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Abstract. In this paper we study an optimal control problem for a singular
diffusion equation associated with total variation energy. The singular diffu-
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ing optimal control problem corresponds to a temperature control problem in
the solid-liquid phase transition. We show the existence of an optimal control
for our singular diffusion equation by applying the abstract theory. Next we
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1 Introduction

In this paper we consider an optimal control problem for the following singular diffusion
equation:

wt − κ div

( ∇w
|∇w|

)
+ ∂I[−1,1](w) 3 w + u a.e. in QT := (0, T )× Ω, (1.1)

∂w

∂n
= 0 a.e. on ΣT := (0, T )× Γ, (1.2)

w(0, x) = w0(x) for a.a. x ∈ Ω, (1.3)

where T > 0 is a fixed finite time, Ω is a bounded domain in RN (N ≥ 1) with a smooth
boundary Γ := ∂Ω, κ is a (small) positive constant, ∂I[−1,1]( · ) is the subdifferential of the
indicator function I[−1,1]( · ) on the closed interval [−1, 1], u = u(t, x) is a given forcing
term on QT , ∂/∂n is the outward normal derivative on Γ, and w0 is a given initial datum.

The main focus of this paper is to study the following optimal control problem (OP)
for our singular diffusion equation (P):={(1.1), (1.2), (1.3)}:
Problem (OP). Find a function u∗ ∈ L2(0, T ;L2(Ω)), the so-called optimal control, that
realizes the minimization:

J(u∗) = inf
u∈L2(0,T ;L2(Ω))

J(u);

of the following cost function:

J(u) :=
α

2

∫ T

0

|(w − wd)(t)|2L2(Ω) dt+
1

2

∫ T

0

|u(t)|2L2(Ω) dt (1.4)

for any u ∈ L2(0, T ;L2(Ω));

where α is a positive constant, w is the unique solution of (P) for each forcing (control)
term u, wd is the given target profile in L2(0, T ;L2(Ω)), and | · |L2(Ω) is the standard norm
in L2(Ω).

Note that Problem (P) is derived as the L2-gradient flow for the following functional:

w ∈ L2(Ω) 7→ κ

∫

Ω

|∇w|+
∫

Ω

I[−1,1](w) dx− 1

2

∫

Ω

|w + u|2 dx (u ∈ L2(Ω));

including the total variation
∫

Ω
|∇w| of parameter w. Accordingly, the singular diffusion

−div( ∇w|∇w|) is just a formal phrase to describe the first variation (subdifferential) of the
total variation. The above functional is known as a possible expression of free energy,
governing phase field dynamics, and in the context u denotes the relative temperature,
and w denotes the non-conserved order parameter. Hence we figure out that Problem
(P) is a kind of Allen-Cahn equation, and Problem (OP) is a kind of temperature control
problem in the observing solid-liquid phase transition.

The main difficulty of (OP) is in the singularity, arising from the total variation and
the indicator function. Recently the singular diffusion equations, kindred to (P), were
studied by a lot of mathematicians (cf. [1, 2, 4, 9, 12, 18, 20]) from various viewpoints.
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Especially in the case when the space dimension of Ω is one, the authors [16, 17] showed
the necessary condition of (OP) and proposed the numerical scheme to find the optimal
control of the approximating problem, although their theories were made for slightly
different singular diffusion equation with ours.

In this paper we will demonstrate some theorems, which extend the available situa-
tion (one-dimensional situation) of the line of foregoing results [15, 16, 17], into general
multi-dimensional situations. Additionally we perform the numerical experiment for ap-
proximating control problem in two dimensional space, to support the validity of the
resulted theorems. Consequently the main novelties found in this paper are:

(a) to show the existence of optimal controls, and to prove the necessary condition for
the optimal controls in Problem (OP);

(b) to construct an effective approximating method for Problem (OP) under multi-
dimensional setting of Ω;

(c) to propose the numerical scheme to find the approximating optimal control of (OP),
and to show the convergence of our numerical algorithm;

(d) to give a numerical experiment of the approximating optimal control problem of
(OP) in two-dimensional space.

The plan of this paper is as follows. In Section 2 we recall the fundamentals of
the theory of functions of bounded variation, including the exact definition of the total
variation functional. In Section 3 we study the problems (P) and (OP) by applying
the abstract theory. In Section 4 we consider the approximating problems of (P) and
(OP), and prove the necessary condition of an optimal pair to the approximating problem
of (OP). In Section 5 we prove the main result (Theorem 5.1) in this paper, which is
concerned with the necessary condition of the optimal control of (OP). In Section 6
we propose the numerical scheme to find the optimal control of approximating control
problem for (OP), and show Theorem 6.2 which is concerned with the convergence of our
numerical algorithm. Furthermore we give a numerical experiment of the approximating
control problem for (OP) in two-dimensional space.

Notations and basic assumptions

Throughout this paper we use the following notations.
For any reflexive Banach space B, we denote by | · |B the norm of B, and denote by

B′ the dual space of B. Additionally we denote by 〈·, ·〉B′,B the duality pairing between
B′ and B.

In particular we put H := L2(Ω) with usual real Hilbert space structures. The inner
product and norm in H are denoted by (·, ·) and by | · |H , respectively. Also we put
X := H1(Ω) with usual norm | · |X , and denote by 〈·, ·〉 the duality pairing between X ′

and X.
Let us here prepare some notations and definitions. For a proper (i.e., not identically

equal to infinity), l.s.c. (lower semi-continuous) and convex function ψ : H → R ∪ {∞},
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the effective domain D(ψ) of ψ is defined by

D(ψ) := {z ∈ H; ψ(z) <∞}.
The subdifferential of ψ is a possibly multi-valued operator in H, and it is defined that
z∗ ∈ ∂ψ(z) if and only if

z ∈ D(ψ) and (z∗, y − z) ≤ ψ(y)− ψ(z) for all y ∈ H.
For various properties and related notions of the proper, l.s.c., convex function ψ and its
subdifferential ∂ψ, we refer to a monograph by Brézis [5].

Let us now give some assumptions on data. Throughout this paper we assume the
following conditions (A1)–(A2):

(A1) T , α and κ are the fixed positive constants in R.

(A2) wd is the given target profile in L2(0, T ;H).

Finally, throughout this paper we use Ni, i = 1, 2, 3, · · · to denote positive (or nonneg-
ative) constants depending only on the argument(s).

2 Preliminaries

We begin by recalling the definitions of functions of bounded variation and their total
variation.

Definition 2.1. (I) Let f ∈ L1(Ω). Then f is called a function of bounded variation (or
simply BV-function), if and only if:
∫

Ω

|∇f | := sup

{∫

Ω

f divϕ dx ;
ϕ ∈ C1(Ω;RN) with a compact support,
|ϕ| ≤ 1 in Ω

}
<∞.

Here we call

∫

Ω

|∇f | the total variation of f .

(II) We denote by BV (Ω) the space of all BV-functions.

Now we recall the important property of the space BV (Ω) as follows (cf. [7]):

Proposition 2.1 (cf. [7, Chapter 5]). (I) (Lower semicontinuity) Let {fj} ⊂ BV (Ω),
and let f ∈ L1(Ω). If fj −→ f in L1(Ω) as j →∞, then

lim inf
j→∞

∫

Ω

|∇fj| ≥
∫

Ω

|∇f |.

(II) (Compactness) The space BV (Ω) is a Banach space endowed with the norm

|z|BV (Ω) := |z|L1(Ω) +

∫

Ω

|∇z| for any z ∈ BV (Ω).

Moreover BV (Ω) is compactly embedded into L1(Ω). Hence BV (Ω)∩L∞(Ω) is compactly
embedded into the space Lp(Ω) for any 1 ≤ p <∞.
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Proposition 2.2 (cf. [7, Chapter 5]). Let f ∈ BV (Ω). Then there exists a Radon
measure |∇f | on Ω, and |∇f |-measurable function νf : Ω→ RN such that

(i) |νf | = 1, |∇f |-a.e. on Ω;

(ii)

∫

Ω

f divϕ dx = −
∫

Ω

ϕ · νf |∇f | for all ϕ ∈ C1(Ω;RN) with a compact support.

Remark 2.1. If f belongs to the Sobolev space W 1,1(Ω), then |∇f | is absolutely contin-
uous with respect to the Lebesgue measure, and it follows that:

∫

U

|∇f | =
∫

U

|∇f(x)|dx for any Borel subset U ⊂ Ω

and

νf (x) =




∇f(x)

|∇f(x)| if ∇f(x) 6= 0,

0 otherwise,

a.a. x ∈ Ω.

Now we define a functional V on H by

V (z) :=





∫

Ω

|∇z| if z ∈ BV (Ω) with |z| ≤ 1 a.e. in Ω,

∞ otherwise.
(2.1)

Note that the effective domain D(V ) of V is of the form:

D(V ) = {z ∈ BV (Ω) ∩H ; |z| ≤ 1 a.e. in Ω} .

Clearly V is proper, l.s.c. and convex on H.
On the other hand let V0 be the total variation functional on H without constraint,

namely

V0(z) :=





∫

Ω

|∇z| if z ∈ BV (Ω),

∞ otherwise.

Also we define the proper, l.s.c. and convex functional I[−1,1] of H by

I[−1,1](z) :=

∫

Ω

I[−1,1](z)dx for any z ∈ H,

where I[−1,1] is the indicator function on the closed interval [−1, 1]. Then the total varia-
tion functional V can be formulated as in the form

V (z) = V0(z) + I[−1,1](z) for any z ∈ H.

Here we recall the representation result of ∂V0 obtained in [1, 2].
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Proposition 2.3 (cf. [1, 2]). w∗ ∈ ∂V0(w) if and only if there is a vector field νw ∈
L∞(Ω;RN) such that

|νw| ≤ 1 a.e. in Ω, divνw ∈ H, w∗ = −divνw in D′(Ω),

−
∫

Ω

div νw z dx =

∫

Ω

νw · ∇z dx for any z ∈ W 1,1(Ω) ∩H (2.2)

and

V0(w) = −
∫

Ω

div νw w dx.

Moreover we see the following decomposition property of the subdifferential ∂V . For
the detailed proof, we refer to [20, Theorem 3.1]:

Proposition 2.4 (cf. [20, Theorem 3.1]). The subdifferential ∂V of V is decomposed into
the following form:

∂V (z) = ∂V0(z) + ∂I[−1,1](z) in H for any z ∈ H.

3 Problems (P) and (OP)

We begin by giving the notion of a solution to (P):={(1.1), (1.2), (1.3)}.
Definition 3.1. Let u ∈ L2(0, T ;H) and w0 ∈ H. Then a function w : [0, T ] −→ H is
called a solution of (P), or (P;u,w0) when the data are specified, on [0, T ], if the following
conditions are satisfied:

(i) w ∈ W 1,2(0, T ;H) with V (w) ∈ L1(0, T ).

(ii) There is a function w∗ ∈ L2(0, T ;H) such that w∗(t) ∈ ∂V (w(t)) and

w′(t) + κw∗(t) = w(t) + u(t) in H a.a. t ∈ (0, T ),

where w′ := dw
dt

.

(iii) w(0) = w0 in H.

Remark 3.1. By Proposition 2.4, the condition (ii) in Definition 3.1 is equivalent to the
following condition (ii)’:

(ii)’ There is a function w∗0 ∈ L2(0, T ;H) and a function ξ ∈ L2(0, T ;H) such that

w∗0(t) ∈ ∂V0(w(t)) in H, ξ(t) ∈ ∂I[−1,1](w(t)) in H,

w′(t) + κw∗0(t) + ξ(t) = w(t) + u(t) in H

for a.a. t ∈ (0, T ).
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Thus the subdifferential ∂V corresponds to the rigorous formulation of the singular term

−div
(
∇w
|∇w|

)
+ ∂I[−1,1](w) as in (1.1). Furthermore, in the light of (2.2), we infer that the

homogeneous Neumann type boundary condition is implicitly inherent in (ii) and (ii)’.

Remark 3.2. It follows from (ii) of Definition 3.1 that the equation (1.1) is equivalent
to the following variational inequality:

(w′(t)− w(t)− u(t), w(t)− z) + κV (w(t))− κV (z) ≤ 0

for any z ∈ D(V ) and a.a. t ∈ (0, T ).

Here we mention the result of the existence-uniqueness of solutions for (P).

Proposition 3.1 (cf. [5, 12]). Assume (A1). Then, for each u ∈ L2(0, T ;H) and w0 ∈
D(V ) there is a unique solution w of (P;u,w0) on [0, T ].

Proof. We easily see that Problem (P) can be reformulated as the following Cauchy prob-
lem (CP; u,w0):

(CP;u,w0)

{
w′(t) + κ∂V (w(t))− w(t) 3 u(t) in H for a.a. t ∈ (0, T ),
w(0) = w0,

of the evolution equation, that is governed by the subdifferential ∂V of the convex function
V on H, given in (2.1). Therefore, by applying the abstract theory established by Brézis
[5], the Cauchy problem (CP; u,w0) has one and only one solution w ∈ W 1,2(0, T ;H), in
the sense as in Definition 3.1, for each u ∈ L2(0, T ;H) and w0 ∈ D(V ). Hence (P; u,w0)
has a unique solution on [0, T ].

Recently Yamazaki [21] considered the optimal control problems of nonlinear evolution
equation governed by subdifferential operator in a real Hilbert space. So by applying the
abstract result in [21], we can get the existence of an optimal control for (OP) as follows:

Proposition 3.2 (cf. [21, Section 5.2]). Assume (A1)–(A2). Let w0 ∈ D(V ). Then
Problem (OP) has at least one optimal control u∗ ∈ L2(0, T ;H) so that

J(u∗) = inf
u∈L2(0,T ;H)

J(u),

where J(·) is the cost functional defined in (1.4).

As is mentioned in Proposition 3.1, we see that (P) can be reformulated as the Cauchy
problem (CP; u,w0). The evolution equation, as in (CP; u, w0), just corresponds to a
special case of the nonlinear evolution equation, treated in [21]. Thus the existence of
our optimal control problem (OP) will turn out a direct consequence of the abstract
theory, obtained in [21]. For the detailed argument, we refer to [21], and omit the proof
of Proposition 3.2.
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Remark 3.3. The above Proposition 3.2 does not cover the uniqueness of optimal con-
trols. So, throughout this paper, we have to note the situation that Problem (OP) may
have more than two optimal controls.

We get the optimal control of (OP) in Proposition 3.2. But it is very difficult to show
the necessary condition of the optimal control for (OP) since the subdifferential ∂V (·) is
not smooth. Hence the optimality condition of (OP) will be derived by constructing some
effective approximating method for the original problem (OP).

4 Approximating problems of (P) and (OP)

In this section we study the approximating problems of (P) and (OP).
With regard to Problem (P), we consider the following approximating problem (P)ε,

prescribed for each ε ∈ (0, 1]:

Problem (P)ε. Find a function wε : [0, T ]→ H which fulfills the following equations:

wεt − κ div (aε(∇wε)) + F ε(wε) = wε + u a.e. in QT , (4.1)

ν · aε(∇wε) = 0 a.e. on ΣT , (4.2)

wε(0, x) = wε0(x) for a.a. x ∈ Ω, (4.3)

where aε(η) = (aε1(η), aε2(η), · · · , aεN(η)) is a vector filed on RN of the form:

aε(η) =
η√

|η|2 + ε2
+ εη for any η = (η1, η2, · · · , ηN) ∈ RN , (4.4)

and ν is the outward unit normal vector on Γ. Also we define a nondecreasing function
F ε on R by

F ε(r) := sign(r)

∫ |r|
0

min

{
1

ε
,
[s− 1]+

ε2

}
ds for r ∈ R, (4.5)

where [·]+ denotes the positive part of functions. Clearly F ε is a C1-function with deriva-
tive (F ε)′ ∈ W 1,∞(R), such that

0 ≤ (F ε)′(r) ≤ 1

ε
for any r ∈ R (4.6)

and

|F ε(r)| ≥ 1

ε

(
[r − 1]+ + [−1− r]+)− 1

2
for any r ∈ R. (4.7)

We fix a primitive F̂ ε of F ε such that

F̂ ε(0) = 0 and F̂ ε(r) ≥ 0 for any r ∈ R. (4.8)

In the rest we denote (P)ε by (P;u,wε0)ε when the data of the control u and the initial

value wε0 are specified. Note that for each ε ∈ (0, 1] the singular diffusion term div
(
∇w
|∇w|

)

and the constraint ∂I[−1,1](w) as in (1.1) are approximated by div (aε(∇wε)) and F ε(wε),
respectively.
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Next for each ε ∈ (0, 1] we consider the approximating optimal control problem (OP)ε

of (OP) as follows:

Problem (OP)ε. Find a function (optimal control) uε∗ ∈ L2(0, T ;H) that realizes the
minimization:

Jε(uε∗) = inf
u∈L2(0,T ;H)

Jε(u);

of the following cost function:

Jε(u) :=
α

2

∫ T

0

|(wε − wd)(t)|2Hdt+
1

2

∫ T

0

|u(t)|2Hdt (4.9)

for any u ∈ L2(0, T ;H);

where wε is a unique solution of the approximating problem (P;u,wε0)ε for each control
u ∈ L2(0, T ;H), and wd is the given target profile in L2(0, T ;H).

Here we mention the result of the existence-uniqueness of a solution for (P)ε.

Proposition 4.1. Assume (A1). For each ε ∈ (0, 1] let u ∈ L2(0, T ;H) and wε0 ∈ X.
Then there is a unique function wε, called a solution of (P;u,wε0)ε on [0, T ], which solves
the equations (4.1)–(4.3) in the following sense:

(i) wε ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;X);

(ii) (4.1) holds in the variational sense, i.e.,

((wε)′(t), z) + κ

∫

Ω

aε(∇wε(t)) · ∇z dx+ (F ε(wε(t)), z)− (wε(t), z) = (u(t), z)

for all z ∈ X and a.a. t ∈ (0, T );

(iii) wε(0) = wε0 in H.

Proof. For each ε ∈ (0, 1] we define an approximating energy functional V ε for V on H
of the form:

V ε(z) :=





∫

Ω

(√
|∇z|2 + ε2 +

ε

2
|∇z|2

)
dx+

1

κ

∫

Ω

F̂ ε(z)dx if z ∈ X,
∞ otherwise.

(4.10)

Clearly V ε is proper, l.s.c. and convex on H. Also we observe that the approximating
problem (P)ε is considered as the Cauchy problem (CP; u,wε0)ε of the form:

(CP;u,wε0)ε
{

(wε)′(t) + κ∂V ε(wε(t))− wε(t) = u(t) in H for a.a. t ∈ (0, T ),
wε(0) = wε0.

Hence by applying the abstract theory of evolution equations governed by maximal mono-
tone operators and Lipschitz perturbation (cf. Brézis [5]), the problem (P)ε has a unique
solution wε ∈W 1,2(0, T ;H)∩L∞(0, T ;X) for each ε ∈ (0, 1], u ∈ L2(0, T ;H) and wε0 ∈ X.
Thus the proof of Proposition 4.1 has been completed.
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Here we give the following important lemma, which is key one to showing the relation
between (P) and (P)ε.

Lemma 4.1 (cf. [18, Lemma 3.1]). V ε → V on H in the sense of Mosco [14] as ε→ 0,
namely the following two conditions are satisfied:

(i) For any subsequence {V εk} ⊂ {V ε}, if zk → z weakly in H and εk → 0 as k →∞,
then lim inf

k→∞
V εk(zk) ≥ V (z).

(ii) For any z ∈ D(V ) and any sequence {εn} ⊂ (0,∞) satisfying εn ↘ 0 as n → ∞,
there is a sequence {zn} ⊂ H such that zn → z in H, and lim

n→∞
V εn(zn) = V (z).

Proof. The result follows by a slight modification of the proof of [18, Lemma 3.1]. For
the calculation details we refer to [18, Lemma 3.1].

Now we mention the result of the continuous dependence between (P) and (P)ε as
follows.

Proposition 4.2. Assume (A1). For each ε ∈ (0, 1], let uε ∈ L2(0, T ;H), wε0 ∈ X, and
let wε be the unique solution of the approximating problem (P;uε, wε0)ε on [0, T ]. Then
there is a positive constant N1 > 0, independent of ε ∈ (0, 1], such that

sup
t∈[0,T ]

|wε(t)|2H + κ sup
t∈[0,T ]

V ε(wε(t)) +

∫ T

0

|(wε)′(τ)|2Hdτ

≤ N1

(
V ε(wε0) + |wε0|2H + |uε|2L2(0,T ;H)

)
. (4.11)

Furthermore assume w0 ∈ D(V ), {wε0} ⊂ X, u ∈ L2(0, T ;H), {uε} ⊂ L2(0, T ;H) and

wε0 → w0 in H, V ε(wε0)→ V (w0), (4.12)

uε → u weakly in L2(0, T ;H) (4.13)

as ε→ 0. Then wε converges to the unique solution w of (P;u,w0) on [0, T ] in the sense
that

wε → w in C([0, T ];L1(Ω)) and in L2(0, T ;H) as ε→ 0. (4.14)

Proof. Taking wε(t) and (wε)′(t) as the test functions in (ii) of Proposition 4.1, and
applying Gronwall’s inequality, we get the boundedness (4.11). Such calculations are
standard one, so we omit the detailed proof.

Now let us show (4.14). From (4.11)–(4.13) we infer that

wε is bounded in W 1,2(0, T ;H) uniformly in ε ∈ (0, 1] (4.15)

and
sup
t∈[0,T ]

V ε(wε(t)) is bounded uniformly in ε ∈ (0, 1]. (4.16)
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Also we observe from (4.16), the definitions of V0(·) and V ε(·) and Remark 2.1 that

sup
t∈[0,T ]

V0(wε(t)) is bounded uniformly in ε ∈ (0, 1],

hence,
sup
t∈[0,T ]

|wε(t)|BV (Ω) is bounded uniformly in ε ∈ (0, 1]. (4.17)

Since H ⊂ L1(Ω) and the imbedding BV (Ω) ↪→ L1(Ω) is compact, it follows from (4.15)
and (4.17) that there is a subsequence {εk} ⊂ {ε} and a function w ∈ W 1,2(0, T ;H) ∩
L∞(0, T ;BV (Ω)) ∩ C([0, T ];L1(Ω)) satisfying εk → 0 and

wεk → w weakly in W 1,2(0, T ;H),

in C([0, T ];L1(Ω)),

weakly-∗ in L∞(0, T ;BV (Ω)),

in the pointwise sense, a.e. in QT ,





(4.18)

as k →∞.
Now we show that w is the unique solution to (P;u,w0) on [0, T ]. To do so, we give

the bounded estimates of F εk(wεk) uniformly in k ∈ N.
Here by taking F εk(wεk(t)) as the test function in (ii) of Proposition 4.1, and by using

Schwarz’s inequality, (4.4) and (4.6), we get

d

dτ

∫

Ω

F̂ εk(wεk(τ, x))dx+
1

2
|F εk(wεk(τ))|2H ≤ |wεk(τ)|2H + |uεk(τ)|2H

for a.a. τ ∈ (0, T ).

By integrating this inequality in τ over [0, t], we have
∫

Ω

F̂ εk(wεk(t, x))dx+
1

2

∫ t

0

|F εk(wεk(τ))|2Hdτ

≤
∫

Ω

F̂ εk(wεk0 (x))dx+ |wεk |2L2(0,T ;H) + |uεk |2L2(0,T ;H)

for all t ∈ (0, T ).

(4.19)

Therefore by taking account of (4.8), (4.11)–(4.13) and (4.19), there is a positive constant
N2, independent of εk, such that

∫ T

0

|F εk(wεk(τ))|2Hdτ ≤ N2. (4.20)

Hence it follows from (4.7) and (4.20) that
∫ T

0

∫

Ω

|[wεk(τ, x)− 1]+|2dxdτ

≤ ε2
k

∫ T

0

∫

Ω

(
|F ε(wεk(τ, x))|+ 1

2

)2

dxdτ

≤ 2ε2
k

∫ T

0

∫

Ω

(
|F ε(wεk(τ, x))|2 +

1

4

)
dxdτ

≤ 2ε2
k

(
N2 +

1

4
T |Ω|

)
,
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which implies that
|[wεk − 1]+|2L2(0,T ;H) −→ 0 as k →∞, (4.21)

where |Ω| is the volume (N -dimensional Lebesgue measure) of Ω.
Similarly it follows from (4.7) and (4.20) that

|[−1− wεk ]+|2L2(0,T ;H) −→ 0 as k →∞. (4.22)

Here let K := {ζ ∈ L2(0, T ;H) ; |ζ| ≤ 1 a.e. on QT}, and let πK be the orthogonal
projection from L2(0, T ;H) onto K. Then by applying Lebesgue’s dominated convergence
theorem, we easily see from (4.18) that

πKw
εk −→ πKw in L2(0, T ;H) as k →∞. (4.23)

Therefore it follows from (4.18) and (4.21)–(4.23) that

wεk = [wεk − 1]+ + πKw
εk − [−1− wεk ]+

→ πKw = w (∈ K) in L2(0, T ;H) as k →∞. (4.24)

Now we show that w is the solution to (P;u,w0) on [0, T ]. Since wεk is the unique
solution of the approximating problem (P;uεk , wεk0 )εk on [0, T ], we see that (cf. [5, Example
2.1.3 and Proposition 2.16]):

−(wεk)′ + wεk + uεk ∈ κ∂Φεk(wεk) in L2(0, T ;H), ∀k ∈ N,
where ∂Φεk is the subdifferential of the proper, l.s.c. and convex function Φεk on L2(0, T ;H)
defined by

Φεk(z) :=

∫ T

0

V εk(z(t))dt, ∀z ∈ L2(0, T ;H).

Here we note from Lemma 4.1 that Φεk converges to Φ on L2(0, T ;H) in the sense of
Mosco as k → ∞ (cf. [10, Proposition.7]), where Φ is the proper, l.s.c. and convex
function Φ on L2(0, T ;H) defined by

Φ(z) :=

∫ T

0

V (z(t))dt, ∀z ∈ L2(0, T ;H).

Therefore, by the general theory of subdifferentials (cf. [3, Theorem 3.66]), we see that
∂Φεk converges to ∂Φ in the graph sense (cf. [3, Definiton 3.58]). Hence we observe from
[3, Proposition 3.59] that:

(?) if z∗εk ∈ ∂Φεk(zεk), z
∗
εk
→ z∗ weakly in L2(0, T ;H) and zεk → z in L2(0, T ;H), then,

z∗ ∈ ∂Φ(z).

For the detailed definition and various properties of graph convergence of maximal mono-
tone operators, we refer to a monograph by Attouch [3].

Thus it follows from the above general theory, (4.13), (4.18) and (4.24) that −w′ +
w + u ∈ κ∂Φ(w) in L2(0, T ;H), which implies that

w′(t) + κ∂V (w(t))− w(t) 3 u(t) in H for a.a. t ∈ (0, T ).

12



Also we observe from (4.12) and (4.18) that w(0) = w0 in H. Therefore w is the solution to
(P;u,w0) on [0, T ]. Clearly w is the unique solution to (P;u,w0) on [0, T ] (cf. Proposition
3.1), whence (4.14) holds without extracting any subsequence from {ε}. Thus the proof
of Proposition 4.2 has been completed.

By a similar argument to [21, Sections 3–4], we get the following Proposition 4.3,
which is concerned with the relation between (OP) and (OP)ε.

Proposition 4.3. Suppose (A1)–(A2). Then, for each ε ∈ (0, 1] and wε0 ∈ X the approx-
imating problem (OP)ε has at least one optimal control uε∗ ∈ L2(0, T ;H) so that

Jε(uε∗) = inf
u∈L2(0,T ;H)

Jε(u).

Furthermore, fix any sequence {uε∗} in L2(0, T ;H) such that uε∗ is the optimal control of
(OP)ε. Assume w0 ∈ D(V ), {wε0} ⊂ X,

wε0 → w0 in H and V ε(wε0)→ V (w0) as ε→ 0. (4.25)

Then there is a subsequence {εk} ⊂ {ε} and a function u∗∗ ∈ L2(0, T ;H) such that u∗∗ is
the optimal control of (OP), εk → 0 and

uεk∗ → u∗∗ weakly in L2(0, T ;H) as k →∞. (4.26)

Proof. Note that the approximating problem (P)ε is considered as the Cauchy problem
(CP;u,wε0)ε (cf. Proposition 4.1). Therefore, by applying the abstract result in [21], we
can get the existence of an optimal control uε∗ of (OP)ε for each ε ∈ (0, 1].

Now we show (4.26). Let us fix any sequence {uε∗} in L2(0, T ;H) such that uε∗ is the
optimal control of (OP)ε. Let u be any function in L2(0, T ;H). Also, let wε be a unique
solution for (P;u,wε0)ε on [0, T ], and let w be a unique solution for (P;u,w0) on [0, T ].
Then we observe from (4.25) and Proposition 4.2 that

wε → w in C([0, T ];L1(Ω)) and in L2(0, T ;H) as ε→ 0. (4.27)

Since uε∗ is the optimal control of (OP)ε, we see that

Jε(uε∗) ≤ Jε(u) =
α

2

∫ T

0

|(wε − wd)(t)|2Hdt+
1

2

∫ T

0

|u(t)|2Hdt. (4.28)

Clearly it follows from (4.9), (4.27) and (4.28) that {uε∗} is bounded in L2(0, T ;H) with
respect to ε ∈ (0, 1]. Thus there is a subsequence {εk} ⊂ {ε} and a function u∗∗ ∈
L2(0, T ;H) such that εk → 0 and

uεk∗ → u∗∗ weakly in L2(0, T ;H) as k →∞. (4.29)

For any k ∈ N, let wεk∗ be a unique solution of (P;uεk∗ , w
εk
0 )εk on [0, T ]. Then, by

(4.25), (4.29) and Proposition 4.2, we see that wεk∗ converges to the unique solution w∗∗
of (P;u∗∗, w0) on [0, T ] in the sense that

wεk∗ → w∗∗ in C([0, T ];L1(Ω)) and in L2(0, T ;H) as k →∞. (4.30)
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Now, by using (4.27)–(4.30) and the weak lower semicontinuity of L2-norm, we see
that

J(u∗∗) ≤ lim inf
k→∞

Jεk(uεk∗ ) ≤ J(u).

Since u is any function in L2(0, T ;H), we infer from the above inequality that u∗∗ is the
optimal control of (OP) satisfying the convergence (4.29) (i.e. (4.26)). Thus the proof of
Proposition 4.3 has been completed.

Now we give the necessary condition of an optimal pair (wε∗, u
ε
∗) for (OP)ε, where wε∗

is the unique solution for (P;uε∗, w
ε
0)ε, and uε∗ is the optimal control of (OP)ε obtained in

Proposition 4.3.

Proposition 4.4. Suppose (A1)–(A2). For the fixed number ε ∈ (0, 1], let wε0 ∈ X, and
let uε∗ ∈ L2(0, T ;H) be the optimal control of (OP)ε obtained in Proposition 4.3. Let wε∗
be the unique solution of (P;uε∗, w

ε
0)ε. Then there exists a unique solution pε of the adjoint

equation on [0, T ] as follows:

pε ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H); (4.31)

∫ T

0

〈−(pε)′(τ), ζ(τ)〉dτ + κ

∫ T

0

∫

Ω

([
∂aε

∂η
(∇wε∗(τ))

]T
∇pε(τ)

)
· ∇ζ(τ) dxdτ

+

∫ T

0

((F ε)′(wε∗(τ))pε(τ), ζ(τ)) dτ −
∫ T

0

(pε(τ), ζ(τ)) dτ

=

∫ T

0

(α(wε∗(τ)− wd(τ)), ζ(τ)) dτ for any ζ ∈ L2(0, T ;X); (4.32)

subject to:
pε(T, x) = 0 for a.a. x ∈ Ω; (4.33)

where
[
∂aε
∂η

(·)
]T
∈ L∞(RN ;RN×N) denotes the transpose of the gradient ∂aε

∂η
∈ L∞(RN ;RN×N).

Moreover pε satisfies the equation

pε + uε∗ = 0 in L2(0, T ;H). (4.34)

We prove Proposition 4.4 by showing the result of Gâteaux differentiability of the cost
functional Jε(·). Here we define the solution operator Λε of (P)ε.

Definition 4.2. (I) Let wε0 ∈ X. Then we denote by Λε : L2(0, T ;H) → L2(0, T ;X)
⊂ L2(0, T ;H) a solution operator of (P)ε which assigns to any control u ∈ L2(0, T ;H)
the unique solution wε := Λε(u) of the state problem (P;u,wε0)ε.
(II) Let wε0 ∈ X, and let uε∗ ∈ L2(0, T ;H) be the optimal solution of (OP)ε. Then
(wε∗, u

ε
∗) = (Λε(uε∗), u

ε
∗) is called the optimal pair of the control problem (OP)ε.
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For a moment we often omit the subscript ε ∈ (0, 1]. For any λ ∈ [−1, 1] \ {0}, any
u ∈ L2(0, T ;H) and any ũ ∈ L2(0, T ;H), we put wλ := Λε(u + λũ), w := Λε(u) and
χλ := wλ−w

λ
. Then we easily see that χλ satisfies the following system:

(χλ)t − κ
N∑
i=1

∂

∂xi

(
N∑
j=1

aλij(t, x)
∂χλ
∂xj

)
+ F

ε

λ(t, x)χλ = χλ + ũ a.e. in QT , (4.35)

N∑
i=1

νi

(
N∑
j=1

aλij(t, x)
∂χλ
∂xj

)
= 0 a.e. on ΣT , (4.36)

χλ(0, x) = 0 for a.a. x ∈ Ω, (4.37)

where ν = (ν1, ν2, · · · , νN) is the outward unit normal vector on Γ, and we define

aλij(t, x) :=

∫ 1

0

∂aεi
∂ηj

(∇w(t, x) + s(∇wλ(t, x)−∇w(t, x)))ds for a.a. (t, x) ∈ QT ,

F
ε

λ(t, x) :=

∫ 1

0

(F ε)′(w(t, x) + s(wλ(t, x)− w(t, x)))ds for a.a. (t, x) ∈ QT .

Here
∂aεi
∂ηj

is the partial derivative of aεi (η) with respect to ηj, where η = (η1, · · · , ηN) ∈ RN
and aε(η) = (aε1(η), aε2(η), · · · , aεN(η)) is a vector filed on RN defined in (4.4).

Now we give the uniform estimate of solutions χλ with respect to λ ∈ [−1, 1] \ {0}.
Lemma 4.3. Suppose all the same conditions in Proposition 4.4. Then there is a positive
constant N3 > 0 independent of λ ∈ [−1, 1] \ {0} such that

sup
t∈[0,T ]

|χλ(t)|2H + εκ

∫ T

0

|∇χλ(t)|2Hdt+

∫ T

0

|χ′λ(t)|2X′dt ≤ N3|ũ|2L2(0,T ;H) (4.38)

for any ũ ∈ L2(0, T ;H).

Proof. Clearly we see that aεi (·) ∈ C1(RN) for i = 1, · · · , N ,

N∑
i,j=1

∂aεi
∂ηj

(η)ξiξj ≥ ε|ξ|2, (4.39)

∣∣∣∣
∂aεi
∂ηj

(η)

∣∣∣∣ ≤
1

ε
+ ε for i, j = 1, · · · , N (4.40)

for any η = (η1, · · · , ηN) ∈ RN and any ξ = (ξ1, · · · , ξN) ∈ RN .
Also note that the function F ε satisfies (4.6). Therefore by (4.6) and (4.39)–(4.40),

we can get a priori estimate (4.38). Such calculations are standard one, so, we omit the
detailed proof.

Now let us mention the result of the Gâteaux differentiability of Λε and Jε.
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Lemma 4.4. Under the same conditions as in Proposition 4.4, the following two state-
ments hold.

(I) The solution operator Λε admits the Gâteaux derivative DũΛ
ε(u) at any u ∈ L2(0, T ;H)

and any direction ũ ∈ L2(0, T ;H). More precisely, for any u ∈ L2(0, T ;H) there
exists a bounded and linear operator Xu : L2(0, T ;H) −→ L2(0, T ;H) such that:

Xu(ũ) = DũΛ
ε(u) := lim

λ→0

Λε(u+ λũ)− Λε(u)

λ
for all direction ũ ∈ L2(0, T ;H).

(4.41)

Moreover, for arbitrary u, ũ ∈ L2(0, T ;H) the function χ := Xu(ũ) fulfills that:

χ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H); (4.42)

〈χ′(t), z〉+ κ

∫

Ω

(∂aε
∂η

(∇w(t))∇χ(t)
)
· ∇z(x)dx+ ((F ε)′(w(t))χ(t), z)

= (χ(t), z) + (ũ(t), z)

for a.a. t ∈ (0, T ) and all z ∈ X;

(4.43)

χ(0, x) = 0 for a.a. x ∈ Ω; (4.44)

where w = Λε(u).

(II) The cost function Jε admits the Gâteaux derivative DũJ
ε(u) at any u ∈ L2(0, T ;H)

and any direction ũ ∈ L2(0, T ;H). More precisely,

DũJ
ε(u) := lim

λ→0

Jε(u+ λũ)− Jε(u)

λ

=

∫ T

0

(α(w(t)− wd(t)), χ(t))dt+

∫ T

0

(u(t), ũ(t))dt, (4.45)

for any u ∈ L2(0, T ;H) and any direction ũ ∈ L2(0, T ;H), where w = Λε(u), wd is
the given target profile in L2(0, T ;H), and χ (= Xu(ũ)) is the Gâteaux derivative as
in the assertion (I).

Proof. We show (I). We put wλ := Λε(u + λũ), w := Λε(u) and χλ := wλ−w
λ

for all
u, ũ ∈ L2(0, T ;H) and λ ∈ [−1, 1]\{0}. Then by the uniform estimate (4.38) of χλ, there
is a subsequence {λn} ⊂ {λ} and a function χ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) such that
λn → 0,

χλn → χ weakly-∗ in L∞(0, T ;H) and weakly in L2(0, T ;X), (4.46)

χλn → χ in L2(0, T ;H) and in C([0, T ];X ′), (4.47)

χ′λn → χ′ weakly in L2(0, T ;X ′) (4.48)

as n→∞, and the following estimate holds:

|χ|2L∞(0,T ;H) + εκ|∇χ|2L2(0,T ;H) + |χ′|2L2(0,T ;X′) ≤ N3|ũ|2L2(0,T ;H); (4.49)
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where N3 > 0 is the same constant as in Lemma 4.3.
Next we show that the limit function χ of {χλn} fulfills (4.43)–(4.44). Thanks to

(4.38), we see that

|wλn − w|L2(0,T ;X) = λn|χλn |L2(0,T ;X)

≤ λnN
1
2

3

(
T + ε−1κ−1

) 1
2 |ũ|L2(0,T ;H)

→ 0 as n→∞. (4.50)

So, taking a subsequence if necessary, we see from the definition of F
ε

λ and Lipschitz
continuity of (F ε)′ that :

F
ε

λn(t, x)→ (F ε)′(w(t, x)) for a.a. (t, x) ∈ QT ,

in the pointwise sense, as n→∞.

Since the function F
ε

λ (λ ∈ [−1, 1] \ {0}) is bounded (cf. (4.6)), we can apply Lebesgue’s
dominated convergence theorem to show that

F
ε

λn → (F ε)′(w) in L2(0, T ;H) as n→∞. (4.51)

Similarly we observe from (4.40), (4.46), (4.50) that for each i, j = 1, 2, · · · , N ,

aλnij (t, x)
∂χλn
∂xj

→ ∂aεi
∂ηj

(∇w)
∂χ

∂xj
weakly in L2(0, T ;H) (4.52)

as n→∞.
Note that the solution χλn of (4.35)–(4.37) satisfies the following variational identity:

∫ T

0

〈χ′λn(t), z〉dt+ κ

∫ T

0

∫

Ω

N∑
i=1

( N∑
j=1

aλnij (t, x)
∂χλn
∂xj

) ∂z
∂xi

dxdt

+

∫ T

0

(F
ε

λn(t)χλn(t), z)dt =

∫ T

0

(χλn(t), z)dt+

∫ T

0

(ũ(t), z)dt (4.53)

for all z ∈ X and n = 1, 2, 3, · · · .
Taking account of (4.46)–(4.52), we get the variational form (4.43) by taking the limits

in (4.53) as n→∞. Also we infer from (4.47) that

χ(0, ·) = lim
n→∞

χλn(0, ·) = 0 (∈ H) in X ′,

which implies (4.44).
Furthermore we see that the solutions of the Cauchy problem {(4.43), (4.44)} are

uniquely determined within (4.42), which guarantees the uniqueness of cluster points of
the sequence {χλ} as λ→ 0.

From the linearity inherent in (4.43) and the estimate (4.49) it follows that each
operator Xu (u ∈ L2(0, T ;H)) is a bounded and linear operator from L2(0, T ;H) into
itself, and the operator Λε is Gâteaux differentiable in L2(0, T ;H). Thus we conclude the
assertion (I) of this lemma.

By the differentiability of Λε, we easily prove the assertion (II) of this lemma. Hence
the proof of Lemma 4.4 has been completed.

17



By taking account of Lemma 4.4, we easily prove Proposition 4.4, which is concerned
with the necessary condition of an optimal pair (wε∗, u

ε
∗) = (Λε(uε∗), u

ε
∗).

Proof of Proposition 4.4. Taking account of (4.6) and (4.39), we see from [13, Chapter 3]
that there exists the unique solution pε ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H) of
the variational problem {(4.32), (4.33)}.

Now let (wε∗, u
ε
∗) = (Λε(uε∗), u

ε
∗) be the optimal pair of the problem (OP)ε. Let us fix

any ũ ∈ L2(0, T ;H), and let χε∗ be the directional derivative DũΛ
ε(uε∗). Since uε∗ is a

minimizer for Jε(·), we have

0 ≤ lim inf
λ→0

Jε(uε∗ + λũ)− Jε(uε∗)
λ

=

∫ T

0

(α(wε∗(t)− wd(t)), χε∗(t))dt+

∫ T

0

(uε∗(t), ũ(t))dt

=

∫ T

0

〈−(pε)′(t), χε∗(t)〉dt+ κ

∫ T

0

∫

Ω

([
∂aε

∂η
(∇wε∗(t))

]T
∇pε(t)

)
· ∇χε∗(t)dxdt

+

∫ T

0

((F ε)′(wε∗(t))p
ε(t), χε∗(t))dt−

∫ T

0

(pε(t), χε∗(t)) dt+

∫ T

0

(uε∗(t), ũ(t))dt

=

∫ T

0

〈(χε∗)′(t), pε(t)〉dt+ κ

∫ T

0

∫

Ω

(∂aε
∂η

(∇wε∗(t))∇χε∗(t)
)
· ∇pε(t)dxdt

+

∫ T

0

((F ε)′(wε∗(t))χ
ε
∗(t), p

ε(t))dt−
∫ T

0

(χε∗(t), p
ε(t)) dt+

∫ T

0

(uε∗(t), ũ(t))dt

=

∫ T

0

(pε(t) + uε∗(t), ũ(t)) dt, (4.54)

where we have used the variational identities (4.32) and (4.43) for pε and χε∗, respectively.
Since ũ ∈ L2(0, T ;H) is arbitrary, we infer from (4.54) that the optimal control uε∗ satisfies
(4.34). Thus the proof of Proposition 4.4 has been completed.

Remark 4.1. Casas–Fernández–Yong [6] and Fernández [8] have already studied the
optimal control of quasilinear parabolic equations. By the same arguments in [6, 8], we
show Proposition 4.4 which is concerned with the necessary condition of the optimal
control for (OP)ε.

5 Optimality condition for (OP)

In this section we show the main result (Theorem 5.1) in this paper, which is concerned
with the necessary condition of the optimal control of (OP).

Theorem 5.1. Suppose the same conditions in Proposition 4.3. Let u∗∗ be the optimal
control of (OP) obtained in Proposition 4.3. Let w∗∗ be the unique solution to (P;u∗∗, w0)
on [0, T ], and we set

W := {z ∈ H1(QT ) ; z(0, x) = 0 for a.a. x ∈ Ω}.
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Then there is a function p ∈ L∞(0, T ;H) and an element µ ∈W ′ satisfying the following:

∫ T

0

(p(τ), z′(τ))dτ + 〈µ, z〉W ′,W −
∫ T

0

(p(τ), z(τ))dτ

=

∫ T

0

(α(w∗∗(τ)− wd(τ)), z(τ))dτ for any z ∈ W. (5.1)

Moreover p satisfies the equation

p+ u∗∗ = 0 in L2(0, T ;H). (5.2)

Proof. It is very difficult to show the necessary condition of the optimal control for (OP)
directly. So by using Propositions 4.2–4.4, we prove Theorem 5.1.

Let u∗∗ be the optimal control of (OP) obtained in Proposition 4.3. Namely, there are
a subsequence of ε (which we also denote ε for simplicity) and a sequence {uε∗} of optimal
controls uε∗ of (OP)ε, for every ε, such that

uε∗ → u∗∗ weakly in L2(0, T ;H) as ε→ 0. (5.3)

Then, applying Proposition 4.2 under (4.25) and (5.3), we see that

wε∗ → w∗∗ in C([0, T ];L1(Ω)) and in L2(0, T ;H) as ε→ 0, (5.4)

where wε∗ is the unique solution to (P;uε∗, w
ε
0)ε on [0, T ], and w∗∗ is the unique solution of

(P;u∗∗, w0) on [0, T ].
Now, through the limiting observation of pε as ε ↘ 0, we prove (5.1)–(5.2). To this

end we give a priori estimate of the solution pε for the adjoint equation (4.32)–(4.33).
Note that the function pε satisfies the following variational identity:

∫ T

T−t
〈−(pε)′(τ), ζ(τ)〉dτ + κ

∫ T

T−t

∫

Ω

([
∂aε

∂η
(∇wε∗(τ))

]T
∇pε(τ)

)
· ∇ζ(τ)dxdτ

+

∫ T

T−t
((F ε)′(wε∗(τ))pε(τ), ζ(τ)) dτ −

∫ T

T−t
(pε(τ), ζ(τ)) dτ

=

∫ T

T−t
(α(wε∗(τ)− wd(τ)), ζ(τ)) dτ (5.5)

for any t ∈ [0, T ] and any ζ ∈ L2(T − t, T ;X).

Let us assign pε to the test function ζ as in (5.5). Then it follows from (4.6) and (4.39)
that

|pε(T − t)|2H ≤ 3

∫ T

T−t
|pε(τ)|2Hdτ + α2

∫ T

T−t
|wε∗(τ)− wd(τ)|2Hdτ (5.6)

for any t ∈ [0, T ]. So applying Gronwall’s lemma, the convergence (5.4) implies the
existence of a positive constant N4 independent of ε ∈ (0, 1] such that:

sup
t∈[0,T ]

|pε(t)|2H ≤ N4

(∫ T

0

|w∗∗(τ)− wd(τ)|2Hdτ + 1

)
. (5.7)
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Here for any ε ∈ (0, 1] let us define a bounded and linear functional µε ∈ W ′ on W by
putting:

〈µε, ζ〉W ′,W

:=

∫ T

0

{
κ

∫

Ω

([
∂aε

∂η
(∇wε∗(t))

]T
∇pε(t)

)
· ∇ζ(t)dx+ ((F ε)′(wε∗(t))p

ε(t), ζ(t))
}
dt;

for all ζ ∈ W . Then by (5.4) and (5.7) there exists a positive constant N5 independent of
ε ∈ (0, 1] such that:

|〈µε, ζ〉W ′,W |

≤
∣∣∣∣
∫ T

0

(α(wε∗(t)− wd(t)), ζ(t)) dt

∣∣∣∣+

∣∣∣∣
∫ T

0

〈(pε)′(t), ζ(t)〉dt
∣∣∣∣+

∣∣∣∣
∫ T

0

(pε(t), ζ(t)) dt

∣∣∣∣

=

∣∣∣∣
∫ T

0

(α(wε∗(t)− wd(t)), ζ(t)) dt

∣∣∣∣+

∣∣∣∣
∫ T

0

(−pε(t), ζ ′(t)) dt
∣∣∣∣+

∣∣∣∣
∫ T

0

(pε(t), ζ(t)) dt

∣∣∣∣
≤ N5

(|w∗∗ − wd|L2(0,T ;H) + 1
) |ζ|W (5.8)

for any ζ ∈ W := {z ∈ H1(QT ) ; z(0, x) = 0 for a.a. x ∈ Ω}.
Therefore we get

|µε|W ′ ≤ N5

(|w∗∗ − wd|L2(0,T ;H) + 1
)

for all ε ∈ (0, 1]. (5.9)

By virtue of (5.7) and (5.9), we find a function p ∈ L∞(0, T ;H) and an element µ ∈ W ′

such that

pε → p weakly-∗ in L∞(0, T ;H), (5.10)

µε → µ weakly in W ′, (5.11)

as ε → 0, by taking a subsequence if necessary. In the light of (4.34), (5.3) and (5.10),
we deduce that

p+ u∗∗ = 0 in L2(0, T ;H). (5.12)

Finally, since pε also solves that:
∫ T

0

(pε(τ), z′(τ)) dτ + 〈µε, z〉W ′,W −
∫ T

0

(pε(τ), z(τ)) dτ

=

∫ T

0

(α(wε∗(τ)− wd(τ)), z(τ)) dτ, ∀z ∈ W, (5.13)

we infer from (5.4), (5.10)–(5.11) and (5.13) that the identity (5.1) holds. Thus the proof
of Theorem 5.1 has been completed.

6 Numerical Scheme for (OP)ε

In this section we fix the parameter ε ∈ (0, 1] and the element wε0 ∈ X. Then we study
the problem (OP)ε from the view-point of numerical analysis.

For a moment we often omit the subscript ε ∈ (0, 1].
Here we define the solution operator of the adjoint equation {(4.32)–(4.33)}.
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Definition 6.1. We denote by Λε
ad the solution operator which maps any control u ∈

L2(0, T ;H) to the unique solution pε := Λε
ad(u) of the adjoint equation {(4.32)–(4.33)}

under wε∗ = Λε(u).

Now by using the necessary condition (4.34) of (OP)ε obtained in Proposition 4.4, we
propose the following numerical algorithm, denoted by (NA), to find the optimal control
of (OP)ε.

Numerical Algorithm (NA) of (OP)ε

(Step 0) Give the stop parameter σ, and choose the initial data wε0 ∈ X;

(Step 1) Choose the initial control function u0 ∈ L2(0, T ;H), and put un = u0;

(Step 2) Solve the problem (P;un, w
ε
0)ε, and let wn = Λε(un);

(Step 3) Solve the adjoint equation {(4.32)–(4.33)} under wε∗ = wn = Λε(un), and let
pn = Λε

ad(un);

(Step 4) Test: If |un + pn|L2(0,T ;H) < σ, then STOP; Otherwise go to (Step 5);

(Step 5) Prepare constants β, δ ∈ (0, 1), and set

ρn := βln and un+1 := un − ρn(un + pn),

by finding the minimal constant ln ∈ N ∪ {0}, to realize that:

Jε(un − βln(un + pn))− Jε(un) ≤ −δβln|un + pn|2L2(0,T ;H).

The minimal constant ln is actually found by using an appropriate line search
method;

(Step 6) Set n = n+ 1, and go to (Step 2).

Now we mention our final main result in this paper, which is concerned with the
convergence of the numerical algorithm (NA).

Theorem 6.2 (cf. [17, Theorem 4.1]). Assume (A1)–(A2), ε ∈ (0, 1] and wε0 ∈ X.
Let {un} be a sequence in L2(0, T ;H) defined by the numerical algorithm (NA). Also let
pn = Λε

ad(un). Then:

(I) lim
n→∞

Jε(un) exists.

(II)
lim
n→∞

(un + pn) = 0 in L2(0, T ;H). (6.1)
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(III) There are functions uε∗∗ ∈ L2(0, T ;H) and pε∗∗ ∈ L2(0, T ;H), and a subsequence
{nk} ⊂ {n} such that pε∗∗ is a unique solution of the adjoint equation {(4.32)–(4.33)}
under wε∗ = Λε(uε∗∗),

unk → uε∗∗, pnk → pε∗∗ in L2(0, T ;H) as k →∞,
uε∗∗ + pε∗∗ = 0 in L2(0, T ;H),

hence, DũJ
ε(uε∗∗) := lim

λ→0

Jε(uε∗∗ + λũ)− Jε(uε∗∗)
λ

= 0 for any ũ ∈ L2(0, T ;H).

Remark 6.1. The above (NA) is actually derived by using an analogy from the algorithm,
proposed and studied by the authors [17], although the referred algorithm is made for the
case when the space dimension of Ω is one and the term w + u, as in the right hand side
of (1.1), is replaced by w − νw3 + u (ν ≥ 0).

By the arguments similar to those in [17, Section 4], we can show Theorem 6.2.
Here we give the following key lemma.

Lemma 6.3. Assume the same conditions as in Theorem 6.2. Let ξ ∈ [−1, 1]\{0}. Then
the Gâteaux derivative of the solution operator Λε is continuous in the following sense:

χξ = DũΛ
ε(u+ ξz) := lim

λ→0

Λε(u+ ξz + λũ)− Λε(u+ ξz)

λ

−→ χ = DũΛ
ε(u) := lim

λ→0

Λε(u+ λũ)− Λε(u)

λ
in L2(0, T ;H) (6.2)

for any u ∈ L2(0, T ;H), any z ∈ L2(0, T ;H) and any direction ũ ∈ L2(0, T ;H),

as ξ → 0.

Proof. For any u ∈ L2(0, T ;H), z ∈ L2(0, T ;H) and ξ ∈ [−1, 1] \ {0}, we put wξ :=
Λε(u+ ξz) and w := Λε(u). Then by the quite standard calculation we get the following
estimate:

sup
t∈[0,T ]

|wξ(t)− w(t)|2H + εκ

∫ T

0

|∇wξ(t)−∇w(t)|2Hdt ≤ N6ξ
2|z|2L2(0,T ;H) (6.3)

for some constant N6 > 0 independent of ξ ∈ [−1, 1] \ {0}. Thus we infer from (6.3) that

wξ → w in L2(0, T ;X) as ξ → 0. (6.4)

Now we show (6.2) by using the convergence (6.4). Note from (I) of Lemma 4.4 that
χξ = DũΛ

ε(u+ ξz) satisfies the following variational identity:
∫ T

0

〈χ′ξ(t), ζ(t)〉dt+ κ

∫ T

0

∫

Ω

(∂aε
∂η

(∇wξ(t))∇χξ(t)
)
· ∇ζ(t)dxdt

+

∫ T

0

((F ε)′(wξ(t))χξ(t), ζ(t))dt =

∫ T

0

(χξ(t), ζ(t))dt+

∫ T

0

(ũ(t), ζ(t))dt (6.5)

for all ζ ∈ L2(0, T ;X) and any direction ũ ∈ L2(0, T ;H),

χξ(0, x) = 0 for a.a. x ∈ Ω. (6.6)
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By (6.5)–(6.6) and the standard calculation, we get the uniform estimate of solutions χξ
with respect to ξ ∈ [−1, 1] \ {0} as follows:

sup
t∈[0,T ]

|χξ(t)|2H + εκ

∫ T

0

|∇χξ(t)|2Hdt ≤ N7|ũ|2L2(0,T ;H) (6.7)

for some positive constant N7 independent of ξ ∈ [−1, 1] \ {0}. Thus we infer from (4.6),
(4.40), (6.5) and (6.7) that

|χ′ξ|L2(0,T ;X′) ≤ N8|ũ|L2(0,T ;H) (6.8)

for some positive constant N8 > 0 independent of ξ ∈ [−1, 1] \ {0}. Therefore by the
uniform estimates (6.7) and (6.8) of χξ, there is a subsequence {ξn} ⊂ {ξ} and a function
χ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) such that ξn → 0,

χξn → χ weakly-∗ in L∞(0, T ;H) and weakly in L2(0, T ;X), (6.9)

χξn → χ in L2(0, T ;H) and in C([0, T ];X ′), (6.10)

χ′ξn → χ′ weakly in L2(0, T ;X ′), (6.11)

as n→∞.
Here from (4.6), (6.4), (6.9), Lipschitz continuity of function (F ε)′, and Lebesgue’s

dominated convergence theorem, we infer that:

(F ε)′(wξn)χξn → (F ε)′(w)χ in L2(0, T ;H) as n→∞. (6.12)

Similarly we observe from (4.40), (6.4), (6.9) that for each i, j = 1, 2, · · · , N ,

∂aεi
∂ηj

(∇wξn)
∂χξn
∂xj

→ ∂aεi
∂ηj

(∇w)
∂χ

∂xj
weakly in L2(0, T ;H) (6.13)

as n→∞.
By (6.9)–(6.13), and by taking the limits in (6.5)–(6.6) as n→∞, we observe that χ

satisfies the following system:

∫ T

0

〈χ′(t), ζ(t)〉dt+ κ

∫ T

0

∫

Ω

(∂aε
∂η

(∇w(t))∇χ(t)
)
· ∇ζ(t)dxdt

+

∫ T

0

((F ε)′(w(t))χ(t), ζ(t))dt =

∫ T

0

(χ(t), ζ(t))dt+

∫ T

0

(ũ(t), ζ(t))dt, (6.14)

for all ζ ∈ L2(0, T ;X) and any direction ũ ∈ L2(0, T ;H);

χ(0, ·) = lim
n→∞

χξn(0, ·) = 0 (∈ H) in X ′. (6.15)

Since the solutions of the Cauchy problem {(6.14)–(6.15)} are uniquely determined,
we see that χ = χ and the convergence (6.2) holds, i.e.,

χξ = DũΛ
ε(u+ ξz)→ χ = DũΛ

ε(u) in L2(0, T ;H) as ξ → 0

for any u ∈ L2(0, T ;H), z ∈ L2(0, T ;H) and any direction ũ ∈ L2(0, T ;H). Thus the
proof of this lemma has been completed.
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Taking account of (4.45), (6.2) and (6.4), we easily see that the following corollary
holds.

Corollary 6.1. Assume the same conditions as in Theorem 6.2. Let ξ ∈ [−1, 1] \ {0}.
Then the Gâteaux derivative of the cost functional Jε is continuous in the following sense:

DũJ
ε(u+ ξz) := lim

λ→0

Jε(u+ ξz + λũ)− Jε(u+ ξz)

λ

−→ DũJ
ε(u) := lim

λ→0

Jε(u+ λũ)− Jε(u)

λ
(6.16)

for any u ∈ L2(0, T ;H), any z ∈ L2(0, T ;H) and any direction ũ ∈ L2(0, T ;H),

as ξ → 0.

By the arguments similar to those in Lemma 6.3, we can show the following lemma,
so we omit the detailed proof.

Lemma 6.4. Suppose the same conditions in Theorem 6.2. For any ξ ∈ [−1, 1] \ {0},
u ∈ L2(0, T ;H) and z ∈ L2(0, T ;H), let pξ = Λε

ad(u + ξz). Then pξ = Λε
ad(u + ξz)

converges to p = Λε
ad(u) in L2(0, T ;H) as ξ → 0.

Also we get the following lemmas by the same proof of [17, Lemmas 4.5, 4.6]. For the
detailed proofs we refer to [17, Section 4].

Lemma 6.5 (cf. [17, Lemma 4.5]). Assume the same conditions as in Theorem 6.2. Let
n ∈ N, and let {uk; k = 1, 2, · · · , n} be a sequence in L2(0, T ;H) defined by the numerical
algorithm (NA). Let pn = Λε

ad(un), β ∈ (0, 1) and δ ∈ (0, 1). Assume that un + pn 6= 0 in
L2(0, T ;H). Then there is a minimal constant ln ∈ N ∪ {0} such that

Jε(un − βln(un + pn))− Jε(un) ≤ −δβln |un + pn|2L2(0,T ;H). (6.17)

Lemma 6.6 (cf. [17, Lemma 4.6]). Assume the same conditions as in Theorem 6.2. Let
n ∈ N, and let {uk; k = 1, 2, · · · , n} be a sequence in L2(0, T ;H) defined by the numerical
algorithm (NA). Let pn = Λε

ad(un), β ∈ (0, 1) and δ ∈ (0, 1). Assume that un + pn 6= 0 in
L2(0, T ;H). Also, let ln be the constant obtained in Lemma 6.5. Then we have

βγ
(
(1− δ)|un + pn|L2(0,T ;H)

) ≤ βln|un + pn|L2(0,T ;H), (6.18)

where γ : [0,∞)→ [0,∞) is the function defined by

γ(t) := inf
{|ξz|L2(0,T ;H) ; |u+ ξz + pξ − (u+ p)|L2(0,T ;H) ≥ t

}
(6.19)

with pξ = Λε
ad(u + ξz) and p = Λε

ad(u) for ξ ∈ [−1, 1] \ {0}, u ∈ L2(0, T ;H) and z ∈
L2(0, T ;H).
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Taking account of Lemmas 6.3–6.6, we can prove Theorem 6.2 by using a similar
demonstration method, adopted in [17, Theorem 4.1]. For the detailed proof, see [17,
Theorem 4.1].

Finally we give a numerical experiment of (OP)ε in two dimension of space. We
performed the numerical simulation of (OP)ε under the setting parameter: α = 100.0,
κ = 0.01, ε = 0.01, and the stopping parameter δ = 10−6 in the numerical algorithm (NA).
For the numerics we change the variables from (t, x) to (t/c, x/c) = (s, y) with c = 0.01.
We consider the domain (0, T ) × Ω 3 (s, y) by T = 0.01 and Ω = (−1, 1) × (−1, 1),
and making a lattice for numerics with space mesh size ∆h = 0.01 and time mesh span
∆t = 0.00001 = 0.1×∆h2.

With regard to the target profile wd, we suppose that:

wd(t, x) :=

{
1, if |x| < 0.5,

−1, if |x| ≥ 0.5,
for a.a. (t, x) ∈ QT .

Also, for simplicity, we set that the given initial data wε0 ≡ 0 a.e. in Ω, and the initial
control function u0 ≡ 0 a.e. in QT . For the detailed profiles of given data wd and wε0, see
Figure 1.

We do a numerical experiment of (OP)ε by using the explicit finite difference scheme
similar to [15]. For the detailed scheme, we refer to [15].

Figure 2 is the numerical result of the solution for (P)ε with initial data wε0 ≡ 0 at
T = 0.01 in the case of the iteration number n = 20. Figure 3 is the graph of the value of
the cost functional Jε for (OP)ε. We observe from Figures 1–3 that the solution of (P)ε

has the similar profiles to the desired one wd and the cost functional Jε almost takes the
minimal value.

Figure 1: Given target and initial data for (P)ε.
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Figure 2: Solution for (P)ε at T = 0.01 and iteration number n = 20.

Figure 3: The graph of the value of the cost functional Jε for (OP)ε.

References

[1] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation
flow, Differential and Integral Equations, 14(2001), 321–360.

[2] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the
total variation flow, J. Funct. Anal., 180(2001), 347–403.

[3] H. Attouch, “Variational Convergence for Functions and Operators,” Pitman Ad-
vanced Publishing Program, Boston-London-Melbourne, 1984.

[4] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN , J.
Differential Equations, 184(2002), 475–525.
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