete
Albanese torus A(X) is defined to be H1(X,Z)#/H1(X,Z) which is
identified with a finite subgroup of A(X).

For any e ∈ E and α ∈ H1(X,Z), we find 〈P (e), α〉 = 〈e, P (α)〉 =
〈e, α〉 ∈ Z, and hence P (e) ∈ H1(X,Z)#. Thus we have

Lemma 4.1. Let Φal be the Albanese map of X into A(X). Then
Φ(V ) ⊂ A(X).

We shall call Φal|V : V −→ A(X) the discrete Albanese map.
In order to prove that Φab(V ) generates A(X), take a spanning tree

T of X, and let e1, . . . , eb (b = rank H1(X,Z)) be all edges not in T .
Then P (e1), . . . , P (eb) constitute a Z-basis of H1(X,Z)# since, if we
take circuits c1, . . . , cb in X such that ci contains ei, then {c1, . . . , cb}
is a Z-basis of H1(X,Z), and 〈ci, P (ej)〉 = 〈P (ci), ej〉 = 〈ci, ej〉 = δij.

Theorem 4.1. (A discrete version of Abel’s theorem) The correspon-
dence x ∈ V 7→ Φal(x) ∈ A(X) induces an isomorphism ϕ of Pic(X)
onto A(X) such that ϕ ◦ Φaj = Φal.

Proof. This is actually a consequence of the universality of Abel-
Jacobi maps (cf. [2]). For the completeness, we will give a proof.

Define the homomorphism ϕ : Div0(X) −→ A(X) by setting ϕ(x −
x0) = Φal(x) (note that {x−x0; x 6= x0 ∈ V } is a Z-basis of Div0(X)).
On the other hand, an easy computation leads us to

∂∂∗
( ∑

x∈V

axx
)

= −
∑
x∈V

ax

∑
e∈Ex

(
t(e)− o(e)

)
,



4 MOTOKO KOTANI AND TOSHIKAZU SUNADA

and hence

ϕ
(
∂∂∗

( ∑
x∈V

axx
))

= −
∑
x∈V

ax

∑
e∈Ex

(
Φal(t(e))− Φal(o(e))

)
= 0.

which implies that ϕ induces a homomorphism ϕ : Pic(X) −→ A(X).
From what we have seen above, ϕ is surjective.

To check that ϕ is an isomorphism, it is enough to see that |A(X)| =
κ(X). For this, we take a look at the following exact sequence

0 → A(X) → A(X) → H1(X.R)/H1(X,Z)# → 0.

We therefore have the following identity for the order of A(X).

|A(X)| = vol(A(X))/vol(H1(X.R)/H1(X,Z)#).

We also have

vol(H1(X.R)/H1(X,Z)#) = vol(A(X))−1,

and hence we obtain

|A(X)| = vol(A(X))2.

It is known ([5]) that vol(A(X))2 coincides with κ(X), and hence
|A(X)| = κ(X).

A non-degenerate symmetric bilinear form on A(X) with values in
Q/Z is induced from the inner product on H1(X,R). Thinking of
this form as an analogue of “polarization”, one may ask whether the
Torelli type theorem holds in the discrete realm. More specifically, one
asks whether two regular graphs X1 and X2 with the same degree are
isomorphic when there exists a group isomorphism between A(X1) and
A(X2) preserving polarizations1.
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