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PREFACE

Russian mathematician P. L. Chebyshev (1815-1897) once said in a general
context that the agreement of theory and practice brings most beneficial
results in sciences. His words pertain to what this monograph intends to
convey to the reader. That is, the author wishes primarily to provide the
reader with a mathematical insight into modern crystallography, a typical
practical science that originated in the classification of the observed shapes
of crystals. However the tools we shall employ are not adopted from the
traditional theory of crystallographic groups, but from algebraic topology, a
field in pure mathematics cultivated during the last century. More specifically
the theory of covering spaces and homology theory are effectively used in the
discussion on the 3D networks associated with crystals. This explains the
reason why this monograph is entitled Topological Crystallography. Further
we formulate a minimum principle for crystals in the framework of discrete
geometric analysis, which, in spite of its pure-mathematical nature, turns
out to fit with a systematic enumeration of crystal structures, an area of
considerable scientific interest for many years.

The objects that topological crystallography concerns are not necessarily
restricted to crystals. Ornamental patterns having crystallographic symme-
try in art, nature and architectures are the objects falling within the scope
of this monograph. Indeed, many interesting forms (Katachi in Japanese)
which are potentially useful for artistic designs in various areas are generated
from canonical placements characterized by the minimum principle. There-
fore, the main target of this monograph is, naturally enough, both mathe-
maticians (including graduate and even undergraduate students) and a wide
circle of practical scientists (especially crystallographers and design scientists
in art and architecture as well) who want to know how ideas and theories
developed in pure mathematics are applied to a practical problem.

This monograph has developed out of the note that I prepared for my
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lectures at Meiji University during the academic year 2011-12. My thanks
are due to Davide M. Proserpio who provided me with relevant references
in chemical crystallography. I also thank Hisashi Naito and my daughter
Kayo for producing the beautiful CG images of several hypothetical crystals.
This work could not have been done without the friendly help and advice of
several people, especially Polly Wee Sy. I have great pleasure in thanking
her. Toshikazu Sunada
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