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QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS

SHIRO GOTO, SATORU KIMURA, TRAN THI PHUONG, AND HOANG LE TRUONG

ABSTRACT. Goto numbers g(Q) = max{q € Z | Q : m?is integral over Q} for certain
parameter ideals ) in a Noetherian local ring (A, m) with Gorenstein associated graded
ring G(m) = @,,~, m"/m"*! are explored. As an application, the structure of quasi-
socle ideals T = @ : m9 (¢ > 1) in a one-dimensional local complete intersection and
the question of when the graded rings G(I) = €D,,5,I"/I""" are Cohen-Macaulay
are studied in the case where the ideals I are integral over Q.
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1. INTRODUCTION AND THE MAIN RESULTS

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let
@ be a parameter ideal in A and let ¢ > 0 be an integer. We put I = @ : m? and
refer to those ideals as quasi-socle ideals in A. In this paper we are interested in the

following question about quasi-socle ideals I, which are also the main subject of the
researches [GMT, GKM, GKMP].

Question 1.1.
(1) Find the conditions under which I C @Q, where @ stands for the integral closure of
Q.

(2) When I C @Q, estimate or describe the reduction number

ro(I) =min {n € Z | I""" = QI"}

Key words and phrases: Quasi-socle ideal, Cohen-Macaulay ring, associated graded ring, Rees alge-
bra, Fiber cone, integral closure, multiplicity, Goto number.
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of I with respect to () in terms of some invariants of () or A.
(3) Clarify what kind of ring-theoretic properties of the graded rings
R(I) =1, 1) =@ /r', and F(I) = 1" /mI"
n>0 n>0 n>0

associated to the ideal I enjoy.

The present research is a continuation of [GMT, GKM, GKMP] and aims mainly at
the analysis of the case where A is a complete intersection with dim A = 1. Following

W. Heinzer and 1. Swanson [HS], for each parameter ideal @) in a Noetherian local ring
(A, m) we define
g(Q) =max{g € Z | Q : m? C Q}

and call it the Goto number of (). In the present paper we are also interested in
computing Goto numbers g(Q)) of parameter ideals. In [HS| one finds, among many
interesting results, that if the base local ring (A, m) has dimension one, then there exists
an integer k£ > 0 such that the Goto number g(@)) is constant for every parameter ideal
@ contained in m*. We will show that this is no more true, unless dim A = 1, explicitly
computing Goto numbers g(Q) for certain parameter ideals ) in a Noetherian local
ring (A, m) with Gorenstein associated graded ring G(m) = @, ., m"/m"*'. However,
before entering details, let us briefly explain the reasons why we are interested in Goto
numbers and quasi-socle ideals as well.

The study of socle ideals ) : m dates back to the research of L. Burch [B], where
she explored certain socle ideals of finite projective dimension and gave a beautiful
characterization of regular local rings (cf. [GH, Theorem 1.1]). More recently, A. Corso
and C. Polini [CP1, CP2] studied, with interaction to the linkage theory of ideals,
the socle ideals I = @) : m of parameter ideals ) in a Cohen-Macaulay local ring
(A, m) and showed that I? = QI, once A is not a regular local ring. Consequently the
associated graded ring G(I) = @, I"/I""" and the fiber cone F(I) = @, ["/mI"
are Cohen-Macaulay and so is the ring R(I) = €, 5, [", if dim A > 2. The first author
and H. Sakurai [GSal, GSa2, GSa3] explored also the case where the base ring is not
necessarily Cohen-Macaulay but Buchsbaum, and showed that the equality I? = QI

(here I = @ : m) holds true for numerous parameter ideals ) in a given Buchsbaum
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local ring (A, m), whence G([) is a Buchsbaum ring, provided that dim A > 2 or that
dim A = 1 but the multiplicity e(A) of A is not less than 2. Thus socle ideals @ : m
still enjoy very good properties even in the case where the base local rings are not
Cohen-Macaulay.

However a more important fact is the following. If J is an equimultiple Cohen-
Macaulay ideal of reduction number one in a Cohen-Macaulay local ring, the associated
graded ring G(J) = @,,5, J"/J"*" of J is a Cohen-Macaulay ring and, so is the Rees
algebra R(J) = €D,5oJ" of J, provided htyJ > 2. One knows the number and
degrees of defining equations of R(.J) also, which makes the process of desingularization
of Spec A along the subscheme V(J) fairly explicit to understand. This observation
motivated the ingenious research of C. Polini and B. Ulrich [PU], where they posed,

among many important results, the following conjecture.

Conjecture 1.2 ([PU]). Let (A,m) be a Cohen-Macaulay local ring with dim A > 2.
Assume that dim A > 3 when A is reqular. Let ¢ > 2 be an integer and let () be a
parameter ideal in A such that () C m?. Then

@ :m? Cmi
This conjecture was settled by H.-J. Wang [Wan]|, whose theorem says:

Theorem 1.3 ([Wan)). Let (A, m) be a Cohen-Macaulay local ring with d = dim A > 2.
Let ¢ > 1 be an integer and Q) a parameter ideal in A. Assume that Q C m? and put
I =0Q:mi Then

ICm? mil=mQ, and I?=QI,
provided that A is not reqular if d > 2 and that ¢ > 2 if d > 3.

The research of the first author, N. Matsuoka, and R. Takahashi [GMT] reported a
different approach to the Polini-Ulrich conjecture. They proved the following.

Theorem 1.4 ([GMT]). Let (A,m) be a Gorenstein local ring with d = dim A > 0
and e(A) > 3, where e(A) denotes the multiplicity of A. Let Q) be a parameter ideal
in A and put I = Q : w*. Then m*] = m*Q, I’ = QI?, and G(I) = @, ["/I""!
is a Cohen-Macaulay ring, so that R(I) = @, >, " is also a Cohen-Macaulay ring,
provided d > 3.



The researches [Wan] and [GMT] are performed independently and their methods
of proof are totally different from each other’s. The technique of [GMT]| can not go
beyond the restrictions that A is a Gorenstein ring, ¢ = 2, and e(A) > 3. However,
despite these restrictions, the result [GMT, Theorem 1.1] holds true even in the case
where dim A = 1, while Wang’s result says nothing about the case where dim A = 1. As
is suggested in [GMT], the one-dimensional case is substantially different from higher-
dimensional cases and more complicated to control. This observation has led S. Goto,
S. Kimura, N. Matsuoka, and T. T. Phuong to the researches [GKM] (resp. [GKMP]),
where they have explored quasi-socle ideals in Gorenstein numerical semigroup rings
over fields (resp. the case where G(m) = @, ., m"/m"*! is a Gorenstein ring and
Q= (7", 252, -+ ,x3") (a; > 1) are diagonal parameter ideals in A, that is 21, z2, - -+ , 24
is a system of parameters in A which generates a reduction of the maximal ideal m). The
present research is a continuation of [GMT, GKM, GKMP] and the main purpose is to
go beyond the restriction in [GKMP] that the parameter ideals @ = (z{*, 252, -, z5*)
are diagonal and the assumption in [GKM] that the parameter ideals are monomial.

To state the main results of the present paper, let us fix some notation. Let A denote
a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let {a;}1<;<q be
positive integers and let {z;}1<;<4 be elements of A with z; € m® for each 1 < i < d
such that the initial forms {z; mod m®*!},.;-; constitute a homogeneous system of
parameters in G(m). Hence m* = 25:1 r;mf% for £>> 0, so that Q = (v1, 29, -+ ,T4)
is a parameter ideal in A. Let ¢ € Z, [ = Q : m9,

d
p=a(G(m/Q)) = a(G(m) + Y, and £=pt+1—g

i=1
where a(x) denote the a-invariants of graded rings ([GW, (3.1.4)]). We put

(i=inf{neZ|m"CI} and ly=sup{n € Z |l C Q+m"}.
With this notation our main result is sated as follows.

Theorem 1.5. Suppose that G(m) = @, m"/m"" is a Cohen-Macaulay ring and

consider the following four conditions:
(1) 61 > a; for all1 <i<d.
(2) ICQ.



(3) m4I = m?Q).

(4) by > a; for all 1 <i<d.

Then one has the implications (4) = (3) = (2) = (1). If G(m) is a Gorenstein ring,
then one has the equality I = Q +m*, so that {1 < € < ly, whence conditions (1), (2),
(3), and (4) are equivalent to the following:

(5) £ >a; forall1 <i<d.

Consequently, the Goto number g(Q) of Q is given by the formula

g(Q) =

—max{aq; | 1 <i<d},

a(G(m)) + > a;+1

1=1

provided G(m) is a Gorenstein ring; in particular g(Q) = a(G(m)) + 1, if d = 1.

Let R = k[R;] be a homogeneous ring over a filed k£ with d = dim R > 0. We choose
a homogeneous system fi, fo,- -+, fy of parameters of R and put q = (fi, fo, -, fa)
Let M = R,. Then, applying Theorem 1.5 to the local ring A = Rj;, we readily get
the following, where g(q) = max{n € Z | q : M"is integral over q}.

Corollary 1.6. Suppose that R is a Gorenstein ring. Then

d
a(R) —|—Zdegfi+ 1| —max{deg f; | 1 <i <d}.

=1

Hence g(q) =a(R) + 1, ifd = 1.

g(q) =

Corollary 1.7. With the same notation as is in Theorem 1.5 let d = 1 and put a = a,.
Assume that G(m) is a reduced ring. Then the following conditions are equivalent to

each other.

(1) I CQ.

Later we will give some applications of these results. So, we are now in a position
to explain how this paper is organized. Theorem 1.5 will be proven in Section 2. Once

we have proven Theorem 1.5, exactly the same technique as is developed by [GKMP]
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works to get a complete answer to Question 1.1 in the case where G(m) is a Gorenstein
ring and @ is a parameter ideal given in Theorem 1.5, which we shall briefly discuss in
Section 2.

Sections 3 and 4 are devoted to the analysis of quasi-socle ideals in the ring A of
the form A = B/yB, where y is subsystem of parameters in a Cohen-Macaulay local
ring (B, n) of dimension 2. Here we notice that this class of local rings contains all
the local complete intersections of dimension one. In Section 3 (resp. Section 4) we
focus our attention on the case where B is not a regular local ring (resp. B is a
regular local ring), and our results are summarized into Theorems 3.1 and 4.1. The
proofs given in Sections 3 and 4 are based on the beautiful method developed by Wang
[Wan| in higher dimensional cases and similar to each other, but the techniques are
substantially different, depending on the assumptions that B is a regular local ring or
not. In Sections 3 and 4 we shall give a careful description of the reason why such a
difference should occur. In the final Section 5 we explore, in order to see how effectively
our theorems work in the analysis of concrete examples, the numerical semigroup rings
A = E[[¢6n+5 0t 4912 (C K[[t]]), where n > 0 are integers and k[[¢]] is the formal

power series ring over a field k. Here we note

A2 E[X,Y, Z]]/(Y? — 7%, X* —Y* 7)) and

G(m) 2 k[X,Y, 2]/ (Y3 y3ntlz 7%,

where k[[X,Y, Z]] denotes the formal powers series ring over the field k. Hence A is a
local complete intersection with dim A = 1, whose associated graded ring G(m) is not
a Gorenstein ring but Cohen-Macaulay.

In what follows, unless otherwise specified, let (A, m) be Noetherian local ring with
d = dim A > 0. We denote by e(A) = €% (A) the multiplicity of A with respect to the
maximal ideal m. Let J C K (C A) be ideals in A. We denote by J the integral closure
of J. When K C 7, let

ry(K)=min {n € Z | K" = JK"}

denote the reduction number of K with respect to J. For each finitely generated A-

module M let pa(M) and €4(M) be the number of elements in a minimal system of
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generators for M and the length of M, respectively. We denote by v(A) = £4(m/m?)

the embedding dimension of A.

2. THE CASE WHERE G(m) IS A GORENSTEIN RING

The purpose of this section is to prove Theorem 1.5. Let A be a Noetherian local
ring with the maximal ideal m and d = dim A > 0. Let {a;}1<i<q4 be positive integers
and let {x;}1<;<q be elements of A such that z; € m* for each 1 < i < d. Assume that
the initial forms {z; mod m®*1},.,.; constitute a homogeneous system of parameters
in G(m). Let ¢ € Z and Q = (1,29, -+ ,x4). We put I = Q : m?.

Let us begin with the following.

Proposition 2.1. Let 5 € Z and suppose that m® C Q. Then {5 > a; foralll <1 <d.

Proof. Assume that m® C Q with ¢35 € Z. Then ¢;3 > 0. We want to show (3 >
max{a; | 1 <i < d}. Assume the contrary and let = be an arbitrary element of m and

put y = 2. Then since vy is integral over @), we have an equation
yn‘I‘Clyn_l‘l‘""‘Cn:O

with n > 0 and ¢; € Q' for all 1 < i < n. We put a = max{a; | 1 < i < d} (hence
l3 <a)andlet a =a, with 1 <u<d. Let B=A/(z;|1<i<d,i#u)and n=mB.
Let * denote the image in B. Then

g ray T+ 4+ =0

in B. Therefore, because ils < ia and & € Q'B = 21 B C n’®, we get ¢ € n'3+! for
all 1 < i < n. Consequently, G 7"~ € nstin(n=0b — pnfs+l o that we have §° =
27 € n™s+1 Hence, for every z € n, the initial form z mod n? of z is nilpotent in the
associated graded ring G(n) = @, n"/n"*", which is impossible, because dim G(n) =
dim B = 1. Thus #3 > a; for all 1 <17 <d. O

We put p = a(G(m/Q)) = a(G(m)) + Z?:l a; (cf. [GW, (3.1.6)]) and L =p+ 1 —gq.
Let /1 =inf{n € Z | m" C I} and ly =sup{n € Z | C Q +m"}.

We are in a position to prove Theorem 1.5.
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Proof of Theorem 1.5. (4) = (3) We may assume ¢ < oo. Then, since I C Q + m2,

we have m%] C m?Q + m?™%2 whence m?] = m?Q + [Q N m?™2]. Notice that

d

q+la __ q+l2—a;

QNm 2—2 r,midTTe
i=1

because the initial forms {z; mod m®*™!},,.; constitute a homogeneous system of
parameters in the Cohen-Macaulay ring G(m), and we have m?*%~% C m?, since £, > a;
for all 1 <1¢ < d. Thus m?] = miQ).

(3) = (2) See [NR, Section 7, Theorem 2.

(2) = (1) This follows from Proposition 2.1.

We now assume that G(m) is a Gorenstein ring. Then I = Q + m’ by [Wat] (see
[O, Theorem 1.6] also), whence ¢; < ¢ < {5, so that the implication (1) = (4) follows.
Therefore, I C Q if and only if ¢ = p+1 — ¢ > a; for all 1 < i < d, or equivalently

d

a(G(m)) + ) a;+1

=1

q < —max{a; | 1 <1< d}.

Thus g(Q) = [a(G(m)) +3¢ ai+ 1] —max{a; | 1 < i <d}, so that

g(Q) = a(G(m)) + 1,

iftd=1. U

Remark 2.2 (cf. Example 5.3). Unless G(m) is a Gorenstein ring, the implication
(1) = (4) in Theorem 1.5 does not hold true in general, even though A is a com-
plete intersection and G(m) is a Cohen-Macaulay ring. For example, let V' = kl[[¢]]
be the formal power series ring over a field £ and look at the numerical semigroup
ring A = Ek[[t°,¢%,t"?]] C V. Then A = k[[X,Y,Z]]/(Y?® — Z% X* — Y Z), while
G(m) = k[X,Y,Z]/(Y* Y Z, Z?), whence G(m) is a Cohen-Macaulay ring but not a
Gorenstein ring. Let Q = (t2°) in A and let I = Q : m3; hence a; =4 and ¢ = 3. Then
I = (t%0,122 428 %6 129) C m3 and I® = QI?, so that I C @, while I? = QI + (t*) C Q
but t** & QI, since t** ¢ I. Thus I? = QNI? # QI, so that ro(I) = 2 and the ring G(I)
is not Cohen-Macaulay. It is direct to check that m* C I, m3 € I, and I € Q+m* = m*

since t?2 € I but t*> ¢ m*. Thus ¢, = 4 and ¢, = 3.
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Proof of Corollary 1.7. Since @ C m?, we readily get the equivalence (3) < (4). We
also have m® = m?, because the ring G(m) is reduced. Hence Q C m® Therefore
I Cme if I € Q. Thus all conditions (1), (2), (3), and (4) are, by Theorem 1.5,

equivalent to each other. O

Thanks to Theorem 1.5, similarly as in [GKMP] we have the following complete
answer to Question 1.1 for the parameter ideals @ = (x1, 22, -+ ,24). We later need it

in the present paper. Let us note a brief proof.

Theorem 2.3. With the same notation as is in Theoreml.5 assume that G(m) is a
Gorenstein ring. Suppose that ¢ > a; for all 1 <1 < d. Then the following assertions
hold true.

(1) G(I) is a Cohen-Macaulay ring, ro(I) = [{], and a(G(I)) = [}] — d, where

[4] =min{n € Z | § <n}.

(2) F(I) is a Cohen-Macaulay ring.
(3) R(I) is a Cohen-Macaulay ring if and only if ¢ < (d — 1)L.
(4) Suppose that ¢ > 0. Then G(I) is a Gorenstein ring if and only if ¢ | q.
(5) Suppose that ¢ > 0. Then R(I) is a Gorenstein ring if and only if ¢ = (d — 2).
To prove Proposition 2.3 we need the following. We skip the proof, since one can

prove it exactly in the same way as is given in [GKMP, Lemma 2.2].

Lemma 2.4 (cf. [GKMP, Lemma 2.2]). With the same notation as is in Theorem1.5
assume that G(m) is a Gorenstein ring. If ¢ > a; for all 1 < i < d, then

Q N m(nJrl)Zer - meIn

for all integers m,n > 0.

Proof of Theorem 2.3. (1) Let n > 0 be an integer. Then, since I = Q + m’, we get
I = QI™ + m"tD¢ 5o that
Q N vt — an + [Q ﬂm(n+1)€] C an’

because Q Nm™ V¢ C QI™ by Lemma 2.4. Therefore Q N I™*t' = QI™ for all n > 0, so

that G(I) is a Cohen-Macaulay ring and rg(/) = min{n € Z | I"™' C Q}. Let n € Z
9



and suppose that I"*' C Q. Then m™*)¢ C @, whence (n + 1)¢ > p + 1 (recall that
p =a(G(m/Q)). Therefore

p+1 q+0 ¢
I S N
n+12> 7 7 €+’
so that n > %. Conversely, if n >, then (n +1)( > (4 +1){ = ¢+ { = p+ 1, whence

m™ D C Q, so that I"*! C Q. Thus ro(I) = [4].
Let Y;’s be the initial forms of z;’s with respect to I. Then Y7, Y5, -+ Y, is a ho-
mogeneous system of parameters of G(/), whence it constitutes a regular sequence in

G([I). Therefore
G(I) = G(I)/(V1, Y2, -+, Ya)

as graded A-algebras ([VV]), where I = I/Q. Hence a(G(I)) = a(G(I)) + d (cf. [GW,
(3.1.6)]). Thus a(G(I)) = [4] — d, since a(G(])) =rq(I) = [4] .
(2) By Lemma 2.4

Q Aml*tt = Q N [mQ[n + m(n+1)€+1]
= mQI" + [Q Nm TV
C mQI"

Hence Q NmI™™ = mQ1I" for all n > 0. Thus F(/) is a Cohen-Macaulay ring (cf. e.g.,
[CGPU, CZ]; recall that G(I) is a Cohen-Macaulay ring).

(3) The Rees algebra R(I) of I is a Cohen-Macaulay ring if and only if G(I) is a
Cohen-Macaulay ring and a(G(I)) < 0 ([GSh, Remark (3.10)], [T1]). By assertion (1)
the latter condition is equivalent to saying that [{] < d, or equivalently ¢ < (d — 1).

(4) Notice that G(I) is a Gorenstein ring if and only if so is the graded ring

G(I) = G(I)/(Y1,Ys, -+, Ya).

Let r = 1q(I) (= [%]). Then G(I) is a Gorenstein ring if and only if (0) : T=7""

for all i € Z (cf. [O, Theorem 1.6]). Therefore, if G(I) is a Gorenstein ring, we have
0): 1= T =w", wherem = m/Q. On the other hand, since I =m’ and ¢ = p+1—¢,
we get

(0):7T=(0):m‘ =m?
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by [Wat] (see [O, Theorem 1.6] also). Hence ¢ = 7/, because m"* = m? # (0) and ¢ > 0.
Thus £ | ¢ and r = 4. Conversely, suppose that ¢ | ¢; hence r = 4. Let i € Z. Then
since T = m’, we get T — @190 while

(0): T = (0) : " =+~

—r+1—1

by [O, Theorem 1.6]. Hence (0) : T'=T for all i € Z, because

(r+l—il=q+l—il=p+1—il
Thus G() is a Gorenstein ring, whence so is G(I).

(5) The Rees algebra R([I) of I is a Gorenstein ring if and only if G(/) is a Gorenstein
ring and a(G(I)) = —2, provided d > 2 ([I, Corollary (3.7)]). Suppose that R(I) is
a Gorenstein ring. Then d > 2 by assertion (2) (recall that ¢ > 0). Since a(G([)) =
rg(I) — d = —2, thanks to assertions (1) and (4), we have ¢ =rq(/) = d — 2, whence
q = (d — 2)¢. Conversely, suppose that ¢ = (d — 2)¢. Then d > 3, since ¢ > 0. By
assertions (1) and (4), G(I) is a Gorenstein ring with ro(/) = 2 = d — 2, whence

‘
a(G(I)) = (d—2) —d = —2. Thus R(!) is a Gorenstein ring. O

We now discuss Goto numbers. For each Noetherian local ring A let
G(A) ={g(@Q) | @Q is a parameter ideal in A}.

We explore the value min G(A) in the setting of Theorem 1.5 with dim A = 1. For the

purpose the following result is fundamental.

Theorem 2.5 ([HS, Theorem 3.1)). Let (A,m) be a Noetherian local ring of dimension
one. Then there exists an integer k > 0 such that g(Q)) = min G(A) for every parameter

ideal Q of A contained in m*.
Thanks to Theorem 1.5 and Theorem 2.5, we then have the following.

Corollary 2.6. Let (A, m) be a Noetherian local ring with dim A = 1. Then min G(A) =
a(G(m)) + 1, if G(m) is a Gorenstein ring.

We close this section with the following.
Proposition 2.7. Let (A,m) be a Cohen-Macaulay local ring with dim A = 1. Then

v(A) <2 if and only if minG(A) = e(A) — 1.
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Proof. Suppose that v(A) < 2. Then G(m) is a Gorenstein ring with a(G(m)) =
e(A) — 2. Hence minG(A) = a(G(m)) +1 = e(A) — 1 by Corollary 2.6. Conversely,
assume that min G(A) = e(A) — 1. To prove the assertion, enlarging the field A/m if
necessary, we may assume that the field A/m is infinite (use Theorem 2.5). Let z € m
and assume that @) = (x) is a reduction of m. We put e = e(A) and ¢ = g(Q). Then
q>e—1 Let B=A/Q and n = m/Q. Then Q : m? C Q C A. Hence n? # (0), so
that n’ # n*! for any 0 < i < ¢. Consequently, because ¢ +1 > e and

A/Q ZE z z—l—l >Zé z H—l >q+1

>0

we get n?T! = (0) and £4(n?/n"1) =1 for all 0 < i < ¢. Hence £4(n/n?) < 1, so that
v(A) < 2. O

3. THE CASE WHERE A = B/yB AND B IS NOT A REGULAR LOCAL RING

Let us now explore quasi-socle ideals in the ring A of the form A = B/yB, where
(B,n) is a Cohen-Macaulay local ring of dimension 2 and y is a subsystem of parameters
in B. Recall that this class of local rings contains all the local complete intersections
of dimension one.

In this section we assume that B is mot a regular local ring and our goal is the

following.

Theorem 3.1. Let (B,n) be a Cohen-Macaulay local ring of dimension 2 and assume
that B is not a reqular local ring. Let n,q be integers such that n > q > 0. Let y € n”
and assume that y is reqular in B. We put A = B/yB and m = n/yB. Let Q be a
parameter ideal in A and put I = @Q : m%. Then the following assertions hold true,

where m =n — q.

(1) m2 =miQ, I CQ, and QN I? = QI. Hence g(Q) > n.
(2) I* = QI, if one of the following conditions is satisfied.
(i) m>q—1;
(i) m<qg—1and Q Cmi™™;

(iii) m > 0 and Q C m?™ !,
12



(3) Suppose that B is a Gorenstein ring. Then I* = QI? and G(I) is a Cohen-
Macaulay ring, if one of the following conditions is satisfied.
(i) m < q—1 and Q C ma~(m+1);
(i) @ Cmi~t.

We begin with the following.

Lemma 3.2. Let (B,n) be a Cohen-Macaulay local ring of dimension 2 and assume
that B 1s not a reqular local ring. Let q,¢, and m be integers such that ¢ > ¢ > 0 and
m>0. Letx €nf and y; €n (1 < i < q+m) and assume that for all 1 <i < q+m,

the sequence x,vy; is B-regular. Then we have
q+m

(x, H y;) :nd C () +ntm
i=1

Proof. Let a € (x, [[%Z" v:) : n? and write a- [[Z, % = ux + v- [[14]" v with u,v € B,

Then, since

a+m
(a—v ] w)- H vi € (x)
i=q+1 =1
and since z, [[L, y; is a B-regular sequence, we get a — v- H;ﬁﬁl y; € (z). Let us write
g+m
a = wr + v H Y
i=q+1

with w € B. We want to show v € ne Let z € nf and write
qg+m

az Hyz—uerv Hyz

with «/,v" € B. Then, since

g+m
az- Hyl_w:cz Hyl—l—vz Hyz H Yi,
=1 i=q+1
we have
q gt+m
(vz — " H Yi)- Hyz H Yi €
i=q—{+1 =1 1=q+1

a+m .
Therefore, since the sequence z, ][ 1% i—q+1Yi 18 DB-regular, we see vz €

(, I[72y_¢s19i), so that v € (2, [T, ;1 v) : n, because z is an arbitrary element

in n’. We now notice that q = (z,[[L 4—t+1Yi) is a parameter ideal in B such that

13



g C n’. Then, since B is not a regular local ring, we have q : n® C n’, thanks to [Wan,

Theorem 1.1]. Thus v € n’, whence a € (z) + n™. O

Proposition 3.3. Let (B,n) be a Cohen-Macaulay local ring of dimension 2 and assume
that B is not a reqular local ring. Let q, ¢, and m be integers such that ¢ > € > 0 and
m > 0. Let z,y € B be a system of parameters of B and assume that v € n’ and
y € n?t™_ Then

(1) (z,y) : n? C (z) 4 ntm.
(2) n?-[(z,y) : n7] C niz + (y).

Proof. (1) We notice that the ideal n* is, for each integer k > 0, generated by the set

k
F. = {H zi | zi € nand z, z; is a system of parameters of B for all 1 <i < k}.
i=1

Let o € (x,y) : n?. Let z € F,1,, and 2’ € F, and write
zow = ux + vy,
da=ur+'y
with u,v,u',v" € B. Then 2’ za = 2'ux + 2'vy = zu'z 4 20"y, whence y(z'v — 2v") € (x),

so that z'v € (x,z), because the sequence x,y is B-regular. Since z’ is an arbitrary

element of F) which generates the ideal n?, we have
veE (x,2): 0l C (x) +ntm
by Lemma 3.2. Hence za = uz + vy € (x) +n*"™y, so that
a € [(z) +n Tyl et
because z is an arbitrary element of F,,,. Since y € n?"" we then have
ya = pr + 7y

with p € B and 7 € n**™. Therefore « — 7 € (z), so that a € (z) + n*™™. Thus
(z,y) :n? C (z) +n"Fm.
(2) The ideal n? is generated by the set

F ={zen?]y,zis asystem of parameters in B}.
14



Let a € (z,y) : n? and z,2’ € F. We write za = ux + vy and z’a = vz + v'y with
u,v,u',v" € B. We want to show ux € nfzx. Since z'za = Z'ux + Z'vy = zu'x + 20y,
we have z(z'u — zu') € (y), whence z'u € (z,y). Therefore u € (z,y) : n? whence
u € (z) + n?T™ because (z,y) : n? C (z) + n?™™ by assertion (1) (take x = z, and

¢ = q). Thus uz € (zz) + n?™z C nlz, whence n? [(z,y) : n? C nx + (y). O
We need also the following result to prove Theorem 3.1.

Proposition 3.4. Let (A,m) be a Gorenstein local ring with d = dim A > 0. Let Q be
a parameter ideal in A and q > 0 an integer. We put I = Q : m?. Then I? = QI* and
G(I) is a Cohen-Macaulay ring, if [ C Q +m? ! and mi] = miQ.

Proof. We have m?I* = m?Q* and Q° N [**t = QI for all i > 1 (cf. [GMT, Corollary
2.3]). Therefore, since Q N I? = QI, we may assume that > ¢ Q. Notice that
m/? =ml-I C (Q+m9)-I C Q and we have I? C @ : m. Hence Q : m = Q + I?,

because A is a Gorenstein ring. We similarly have mI® C m/-1> C (mQ + m9)-[? =

mIQ-Q +mil? C @Q? sothat I? C Q% : m = Q[Q : m] = Q* + QI%. Therefore
= [Q*+ QPPN =[Q°N I+ QI* = Q21 + QI? = QI?. Hence I® = QI?, which
implies, because Q N I? = QI, that G([I) is a Cohen-Macaulay ring. O

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let Q = (T) with € n, where T denotes the image of x in A.
We put J = (x,y) : n%; hence I = JA. We have by Proposition 3.3 that J C (z) +n™"!
and n?J C nir + (y) (take £ = 1). Hence m?] = m‘Q, so that I C Q (cf. [NR]).
Let o« € Q N I? and write « = 73 with 3 € A. Then, for all v € m?, we have
ay = T-By € miI* C Q* = (7?), so that By € (T) = Q. Therefore 8 € Q : m? =
whence o = T € QI. Thus Q N I? = QI, which proves assertion (1).

If m > q—1, we have J C (z) + n™! C (z) + n?, whence I C Q + m?. Therefore
I? C Q, so that I? = QI by assertion (1). Suppose that m < ¢—1 and Q C m?™. We
choose the element x so that x € n9~™. Then, taking { = ¢ — m, by Proposition 3.3
(1) we get J = (z,y) : n? C (x) + n?. Hence I C Q + m?. Thus I? = QI. Suppose now

that m > 0 and Q C m?!. To show I? = QI, we may assume by condition (ii) that
15



m < q—1. Then Q C m?™, since Q C m?! and m > 0. Hence I? = Q1. This proves
assertion (2).

Let us consider assertion (3). Suppose that B is a Gorenstein ring and assume
that condition (i) is satisfied. We choose the element x so that x € n? (™1 Then
J = (x,y) : n? C (2) +n?! (take £ = ¢ — (m + 1)), whence I C Q + m? ! so
that the result follows from Proposition 3.4. Assume that condition (ii) is satisfied.
By assertion (2) we may assume that m < ¢ — 1. Then, since m?~! C m9~(m+1 we
have Q C m?~ (™1 5o that condition (i) is satisfied, whence the result follows. This

completes the proof of Theorem 3.1. U

4. THE CASE WHERE A = B/yB AND B IS A REGULAR LOCAL RING

Similarly as in Section 3, we explore quasi-socle ideals in the ring A of the form
A = B/yB, where (B,n) is a regular local ring of dimension 2 and y is a subsystem of
parameters in B; hence v(A) < 2 and min G(A) = e(A) — 1 (Proposition 2.7).

Our goal of this time is the following.

Theorem 4.1. Let (B,n) be a reqular local ring of dimension 2. Let n,q be integers
such that n > q > 0 and put m = n —q. Let 0 #y € n" and put A = B/yB and
m = n/yB. Let Q be a parameter ideal in A and put [ = Q : m?. Then the following

assertions hold true.

(D) miI =miQ, I CQ, and QN I* = QI.
(2) I* = QI, if one of the following conditions is satisfied.
(i) m > g
(ii) m < ¢ and Q C mI~(m=1),
(3) I? = QI* and the ring G(I) is Cohen-Macaulay, if one of the following condi-
tions is satisfied.
(i) m < ¢ and Q@ C ma~"™;
(i) @ Cmi~t.

Our proof of Theorem 4.1 is, this time, based on the following.
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Proposition 4.2. Let (B,n) be a regular local ring of dimension 2 and let x,y be a
system of parameters of B. Let q,{ > 0 and m > 0 be integers such that ¢+ 1 > ¢ and
assume that x € n’ and y € nI*t™. Then the following assertions hold true.

(1) (z,y) :n? C (z) +nFmt,

(2) Suppose that m > 0. Then n?-[(z,y) : n? C nlz + (y).

Proof. (1) Enlarging the field B/n if necessary, we may assume that the field B/n is
infinite. Let G(n) = @,,,n"/n"*! denote the associated graded ring of B. Then G(n)
is the polynomial ring with two indeterminates over B/n. For each element 0 # f € B
let 0,(f) = max{n € Z | y € n"} and let f* = fmodn°()+! be the initial form of f;
hence f* is G(n)-regular. For each integer k > 0, the ideal n* is generated by the set

F, = {z€n"|zen"\n"" and 2*, 2* is a homogeneous system of parameters in G(n)}.

Now let a € (z,y) : 09, z € Fi 4, and 2’ € F,. Then zao = uz +vy and Z'a = v'z +0'y.
for some u,v,u’,v" € B. Hence, because the sequence z,y is B-regular, comparing
two expressions of z'za, we get z'v € (z,z), whence v € (z,2) : n?. Recall now that

(z,2) :n? = (z,2) +n" with

¢ = a(Gn/(z,2) +1] —¢

> [(=2)+L+(g+m)+1]—g=CL+m—1

(cf. [Wat]; see [O, Theorem 1.6] also), where a(x) denotes the a-invariant of the corre-

sponding graded ring ([GW, (3.1.4)]). Therefore
za=ux + vy € (z) + (zy) + 0’y C (z) +nFm Yy,

because ¢/ > {+m—1and z € n9™ with ¢ > ¢—1. Hence a € [(z)+n‘T" 1y] : n9*™ so
that ay € (z) +nT™ 1y, whence a € (x) +nt"~1 since the sequence x, y is B-regular.
Thus (z,y) : n? C (z) + ntFm=1

(2) The ideal n? is generated by the set F' = {z € n? | y, z is a B-regular sequence}.

Let a € (z,y) : n? and 2,2’ € F. Then za = ux + vy and Z’a = vz + v'y for some
17



u,v,u’,v" € B. We want to show that za € n%z + (y). Because the sequence y, x is B-
regular, comparing two expressions of z'za, we get z'u € (z,y), whence u € (z,y) : ni.
Notice now that (z,y) : n? C (2) + n?™™~! by assertion (1) (take x = z and ¢ = /).
Then

za=ur +oy € (zx) + 0Tl 4 (y) C na + (y),

since m > 0, whence we have n?- [(z,y) : n?] C nz + (y). O
Our proof of Theorem 4.1 is now similar to that of Theorem 3.1. We briefly note it.

Proof of Theorem 4.1. Let Q = (T) with € n, where T denotes the image of x in A.
Let J = (z,y) : n?%. Then by Proposition 4.2 that J C (z) + n™ and n?J C nz + (y)
(take £ = 1). Hence m?] = m?Q), so that I C Q. We have Q N I? = QI exactly for the
same reason as is in Proof of Theorem 3.1.

To see assertion (2), suppose that m > ¢. Then J C (z) 4+ n?, whence I C @ + mY.
Therefore 12 C @, so that I? = QI by assertion (1). Suppose that m < ¢ — 1 and
Q C m4=™*1 'We choose the element x so that © € n9~™*!, Then, taking ¢ = g—m+1,
by Proposition 4.2 (1) we get J = (z,y) : n? C (z) +n?% Hence I C @Q + m? so that
I? C @, whence I? = QI.

Suppose that condition (i) in assertion (3) is satisfied. We choose the element z so
that z € n9~™. Then J = (z,y) : n? C (z)+n9"! (take ¢ = g—m), whence I C Q+m? !,
so that the result follows from Proposition 3.4. Suppose that condition (ii) in assertion
(3) is satisfied but m < ¢. Then Q@ C m?™™, since @ C m?~! and m > 0. Hence the

result follows. O

Let us give a consequence of Theorem 4.1.

Corollary 4.3. Let (A, m) be a Cohen-Macaulay local ring with dim A = 1 and v(A) =
2. Let ¢ > 0 be an integer such that e(A) > q > 0 and put m = e(A) — q. Then if
m > q — 2, for every parameter ideal Q) in A the following assertions hold true, where
I =0 :mi.

(1) m2] = m?Q and ro(l) < 3.

(2) ¢ =3 and Q is a reduction of m, if ro(I) = 3.

(3) G(I) is a Cohen-Macaulay ring.
18



Proof. Let e = e(A). Passing to the m-adic completion of A, we may assume that
A = B/yB, where (B,n) is a regular local ring of dimension 2 and 0 # y € n°. Hence
m?] = m?(Q) by Theorem 4.1 (1). We must show that ro(/) < 3 and G([I) is a Cohen-
Macaulay ring. Thanks to Theorem 4.1 (2), we may assume m < ¢ and & m?~™.
Hence m = ¢g—2 orm = g—1. Let QQ = (Z) with = € n, where % denotes the image in A.
Then g—m # 1since x & n? ™ whence m = ¢—2, that is e = 2¢—2. Let n = (z, z) with
z € Bandlet D = B/xB. Then D is a DVR. Let us write yD = 2*D with ¢ > e > g and
we have (z,y) :n? = (z)+n"9 If £ >e, then [ = Q+m 7 C Q+meT9=Q+mi !,
so that I2 = QI by Proposition 3.4. Assume that £ = e. Then z*,y* is a homogeneous
system of parameters in G(n) with degz* = 1 and degy* = e, so that @ is a reduction

of mand I = Q +m’ by [Wat], where
= a(Gm/@)) +1—gq

= [a(G)/(z",y") + 1] — ¢

= [(-2)+(1+e)+1—gq

= e—q

= m.
Therefore rq(I) = [;1] = [ %], thanks to Theorem 2.3 (1). Hence, if rq(/) > 4, then
qTq2 > 3, so that ¢ < 3. This is impossible, since m = ¢ —2 > 0. Thus ro(/) < 3. We
similarly have ¢ = 3, if rg(I) = 3. O

Let 4 < a < b be integers such that GCD(a,b) = 1 and let
H={(a,b) :={aa+05|0< 0, €Z}

be the numerical semigroup generated by a,b. Let A = k[[t%,t%]] (C k[[t]]) be the

numerical semigroup ring of H and m = (¢¢,°) the maximal ideal in A, where k[[t]] is

the formal power series ring over a field k. Then
A= E[XY]/(XP =Y,
where B = k[[X, Y]] denotes the formal power series ring. Hence, applying Corollaries

2.7 and 4.3, we get the following.

Corollary 4.4. The following assertions hold true.
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(1) minG(A) =a—1>3.
(2) Let Q be a parameter ideal in A and put I = Q : m3. Then I* = QI® and G(I)

1s a Cohen-Macaulay ring.

5. EXAMPLES AND REMARKS

Let n > 0 be an integer and put a = 6n + 5, b = 6n + 8, and ¢ = 9n + 12. Then
0<a<b<cand GCD(a,b,c) = 1. Let A = K[[te,t*,t¢]] C k|[[t]], where K[[t]] denotes

the formal power series ring over a field k. Then
A= k[[X7 Y> ZH/<Y3 - Z2a X3n+4 - Y3n+IZ)a

where k[[X,Y, Z]] denotes the formal powers series ring. Let m be the maximal ideal
in A. Then

G(m) 2 k[X,Y, Z]/ (Y34 ysntl 7z 72),

Hence A is a complete intersection with dim A = 1, whose associated graded ring G(m)

is not a Gorenstein ring but Cohen-Macaulay. We put

and let y denote the image of X3t —Y3"*1 7 in B. Let n = (X,Y, Z)B be the maximal

3n+2 and

ideal in B. Then B is not a regular local ring and A = B/yB. We have y € n
y is a subsystem of parameters of B. Therefore by Theorem 3.1 (1), (2), and (3) we

have the following.

Example 5.1. Let 0 < ¢ < 3n + 2 be an integer and put m = (3n + 2) — ¢q. Let @ be
a parameter ideal in A and put I = @ : m9%. Then the following assertions hold true.
(1) mi I =miQ, I CQ, and Q N I? = QI. Hence g(Q) > 3n + 2.
(2) I? = QI, if one of the following conditions is satisfied.
(i) m>q—1;
(i) m<g—1and Q Cmi™™;
(iii) m > 0 and Q C m?~1.
(3) I? = QI* and the ring G(I) is Cohen-Macaulay, if one of the following conditions
is satisfied.

(i) m < ¢—1and Q C ma~(m+L);
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(i) @ C ma~t,

Remark 5.2. In Example 5.1 (3) the equality I? = QI does not necessarily hold true.
For example, let n = 0; hence A = K[[t>,t%,t'?]]. Let Q = (#°) in A and [ = Q : m®.
Then I = (#°,#'2,#16) C Q and rq(1) = 2.

The assumption y € n? in Theorem 3.1 is crucial in order to control quasi-socle ideals

I =@ :mi.

Example 5.3. In Example 5.1 take n = 0 and look at the local ring A = k[[t5, %, t1?]].
Hence

A2 E[X,Y, 2)]/(Y? - 23, X* Y Z).
Let 0 < s € (5,8,12) := {ba+83+12y |0 < a, 3, v € Z} and Q = (t°) in A, monomial
parameters. Let us consider the quasi-socle ideal I = @ : m®. Then we always have
I C @, but G(I) is Cohen-Macaulay (resp. the equality m*/ = m3Q holds true) if and
only if s € {5,10,12,15,17} (resp. s € {5,12,17}), or equivalently Q N I* = QI. Thus

the Cohen-Macaulayness in G([/) is rather wild, as we summarize in the following table.

s I m3 =m3Q | G(1) is CM [ ro(1)
5 m = (£°, 15, ¢1?) Yes Yes 3
8 (8,19 ¢17) No No 3
10 (10, ¢12 ¢13 ¢16) No Yes 2
12 (112, ¢55, 418 121 Yes Yes 1
13 (13, ¢15 116 122) No No 2
15 (1, 17 118 21 21) No Yes 2
16 (16, ¢18 122 125) No No 2
17 (17,420 73 21 1726) Yes Yes 1
18 (18,420 21 24 427) No No 2
> 20 (ts7 ts-i—27 ts-i—i%7 ts+67 ts+9) No No D)

Remark 5.4. To see that the results of Theorem 4.1 are sharp, the reader may consult
[GKM, GKMP] for examples of monomial parameter ideals @ = (¢t°) (0 < s € H) in
numerical semigroup rings A = k[[H]]. See [GKMP, Proposition 10] for the case where

H = (a,b) with GCD(a,b) = 1. Here let us pick up the simplest ones.
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(1)

(2)

(3)

The equality I? = QI does not necessarily hold true. Let A = k[[t3,tY]], Q =
(#*),and I = Q :m?% Then I =m C Q and 1o(I) = 2.

The reduction number rg(7) could be not less than 3. Let A = k[[t*,°]], Q =
(#*),and I = Q :m® Then I =m C Q and 1o(I) = 3.

The ring G(I) is not necessarily Cohen-Macaulay. Let A = k[[t°,t°]], Q = (t'1),
and I = @ : m*. Then I = (t'1,#2 %) C Q and 1¢(/) = 3. However, since
3% € QN I3 but 35 ¢ QI?, we have Q N I* # QI?, so that G(I) is not a
Cohen-Macaulay ring.
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