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Time periodic Navier-Stokes flow with nonhomogeneous
boundary condition

Hiroko MORIMOTO

Abstract. It is known that the Navier-Stokes initial boundary value problem
for non-homogeneous boundary condition has a unique local solution (e.g., O.
A. Ladyzhenskaya[5]). Nevertheless, it seems to the author that there is no
results for the periodic problem with non-homogeneous boundary condition
satisfying the general outflow condition. We consider the periodic problem
for the Navier-Stokes equations in a two dimensional bounded domain. In
case of a symmetric domain, we obtain a periodic weak solution for symmetric
boundary values satisfying only the general outflow condition.
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1 Introduction

Let Ω be a bounded domain of R2. The boudary ∂Ω consists of N +1 smooth
connected components Γ0∪Γ1∪· · ·∪ΓN , that is, simple closed curves, where
N ≥ 1, Ω being inside of Γ0. We suppose that Ω is symmetric with respect
to the x2-axis and every Γi (0 ≤ i ≤ N) intersects the x2-axis. We call this
assumption (SYM). Let Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

We consider the periodic problem for the Navier-Stokes equations.




ut = ν∆u − (u · ∇)u −∇p + f in Q
div u = 0 in Q

u = β on Σ
u(x, 0) = u(x, T ) for x ∈ Ω

(1.1)

where the fluid velosity u = u(x, t) and the pressure p = p(x, t) are unknown,
the external force f = f(x, t) and the boundary value β = β(x, t) are given.
The function β should satisfy the outflow condition:

∫

∂Ω

β · ndσ = 0(1.2)
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which we call the general outflow condition (GOC). Here n is an outward
unit normal vector to ∂Ω. The following condition, which is stronger than
(GOC), is called the stringent outflow condition (SOC).∫

Γk

β · ndσ = 0 (∀k = 0, 1, 2, · · · , N).(1.3)

(GOC) and (SOC) are equivalent if the boundary ∂Ω has only one connected
component.

We suppose that β depends only on x and not on t. Let b = b(x) be a
divergence free extension of β = β(x).{

div b = 0 in Ω
b = β on ∂Ω.

(1.4)

A result for the β depending on t and x will be in the forthcoming paper
Kobayasi[4].

Notation
Before stating our result, we introduce some function spaces.
C∞

0 (Ω) and L2(Ω) are as usual. The inner product and the norm of L2(Ω)
are denoted by (·, ·) and ‖ · ‖. H1(Ω) is a usual Sobolev space.

C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω)× C∞
0 (Ω); divu = 0 in Ω}

H = H(Ω) is the closure of C∞
0,σ(Ω) in L2(Ω)× L2(Ω) and

H1
σ(Ω) = {u ∈ H1(Ω)×H1(Ω); divu = 0 in Ω}

V = V (Ω) is the closure of C∞
0,σ(Ω) in H1(Ω)×H1(Ω). Since Ω is bounded,

we use the Dirichlet norm ‖∇u‖ for u ∈ V , which is equivalent to the H1

norm.
V ′ is the dual space of V .
We use the notation

B(u, v, w) = ((u · ∇)v, w) =

∫

Ω

∑
i,j

ui
∂vj

∂xi

wjdx.

For a vector function defined in Ω, ϕ(x) = ϕ(x1, x2), we put

ϕs(x1, x2) =
1

2
(ϕ1(x1, x2)− ϕ1(−x1, x2), ϕ2(x1, x2) + ϕ2(−x1, x2))

ϕa(x1, x2) =
1

2
(ϕ1(x1, x2) + ϕ1(−x1, x2), ϕ2(x1, x2)− ϕ2(−x1, x2)).

ϕs is called the symmetric part of ϕ and ϕa antisymmetric part of ϕ. It holds

ϕ = ϕs + ϕa.
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Definition 1.1 A vector valued function u(x1, x2) = (u1(x1, x2), u2(x1, x2))
definde in Ω is called symmetric with respect to the x2-axis if u = us , that
is,

u1(−x1, x2) = −u1(x1, x2), u2(−x1, x2) = u2(x1, x2).

holds true. u is called antisymmetric with respect to the x2-axis if u = ua,
that is,

u1(−x1, x2) = u1(x1, x2), u2(−x1, x2) = −u2(x1, x2).

holds true.

Hs = Hs(Ω) = {u ∈ H(Ω); u = us}

V s = V s(Ω) = {u ∈ V (Ω); u = us}

It is to be remarked that the trace to the axis of symmetry of the second
component of u ∈ V s(Ω) vanishes, that is, u(x) = (0, u2(0, x2)) for x =
(0, x2) ∈ Ω. See Fujita[2] for details.

Our result is as follows.

Theorem 1.1 Let Ω satisfy the assumption (SYM), f ∈ L2(0, T ; (V s)′) and
β = β(x) be smooth, symmetric and satisfy (GOC). Then, there exists u such
that u− b ∈ L2(0, T ; V s) ∩ L∞(0, T ; Hs) and

{
< u′, ϕ > +ν(∇u,∇ϕ) + B(u, u, ϕ) =< f, ϕ > (∀ϕ ∈ V s)
u(0) = u(T )

(1.5)

hold true. Here b is a solenoidal symmetric extension of β, and < ·, · >
means the duality between (V s)′ and V s.

Remark 1.1 For the Navier-Stokes initial-boundary value problem, the solv-
ability is well known. It is due to the possibility to use Gronwall’s lemma.
See, e.g., O. A. Ladyzhenskaya [5].

However, only partial results are known for the existence of solution to the
stationary problem under (GOC). In 1984, Ch.Amick[1] showed the existence
of symmetric solution for 2-dimensinal case assuming the symmetry for the
domain and the data. In 1997, H.Fujita[2] obtained a Leray type inequality
for 2-dimesional symmetric functions and proved the existence of symmetric
solutions for the stationary problem.
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It is not known the existence of periodic Navier-Stokes flow for a general
domain with the boundary value satisfying only (GOC). If the boundary value
satisfies (SOC) or the integrals | ∫

Γk
β · ndσ|(k = 0, 1, · · · , N) are small, the

theorem holds. Our result admits the large | ∫
Γk

β ·ndσ|(k = 0, 1, · · · , N) with

(GOC).
For the case β = 0 there are many results. See Prodi[9] (n = 2), Kaniel-

Shinbrot[3] (n = 3), Takeshita[11] (n = 2). For n = 2, 3, Yudovic[12] treated
β 6= 0 with (SOC). Serrin[10] treated the case for n = 3 with small Reynolds
number. See also Morimoto[8].

2 Symmetric bases

Let Ω be a 2-dimensional bounded domain, symmetric with respect to the
x2-axis. We consider the weak formulation of the Stokes boundary value
problem in Ω. Let f ∈ Hs(Ω). Then, by Riesz’ theorem, we can show that
there exists one and only one u ∈ V s(Ω) satisfying

(∇u,∇v) = (f, v) (∀v ∈ V s(Ω)).

Define the operator T : Hs(Ω) → Hs(Ω) as Tf = u. Then T is a bounded
linear operator from Hs(Ω) into Hs(Ω). T is symmetric, therefore it is self-
adjoint. T is also injective. Using Rellich’s theorem, we find T is a compact
operator defined on Hs(Ω). By the general theory for compact operator, the
non-zero spectrum of T is eigenvalues µj and corresponding eigenfunctions fj

are complete in Hs(Ω). Furthermore, all the eigenvalues are positive: µj > 0.
Put λj = µ−1

j , wj = Tfj. After normalizing {wj}j and using the same
symbol, we find {wj}j is a complete ortho-normal system in Hs(Ω) and
{wj/

√
λj}j is a complete ortho-normal system in V s(Ω).

3 Preliminaries

Let Ω ⊂ R2.

Lemma 3.1 Let u, v, w ∈ H1(Ω)×H1(Ω), div u = 0 and one of the trace of
u, v, w to ∂Ω vanishes. Then

B(u, v, w) = −B(u,w, v).
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Lemma 3.2 The trilinear form B satisfies

(i) |B(u, v, u)| ≤ ‖u‖2
4‖∇v‖ (u ∈ L4(Ω), v ∈ V )

(ii) |B(u, v, w)| ≤ C1‖∇u‖‖∇v‖‖∇w‖ (u, v, w ∈ V )

(iii) |B(u, v, u)| ≤ C2‖∇u‖2‖v‖4 (u ∈ V, v ∈ H1)

where the constants C1, C2 depend on Ω.

Lemma 3.3 (Poincaré’s inequality)

‖u‖ ≤ C3‖∇u‖ (u ∈ V )

where C3 is a constant depending on Ω.

These three Lemmas hold true even for Ω ⊂ R3.

Lemma 3.4 Let Ω be a bounded domain of R2. Then there exists an abso-
lute constant c0 such that

‖v‖4 ≤ c0‖∇v‖1/2
2 ‖v‖1/2

2 (∀v ∈ H1
0 (Ω)).

Lemma 3.5 If v ∈ L2(0, T : V ) ∩ L∞(0, T : H), then,

(v · ∇)v ∈ L2(0, T : V ′).

Lemma 3.6 Suppose f ∈ L2(0, T : V ′) and v ∈ L2(0, T : V ) ∩ L∞(0, T : H)
and u = v + b satisfies (1.5). Then v′ ∈ L2(0, T : V ′). Furthermore, v is
continuous a.e. in [0, T ] taking value in V ′.

The next lemma is essential for the proof of our result.

Lemma 3.7 ([2], [7]) Let Ω satisfy (SY M) and β be a symmetric smooth
function defined on ∂Ω satisfying (GOC). Then, for every ε > 0, there
exists a solenoidal symmetric extension b of β such that

|B(v, v, b)| ≤ ε‖∇v‖2 (∀v ∈ V s).

Remark 3.1 It is well known that for the general bounded domain in Rn(n =
2, 3), the similar inequality holds for ∀v ∈ V if β satisfy (SOC).

Remark 3.2 If u = v + b satisfies (1.5), then v satisfies the following.

< v′, ϕ > +ν(∇v,∇ϕ) + B(v, v, ϕ) + B(b, v, ϕ) + B(v, b, ϕ)(3.1)

=< f, ϕ > −ν(∇b,∇ϕ)−B(b, b, ϕ) (∀ϕ ∈ V s)

5



4 Proof of Theorem

Let {wj}j be as in Section 2, b = b(x) a symmetric solenoidal extension to
Ω of the boundary value β obtained in Lemma 3.7. First, we consider the
following finite dimensional problem:

Find a solution

vm(t) =
m∑

k=1

gkm(t)wk

to the initial value problem of ordinary differential equation:

(v′m, wj) + ν(∇vm,∇wj) + B(vm, vm, wj) + B(vm, b, wj)(4.1)

+B(b, vm, wj) =< f,wj > −ν(∇b,∇wj)−B(b, b, wj) (1 ≤ j ≤ m)

vm(0) = v0 ∈ [w1, w2, · · · , wm].

It is immediate to see that there exists a positive tm such that a solution
vm(t) exists for t ∈ [0, tm]. Let us show tm = T . Multiply (4.1) by gjm(t) and
sum up with respect to j. Using Lemma 3.1, we find

1

2

d

dt
‖vm(t)‖2 + ν‖∇vm(t)‖2 + B(vm, b, vm)(4.2)

=< f, vm > −ν(∇b,∇vm)−B(b, b, vm).

Let ε > 0 arbitrary. By Lemma 3.7, we have

|B(vm, b, vm)| = | −B(vm, vm, b)| ≤ ε‖∇vm‖2.

Estimate the right side of (4.2) using Lemma 3.2 and Hölder’s inequality and
we obtain

| < f, vm > −ν(∇b,∇vm)−B(b, b, vm)| ≤ (‖f‖V ′ + ν‖∇b‖2 + ‖b‖2
4)‖∇vm‖

≤ ε‖∇vm‖2 + Cε(‖f‖2
V ′ + ν2‖∇b‖2

2 + ‖b‖4
4)

where the constant Cε depends only on ε. Choosing ε = ν/2, we obtain

d

dt
‖vm(t)‖2 + ν‖∇vm(t)‖2 ≤ F (t)(4.3)
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where
F (t) = 2Cε(‖f(t)‖2

V ′ + ν2‖∇b‖2
2 + ‖b‖4

4).

F (t) is an integrable function independent of m. Integrating the both sides,
we have

‖vm(t)‖2 + ν

∫ t

0

‖∇vm(s)‖2ds(4.4)

≤ ‖v0‖2 +

∫ t

0

F (s)ds ≤ ‖v0‖2 +

∫ T

0

F (s)ds.

The right hand side is a constant independing of m. Therefore, we can take
tm = T .

Using Lemma 3.3 for (4.3), we obtain the following inequality with some
constant c1 > 0 independent of m:

d

dt
‖vm(t)‖2 + c1‖vm(t)‖2 ≤ F (t).(4.5)

Integration of this inequality yields:

‖vm(t)‖2 ≤ ‖v0‖2e−c1t + e−c1t

∫ t

0

ec1sF (s)ds.(4.6)

Now, we consider the finite dimensional periodic problem:

(v′m, wj) + ν(∇vm,∇wj) + B(vm, vm, wj) + B(vm, b, wj)(4.7)

+B(b, vm, wj) =< f,wj > −ν(∇b,∇wj)−B(b, b, wj) (1 ≤ j ≤ m)

vm(0) = vm(T ).

According to the previous investigation, there exists a unique solution vm(t)
for the initial value problem with the initial condition

vm(0) = v0 ∈ [w1, w2, · · · , wm].

Define the mapping Tm as

Tm : [w1, w2, · · · , wm] → [w1, w2, · · · , wm], Tmv0 = vm(T ).

Then Tm is a continuous mapping from [w1, w2, · · · , wm] to [w1, w2, · · · , wm].
Put Bm(R) = {u ∈ [w1, w2, · · · , wm] : ‖u‖ ≤ R}.
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Now let us show that there exists a positive number R independent of m
such that Tm(Bm(R)) ⊂ Bm(R). Choose R as

R2 =
e−c1T

∫ T

0
ec1sF (s)ds

1− e−c1T
.

Then R is independent of m, and if ‖v0‖ ≤ R, we have

‖v0‖2 +

∫ T

0

ec1sF (s)ds ≤ R2 + R2ec1T (1− e−c1T ) = R2ec1T .

Therefore, by (4.6), we obtain

‖Tmv0‖2 = ‖vm(T )‖2 ≤ e−c1T (‖v0‖2 +

∫ T

0

ec1sF (s)ds) ≤ R2

and Tm(Bm(R)) ⊂ Bm(R) holds. By Brouwer’s fixed point theorem, there
exists v0 ∈ [w1, · · · , wm] such that Tm(v0) = v0. Let vm be the solution with
the initial condition vm(0) = v0. Then vm is a periodic solution for (4.7).
Note that ‖vm(0)‖ ≤ R for all m. From the estimate (4.4), it follows

{vm}m is a bounded sequence in L∞(0, T : Hs).(4.8)

Let t = T in (4.4). Then we assure

{vm}m is a bounded sequence in L2(0, T : V s).(4.9)

Since {wj}j are chosen as the eigenfuctions of the Stokes operator, we find,
using Lemma 3.4, Lemma 3.5, Lemma 3.6, that

{v′m}m is a bounded sequence in L2(0, T : (V s)′).(4.10)

See J. L. Lions[6] for details. We can choose a subsequence which converges
to a suitable solution to the periodic problem (1.5).

5 Uniqueness

Let ui (i = 1, 2) be solutions to the periodic problem (1.5) for the boundary
condition u = β and the external force f , that is,

ui − bi ∈ L2(0, T ; V s) ∩ L∞(0, T ; Hs)
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{
< u′i, ϕ > +ν(∇ui,∇ϕ) + B(ui, ui, ϕ) =< f, ϕ > (∀ϕ ∈ V s)
ui(0) = ui(T )

where bi is a solenoidal symmetric extension of β. Put u = u1 − u2. Then
u ∈ V s and

< u′, ϕ > +ν(∇u,∇ϕ) + B(u, u1, ϕ) + B(u2, u, ϕ) = 0 (ϕ ∈ V s).

Taking ϕ = u, we have

< u′, u > +ν(∇u,∇u) + B(u, u1, u) = 0.

By Lemma 3.2 (iii), it holds

|B(u, u1, u)| ≤ C2‖∇u‖2‖u1‖4,

therefore, we obtain

1

2

d

dt
‖u‖2 + (ν − C2‖u1‖4)‖∇u‖2 ≤ 0.

Put U(t) := ν−C2‖u1‖4. If u1 is so small that U(t) > 0 holds a.e. t ∈ [0, T ],
then, using Poincaré’s inequality, we have

1

2

d

dt
‖u‖2 + C−2

3 U(t)‖u‖2 ≤ 0

Integrating this inequality, we obtain the estimate

‖u(t)‖2 exp{2C−2
3

∫ t

0

U(s)ds} ≤ ‖u(0)‖2 (∀t ∈ [0, T ]).(5.1)

Put t = T . Since u(0) = u(T ) and exp{2C−2
3

∫ T

0
U(s)ds} > 1, we have

‖u(0)‖ = 0. Therefore, using again (5.1), we have u(t) = 0 for 0 ≤ t ≤ T .

Theorem 5.1 If the periodic solution is small, then it is unique.

Remark 5.1 We do not know if the small periodic solution exists or not.
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