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LECTURE ON TOPOLOGICAL CRYSTALLOGRAPHY
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Commemorating the fourth centennial anniversary of the publication of
Kepler’s pamphlet

“New-Year’s gift concerning six-cornered snow” (1611)

Abstract. This is an expository article on modern crystallography
based on discrete geometric analysis, a hybrid field of several traditional
disciplines: graph theory, geometry, theory of discrete groups, and prob-
ability, which has been developed in the last decade. The mathematical
part relying on algebraic topology is fairly elementary, but may be still
worthwhile for crystallographers who want to learn how mathematics is
effectively used in the practical science. A brief history of crystallogra-
phy is also explained.

1. Introduction

The main purpose of this expository article is twofold; first, to tell a brief
history of crystallography, a practical science originated in the classification
of the observed shapes of crystals, and second, to provide the reader with a
mathematical insight into modern crystallography developed in the last two
decades in order to bridge the gap of knowledge between mathematicians
and crystallographers.

The mathematical tools employed here are adopted from elementary al-
gebraic topology. More specifically, the routine theory of covering spaces and
homology groups is effectively used in the study of the 3D networks associ-
ated with crystals. Actually many notions and tools invented by crystallog-
raphers may be interpreted in these algebraic-topological terms established
by the first half of the 20th centuty (see Appendix). Moreover the enumera-
tion of crystal structures, an area of considerable scientific interest for many
years, is a simple byproduct of the classical theory of covering spaces as far
as their topological structures are concerned (see Section 9 and 10 ).

In the latter part of the lecture, I shall explain a minimum principle
for crystals in the framework of discrete geometric analysis ([39]), which
characterizes canonical placements1 of crystal structures, a way to place
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39A12, 74E15.

Key words and phrases. topological crystal, canonical placement, discrete geometric
analysis, discrete Abel-Jacobi map.

1This notion is the same as standard realizations introduced in [27], and coincides with
the archetypical representations (Eon [23]); see Remark in Section 12).
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2 Topological Crystallography

them in space so as to have the most symmetric microscopic shapes. In
its concrete construction, the well-known idea of orthogonal projections in
harmonic integrals is employed. In spite of its pure-mathematical nature,
the notion of canonical placements turns out to fit with a systematic design
of crystal structures.

Canonical placements turn up in asymptotic behaviors of random walks
on topological crystals, the abstraction of crystal structures, and are closely
related to a discrete analogue of Abel-Jacobi maps in algebraic geometry
as explained in Section 15. As a matter of fact, my initial motivation be-
hind topological crystallography have arisen from these seemingly irrelevant
subjects (see [28] and [30]).

This article is based on my lecture for the Summer Challenge project at
High Energy Accelerator Research Organization (KEK) in Tsukuba. A full
account of topological crystallography will be given in the forthcoming book
[40]. See Eon [23] for an overview from crystallographer’s standpoint.

Acknowledgement I am grateful to D. M. Proserpio and J.-G. Eon for
fruitful discussions who also provided me with relevant references in chem-
ical crystallography. I also thank Hisashi Naito and my daughter Kayo for
producing the beautiful CG images of several hypothetical crystals.

2. Legacy of Ancient Greece in crystallography

Crystals, the word derived from the Greek meaning “ice”, are the most
stable form for all solids. They are found throughout the natural world, and
have been always recognized as being distinct from other forms of matter.

The links between morphology of crystals and mathematics are ancient.
It is said that geometry in ancient Greece started from the curiosity about
the shapes of crystals2. Actually legend has it that Pythagoras (about 569
BC-about 475 BC) derived the notion of regular polyhedra from the shape
of a crystal. This legend is not entirely baseless because the southern part in
Italy where Pythagoras dwelled and established his school3 produces Pyrite
crystal (an iron sulfide with the formula FeS2) whose shape is roughly cubic,
octahedral, or dodecahedral.

Euclid’s Element, written around 300 BC and consisting of thirteen vol-
umes, ends up with the classification of regular convex polyhedra; that is, it
is shown in the final volume that there are exactly five regular convex poly-
hedra; say, tetrahedron, cube, octahedron, dodecahedron, and icosahedron
(Figure 1). According to Plato’s dialogue Timaeus written around 360 B.C.,
the first mathematician who established the classification is Theaetetus, a

2Poincaré says “If there were no solid bodies in nature, there would be no geometry”.
3Pythagorean school in Crotone, a Greek colonial town on the south-eastern coast of

Italy, was a religious order in which Pythagoras was a sort of cult figure.
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contemporary of Plato4. In today’s viewpoint, the classification of regular
polyhedra is closely related to that of finite subgroups of the orthogonal
group O(3), point groups in crystallography ([33]).

Figure 1. Regular convex polyhedra

Pappus (290-350) of Alexandria testifies in his Collection that Archimedes
(287 BC-212 BC) proposed, in a now-lost work, the notion of semi-regular
polyhedron as a generalization of regular polyhedron, and found 13 such
solids5. By this reason, semi-regular polyhedra are sometimes referred to as
Archimedean solids.

Figure 2. Semi-regular convex polyhedra

The discovery of these solids by Archimedes seems to have been made
with purely mathematical motivation. After more than 2000 years, however,
some of semi-regular polyhedra are going to show up in material science as
graphic representations of certain chemical compounds6.

4A regular convex polyhedra, called also Platonic solids, are characterized by the prop-
erty that its faces are congruent regular polygons, with the same number of faces meeting
at each vertex.

5A polyhedron is said to be semi-regular if it has regular faces and a symmetry group
which is transitive on its vertices. Precisely speaking there are two infinite series of convex
prisms and convex antiprisms satisfying this condition.

6The network model of Fullerene C60, a compound of carbon atoms whose existence
was confirmed in 1990, is the 1-skeleton of the truncated icosahedron, one of semi-regular
polyhedra.



4 Topological Crystallography

3. Kepler’s contribution to crystallography

Since the period of Hellenism, geometry had taken its own path, and
the study of crystals had not been the central theme in mathematics. An
exception is the work of Johannes Kepler (1571–1630) on snowflake. Ke-
pler’s short pamphlet entitled New-Year’s gift concerning six-cornered snow
(“Strena Seu de Nive Sexangula” in Latin) is considered the first work on
the problem of crystal structures7 though he did not refer to the atomistic
viewpoint at all that dates back to ancient Greece8. Kepler’ motivation
came from the question about why snow crystals always exhibit a six-fold
symmetry.

Figure 3. Johannes Kepler

Among other things, he pondered two questions in this pamphlet, which
are eventually to break new ground in very diverse fields of science, especially
in mathematics and crystallography.

(1) He speculated that the densest packing of equally sized spheres is
attained by the hexagonal arrangement, which later became known as the
Kepler conjecture9.

Figure 4. Hexagonal sphere packing

7This pamphlet was dedicated on the occasion of the new year of 1611 to his friend
and patron, the scholar and imperial privy councilor Johannes Matthäus Wackher von
Wackenfels.

8The atomism was advocated by Leucippus and Democritus in the 5th century BC.
9In 1998 Thomas Hales, following an approach suggested by Fejes Tóth (1953), an-

nounced that he had a proof of the Kepler conjecture.
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The hexagonal arrangement is closely related to what crystallographers
call the face-centered cubic lattice (fcu10) illustrated in Figure 5, where the
nodes (vertices) are located at centers of equal spheres, and the line segments
(edges) indicate that two spheres located at their end points touch each
other.

Figure 5. The face-centered cubic lattice

(2) In connection with the hexagonal arrangement, Kepler noticed that
the honeycomb structure maximizes the number of wax walls each bee shares
with his neighbor, thereby allowing bees to collaborate in constructing the
shared walls of a cell. The hexagon also turns out to be most efficient in
terms of exploiting the maximum of space using the minimal amount of
wax11.

Later we will see that a different kind of minimum principle characterizes
the honeycomb structure.

Kepler’s observation includes indirect pointers to the law of constant an-
gles for a six-sided snow crystal; thus he is regarded as a forerunner of
N. Steno (1669), M. W. Lomonosov (1749) and Romé de l’Isle (1783), the
discoverers of the law.

Needless to say, Kepler is renowned as an astronomer who discovered
the three laws of planetary motion. His essay demonstrates that Kepler
had been thinking of not only the law of the vast universe but also the
smallest aspects of nature. It should be emphasized, however, that he was
an astrologer and theologian as well, and always sought an interpretation of
the harmony of forms as God’s choice ([35]). Namely he asks the snowflakes
the same question as he did the planets; which form follows God’s order.

It is worthwhile to mention that, in Harmonice Mundi (1619) which in-
cludes his discovery of the third law of planetary motion, Kepler accom-
plished a complete classification of semi-regular polyhedra ([11]). This
achievement tells, though his study on geometric figures can not be separated
from his theological dogmatism12, that he was one of the most outstanding
mathematicians of his day.

10We use the three-letter names for crystal ctructures propsed by [34].
11Pappus had already noticed that bees have the foresight at their disposal allowing

them to understand that a hexagonal partition is more effective than a triangular or a
square partition.

12It is said that Kepler is the last astronomer of the Renaissance, and not the first of
the new age.
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4. Crystallographic groups

It is only in the 19th century, more than 2,000 years later since the time
of ancient Greece, that mathematics began to play a serious role in crys-
tallography; that is, group theory became matured enough to be applied to
the morphology of crystals13.

As a prehistory of the morphology, there have been observations by people
mentioned above about the angles between the faces of a crystal. That is,
the faces could be of different sizes, depending upon the conditions under
which the crystal have grown, but the relations them remain fixed.

As a reasoning of this fact, Huygens thought of crystals, say the mineral
calcite, as being built from small ellipsoidal units (1690). Using this picture,
he explained that the resulting faces always preserve the same relationships.

The science of crystallography started when Haiiy published his Essai
d’une Théorie sur la Structure des Cristaux (1784) in which he developed
Huygen’s concept to explain the law of angles between faces. Since then,
scientists had studied many physical properties (for instance, optical activity
discovered by Aragon in 1811) in connection with the morphology of crystals.

The study of morphology led the early crystallographers to a simple classi-
fication of all crystals in terms of symmetry. It is German crystallographer
J. F. C. Hessel who, for the first time, investigated the possible types of
symmetry for a crystal (1830). He found that there are 32 types of groups
of symmetry. His book Krystallonomie und Krystallographie stating this
conclusion was published in Leipzig in 1831, and has not been read seri-
ously enough by other scientists at that time. A. Bravais in 1849 and A.
Gadolin in 1867 rediscovered the same 32 symmetry groups by repeating the
derivation. Their work was well-known before L. Sohncke, a crystal physi-
cist, found Hessel’s earlier book in 1891. It should be pointed out that the
notion of groups has been seldom used till 1860’. C. Jordan is the first who
recognized that the classification of crystal symmetry is described in terms
of subgroups of O(3) (1869). As for 3-dimensional crystallographic groups14

(space groups), after fundamental works by C. Jordan and L. Sohncke, all
230 isomorphism classes have been determined in 1891 by E. S. Fedorov and
A. Schoenflies independently.

From a mathematical viewpoint, it is natural to study crystallographic
groups in general dimension. In 1900, D. Hilbert posed a question on finite-
ness of isomorphism classes of crystallographic groups in his famous address
at the second International Mathematical Congress held at Paris. L. Bieber-
bach (1910-12) and G. Frobenius (1911) solved affirmatively the problem.

13The notion of “group” originated in the work of Evariste Galois (1811-1832) on the
inability to generalize the quadratic equation to algebraic equations of degree greater than
or equal five. Nowadays the idea of group is one of the great unifying ideas of mathematics.

14A subgroup G of the congruence transformation group of Rd is said to be a d-
dimensional crystallographic group if it is discrete and has a compact quotient G\Rd.
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5. Discovery of crystal structures

Crystallographic groups introduced to describe macroscopic symmetry of
crystals have been a basic tool in classical crystallography even after Max
von Laue’s discovery of crystal structures by the diffraction of X-rays (1912).

The X-ray technique is based on observing the scattered intensity of an
X-ray beam hitting a sample. What was found by Laue is that crystals are
solids composed of atoms arranged in an orderly repetitive array, and hence
confirmed the anticipation that classical crystallographers had conceived
long before. Just after Laue’s discovery, W. L. Bragg and W. H. Bragg
greatly simplified von Laue’s description of X-ray interference, and solved
the structures of diamond, sodium chloride (NaCl) and Zinc sulfide (ZnS)
in 1913. Today, crystallographers can produce a 3D picture of the density
of electrons within the crystal from which the mean positions of the atoms
in the crystal can be determined, as well as their mutual interactions.

Figure 6. Covalent bonding

It should be worthwhile to point out that there are several ways of in-
teractions. A typical one is covalent bonding, which is a form of chemical
bonding that is characterized by the sharing of pairs of electrons between
atoms (the term “covalent bond” dates from 1939). When we draw a picture
of a crystal structure (and any molecule), we join two atoms by a line if they
interact each other. This line is called a bond.

Let us exhibit a few examples of crystal structures. Figure 7 illustrates
the structures of Diamond and Lonsdaleite.

Figure 7. Diamond and Lonsdaleite
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Diamond is an allotrope of carbon which is formed and synthesized at
high-pressure and high-temperature conditions, and is known to be less sta-
ble than graphite15 though the conversion rate from diamond to graphite is
negligible at ambient conditions. Silicon and germanium adopt similar types
of crystal structure. On the other hand, Lonsdaleite (called also hexagonal
diamond) is a carbon allotrope formed when meteorites containing graphite
strike the Earth, which was first identified in 1967 from the Canyon Diablo
meteorite.

The copper crystal is a typical one having the fcu structure. Silver and
gold also have the fcu structure. The honeycomb lattice, a 2D crystal
structure, appears as the crystal structure of Graphene16, an allotrope of
carbon.

Figure 8 is what crystallographers call the body-centered cubic lattice
(bcu). It is known that the caesium chloride (CsCl) forms a crystal whose
structure is bcu.

Figure 8. The body-centered cubic lattice

We will observe later that the crystal structures mentioned here, say Dia-
mond, Lonsdaleite, fcu, bcu and honeycomb lattice, share a special feature
in view of geometry.

In the 20th century, crystallographer’s interest shifted naturally from the
morphology of crystals to the study of microscopic crystal structures. As
the learned reader may easily conceive, the tool available for this purpose
is graph theory, a field studying mathematical structures used to model
pairwise relations between objects from a certain collection. Actually one
of central themes in modern crystallography is to enumerate (hypothetical)
crystals by means of graph theoretic descriptions of crystal structures. Once
we find a hypothetical crystal, a systematic prediction of its physical proper-
ties for appropriate atoms can be carried out by first principles calculations.
The prediction by the computer power encourage (or discourage) material
scientists to synthesize the hypothetical crystals.

15Graphite as a mineral is one of the allotropes of carbon, and the most stable form
under standard conditions. It has a layered, planar structure. In each layer, the carbon
atoms are arranged in a honeycomb lattice. Weak van der Waals forces hold the layers
together.

16The term graphene was coined by Hanns-Peter Boehm (1962). The Nobel Prize in
Physics for 2010 was awarded to Andre Geim and Konstantin Novoselov “for ground-
breaking experiments regarding the two-dimensional material graphene”.
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Before proceeding to graph theoretic treatment of crystals, let us describe
a brief history of the interchange of ideas between chemistry and graph
theory.

6. Graphs associated with chemical compounds

A primitive idea of “bond” has been already conceived from as early as the
12th century. It supposes that certain types of chemical species are joined
by a type of chemical affinity. By the mid of 19th century, it was becoming
clear that chemical compounds are formed from constituent elements, and
the idea of bond had been developed as the theory of valency based on
the theory of radicals. Especially the theory of chemical structure by the
German chemist August Kekulé, in which he took into account the specific
combining power (or valences) of specific atoms, provided dramatic new
clarity of understanding on chemical compounds (1858).

Here came a fusion of mathematical and chemical ideas. That is, graph
theory17 and chemistry started to interact each other.

Mathematically, a graph is represented by an ordered pair X = (V, E) of
the set of vertices V and the set of all directed edges E. Note that each edge
has just two directions, which are to be expressed by arrows.

For an directed edge e, we denote by o(e) the origin, and by t(e) the
terminus. The inversed edge of e is denoted by e. With these notations, we
have o(e) = t(e), t(e) = o(e).

Figure 9. Directed edge

The set of directed edges with origin x ∈ V is denoted by Ex;

Ex = {e ∈ E| o(e) = x}.
The number of elements in Ex is said to be the degree of x, and is denoted
by deg x.

The usage of graph theory in chemistry, which is natural in view of the
idea of valency, is traced back to 1864 when the Edinburgh chemist Crum
Brown proposed to represent chemical compounds by graphs where each
atom is represented by a vertex of the graph, and each edge of the graph
represents a bond. In 1874, Carl Schorlmmer linked chemistry with trees.
Meanwhile French chemist L. Pasteur observed that the relative spatial ar-
rangement of atoms within molecules is vital in understanding of their chem-
ical properties (1861); thus he may be described as the first stereochemist.
In stereochemistry, molecules are represented as graphs realized in space.

17The notion of graphs was implicitly used by Leonhard Euler (1707-1783) when he
solved the problem of “Königsberg seven bridges” (1736).
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It is interesting to point out that the term “graph” was used for the first
time by Sylvester in a note appeared in the scientific journal Nature (1878)
where a relationship between chemistry and algebra was suggested.

To avoid a confusion, we shall use the terminology “network” (or simply
“net”) from now on when we are handling a graph placed in space (plane).

7. Fundamental finite graphs and building blocks

After confirmed that atoms and molecules have physical existence, net-
work representations of molecules also broke away from fictitious entity. It
is thus a matter of course for crystallographers to employ graph theory for
the study of crystal structures. Strangely enough, however, the systematic
approach by means of graph theory has not been done until 1950’s though,
by this time, plenty of crystal structures have been understood and repre-
sented by networks. The reason may be due to the self-explanatory fact that
the ideal model of a crystal is an infinite graph, which is not an object that
the ordinary graph theory handles.

It is A. F. Wells who initiated the intensive research by treating crystals
as periodic 3D nets in space ([41], [42]). In his influential book [42] (1977),
Wells treated uniform nets, and tried to investigate them systematically.
Here “uniform” means that the net is a regular graph, and that the shortest
circuit containing any two edges through any vertex shall have the same
number of edges.

The net associated with a crystal is not just an infinite graph realized in
space (or plane), but, as observed by crystallographers ([8]), a graph with
a translational action which becomes a finite graph when factored out. We
shall take up the term “a Bravais lattice” to express a group of translations
leaving the crystal invariant. The finite graph obtained by factoring out is
called the fundamental finite graph (or quotient graph). This observation
has been used in a systematic enumeration of crystal structures (see [24] for
instance).

To illustrate the concrete way to get the fundamental finite graph X0 =
(V0, E0) from a net X = (V, E) of a crystal, we employ Figure 10. Here as a
Bravais lattice, we take the lattice group generated by two vectors depicted
by arrows. We first label vertices and edges of X; say, A,B, C,D for vertices
and a, b, c, d, e, f for edges in the honeycomb lattice, in such a way that the
same label is assigned to two edges (resp. two vertices) if one is obtained
from another by a translation belonging to the Bravais lattice. Then we
gather the labels of vertices and join them by labeled edges, keeping the
adjacency relation. Thus one gets the fundamental finite graph18.

This construction allows us to assign a vector v(e) to each directed edge
e in X0 as follows. Choose a direct edge e′ in X which corresponds to e.

18What we explained here is a special case of the construction of quotient sets associated
with equivalence relations.
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Figure 10. How to get the fundamental finite graph

Since e′ is a directed line segment in space (or plane), it represents a vector
v(e) which does not depend upon the choice of e′. Obviously v(e) = −v(e).

The system of vectors

{v(e)}e∈E0 =
⋃

x∈V0

{v(e)| e ∈ E0x}

completely determines the net X. In this sense, {v(e)}e∈E0 deserves to be
called the building block19 of X.

Figure 11. A building block

Figure 11 tells how to get the crystal from the building block. For ex-
ample, travel on the graph X0 along AbBdCeDfC, and sum up the vectors
corresponding to directed edges in the trail20

−−→
AbB +

−−−→
BdC +

−−→
CeD +

−−−→
DfC.

Drawing such vector sums in plane for all trails starting from A, we obtain
the honeycomb X.

Again from the construction of the fundamental finite graph, we obtain
a map from X onto X0 in a natural manner, which we call the canonical
map (precisely speaking, the canonical map is a morphism of graphs which

19Crystallographers use the term “a labelled quotient graph” for X0 with a building
block. Mathematically a building block is nothing but a 1-cochain on X0 with values in
Rd.

20In Section 8, “trails” will be called “paths”.
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brings vertices to vertices and edges to edges in such a way that the adjacency
relation between vertices and edges is preserved.

One should remark that the choice of Bravais lattice is not unique. Two
Bravais lattices (represented by arrows) are shown in the Figure 12. The
corresponding fundamental finite graphs are depicted on the left and right.
We usually take the maximal one as a Bravais lattice.

Figure 12. Two Bravais lattice and their fundamental finite graphs

We now take a look at Diamond and Lonsdaleite. For Diamond, if we
take the maximal Bravais lattice, the fundamental finite graph is the graph
(A) in Figure 13 consisting of two vertices joined by four parallel edges21.
For Lonsdaleite, its fundamental finite graph is the graph (B). In both cases,
the building blocks are related to the regular tetrahedron.

Figure 13. Fundamental finite graphs for Diamond and Lonsdaleite

Figure 14 is the crystal structure of the 3D kagome lattice22, which is
comprised of corner-sharing tetrahedra. The fundamental graph for the
maximal Bravais lattice is given on the right. The 3D kagome lattice turns
out to have a special feature as seen in Section 13.

It is interesting to point out that 1-skeletons of many semi-regular polyhe-
dra are hidden in crystals. For instance, one can find the cubooctahedron in
the face-centered cubic lattice, and truncated tetrahedron in the 3D kagome
lattice.

So far we have traced the path that crystallographers have taken. Now let
us ask a mathematician “What’s the mathematical nature of crystal struc-
tures ?”. His immediate answer would be “Topologically they are infinite-
fold abelian covering graphs over finite graphs. Crystals are their periodic

21The honeycomb lattice is considered the 2-dimensional analogue of the diamond
crystal

22This is a 3D version of the ordinaly kagome lattice; see Section 13.
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Figure 14. 3D kagome lattice and its fundamental finite graph

realizations in space”. This simple answer is a sort of folklore in the com-
munity of mathematicians, and hence it is not attributed to anybody. It is
no wonder, however, that Henri Poincaré (1854-1912), founder of algebraic
topology, could have easily conceived this answer if he would have witnessed
Laue’s discovery, which was coincidentally accomplished in the last year of
Poincaré’s life.

The main aim from now on is to explain the nature of this answer by
adopting routine tools in algebraic topology.

8. Homology

The homology group (of a cell complex in general) is an algebraic system
constructed from figures (cells)23. We are not going to be involved in its
general theory, but shall confine ourselves to the case of graphs. The reader
who is familiar with algebraic topology may skip the definitions of homology
groups and covering graphs.

Given a finite graph X0 = (V0, E0), we consider a sum over vertices of the
following form ∑

x∈V0

axx (ax ∈ Z).

We call such a sum a 0-chain (with coefficients in Z). This sum and the
product axx (integer × vertex) are formal so that one should not worry
about their meaning. The set of 0-chains is denoted by C0(X,Z) with which
we equip the structure of a free abelian group in the following way.

(1)
∑

x∈V0

axx = 0 if and only if ax = 0 for every x ∈ V0,

(2)
∑

x∈V0

axx±
∑

x∈V0

bxx =
∑

x∈V0

(ax ± bx)x.

Thus C0(X,Z) is a free abelian group with the Z-basis V .
Likewise we define the abelian group C1(X0,Z) consisting of finite formal

sums over directed edges
∑

e∈E0

aee (ae ∈ Z),

23Historically the germination of homology theory is seen in the work by Riemann and
Poincaré on algebraic functions.
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which we call a 1-chain (with coefficients in Z). In this turn, however, we
impose the relation e = −e so that a way to express a 1-chain as above is
not unique24. If we fix an orientation Eo

0 of X; that is, a subset Eo
0 ⊂ E0

satisfying Eo
0 ∩Eo

0 = ∅, Eo
0 ∪Eo

0 = E0, then Eo
0 is a Z-basis of C1(X0,Z), so

that any 1-chain is expressed as
∑

e∈Eo
0

aee in a unique way.

Roughly speaking, the homology group of a graph is introduced to de-
scribe the adjacency relation between vertices and edges in an algebraic
way. To be exact, we define the boundary operator (homomorphism) ∂ :
C1(X0,Z) −→ C0(X0,Z) by putting ∂(e) = t(e) − o(e) and extending it to
a homomorphism, where we should note that ∂e = ∂(−e), and hence the
definition of ∂ is compatible with the relation e = −e. The 1-homology
group H1(X0,Z) is defined to be the kernel of ∂:

H1(X0,Z) = Ker ∂ (= {α ∈ C1(X0,Z)| ∂α = 0}).
An element of H1(X0,Z) is said to be a homology class or a 1-cycle. H1(X0,Z)
is a free abelian group of finite rank. The rank of H1(X0,Z), symbolically
b1(X0), is called the (first) Betti number. The Betti number is an indicator
of the “complexity” of finite graphs.

Homology classes are represented by closed paths. Here a path in X0 is a
sequence of edges c = (e1, . . . , en) with t(ei) = o(ti+1) (i = 1, . . . , n− 1). If
t(en) = o(e1), then c is said to be closed.

Figure 15. A path

For a path c = (e1, . . . , en) in X0, the symbol 〈c〉 expresses the 1-chain
e1 + · · · + en. If c is closed, then ∂(e1 + · · · + en) = 0, and hence 〈c〉 is a
homology class. An important fact we frequently use is that every homology
class is represented by a closed path.

We shall enumerate several facts of the homology group.

Fact 1 There exists a Z-basis of H1(X0,Z) consisting of homology classes
represented by closed paths.

Fact 2 Let T ba a spanning tree25 in X0. Then the number of undirected
edges in X0 not contained in T is equal to the first Betti number b1(X0).

24We are considering the factor group of the free abelian group with the Z-basis E0

modulo the subgroup generated by {e + e| e ∈ E0}.
25Among all subtrees in a graph X0, we can find a maximal one with respect to inclu-

sion, which we call a spanning tree of X0.



Toshikazu Sunada 15

Fact 3 When X0 is a plane graph26 without vertices of degree one, X0

divides the plane into a finitely many bounded connected small regions; say,
D1, . . . , Dk. One can prove k = b1(X0).

Fact 4 (The Euler relation) |V0|− |E0|/2 = 1−b1(X0). This is equivalent
to Euler’s polyhedral theorem27.

Given a system of vectors {v(e)}e∈E0 , we consider the homomorphism

v̂ : H1(X0,Z) −→ Rd (d = 2, 3)

defined by

v̂
( ∑

e∈E0

aee
)

=
∑

e∈E0

aev(e).

One can easily check that v̂ is well-defined, and that, if {v(e)}e∈E0 is a
building block of a crystal, then the image v̂(H1(X0,Z)) coincides with the
Bravais lattice. The converse holds:

Theorem 8.1. A system of vectors {v(e)}e∈E0 in Rd is a building block of
a crystal if and only if the image of v̂ is a lattice group in Rd

The proof is given in the next section.
So far we have handled the homology group with coefficients in Z. In

a similar fashion, H1(X0,R), the 1-homology group with coefficients in R,
is defined by replacing Z by R in the definition. The group H1(X0,R) is
actually a vector space over R, and H1(X0,Z) is a lattice group in H1(X,R).

9. Topological crystals

Recall that, given the net X associated with a crystal and a Bravais
lattice, we have the canonical map ω : X −→ X0. A special feature of ω is
that it is a regular covering map28 whose covering transformation group is
isomorphic to Zd (d = 2, 3).

For the convenience of the reader, let us give a graph-theoretical descrip-
tion of maps between graphs, and also covering maps. Let X = (V, E),
X0 = (V0, E0) be connected graphs. A morphism ω : X −→ X0 is a cor-
respondence of vertices and edges preserving the adjacency relation among
them. More precisely, it is a pair ω = (ωV , ωE) of maps ωV : V −→ V0, ωE :
E −→ E0 satisfying o

(
ωE(e)

)
= ωV

(
o(e)

)
, t

(
ωE(e)

)
= ωV

(
t(e)

)
for every

26A plane graph is a graph drawn on the plane in such a way that its edges intersect
only at their endpoints, while a planar graph is a graph that can be embedded in the plane.

27This theorem due to Euler (1750) asserts v − e + f = 2 where v, e, f are the number
of vertices, edges and faces of a convex polyhedron. One can make use of this formula
to prove that there are just 5 regular convex polyhedra. Historically Euler’s theorem is
considered to be the starting point of “topology”.

28A primitive idea of covering maps for general spaces is seen in Riemann’s study of
algebraic functions and their integrals (1851). The book Lehrbuch der Topologie by H.
Seifert and W. Threlfall published in 1934 gave a rigorous set-up and popularized the
notion of covering maps.
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e ∈ E, and ωE(e) = ωE(e). By abuse of notations, we write ω(x) for ωV (x)
and ω(e) for ωE(e) for simplicity.

If both ωV and ωE are bijective (one-to-one and onto), the morphism ω =
(ωV , ωE) is said to be an isomorphism. An isomorphism ω of X onto itself is
called an automorphism. The totality of automorphisms of X, symbolically
Aut(X), is a group in a natural manner.

A morphism ω : X −→ X0 is said to be a covering map if
(i) ω : V −→ V0 is surjective,
(ii) for every x ∈ V , the restriction ω|Ex : Ex −→ E0,ω(x) is a bijection.
The group G(ω) = {σ ∈ Aut(X)| ω ◦ σ = ω} is called the covering

transformation group of the covering map ω. A covering map ω is said to
be regular if, for any x, y ∈ V with ω(x) = ω(y), there exists an element
σ ∈ G(ω) such that y = σx.

Let d be any positive integer. A d-dimensional topological crystal29 X is
a regular covering graph over a finite graph, say X0, whose covering trans-
formation group L is a free abelian group of rank d. After the case of the
net associated with a crystal, we call X0 the fundamental finite graph. X
(or ω : X −→ X0) is said to be a topological crystal over X0. We also call
L an abstract Barvais lattice.

In a word, a topological crystal is an abstraction of a real crystal, the no-
tion obtained by forgetting how the net are placed in space, which, however,
still retains all the information on the connectivity of atoms in the crystal.

The following is well-known in the general theory of covering maps:

Theorem 9.1. (1) There exists a (unique) topological crystal ωab : Xab
0 −→

X0 such that the dimension of Xab
0 is b1(X0). Its abstract Bravais lattice is

H1(X0,Z).
(2) For any topological crystal ω : X −→ X0, there exists a regular bcov-

ering map ω1 : Xab
0 −→ X such that ω ◦ω1 = ωab (ω1 is called a subcovering

map). The dimension of X is less than or equal to b1(X0). In this sense,
Xab

0 is the maximal one30 among all topological crystals over X0. We shall
calle Xab

0 the maximal topological crystal over X0.
(3) The covering transformation group H of ω1 : Xab

0 −→ X is a subgroup
of H1(X0,Z) such that the factor group H1(X0,Z)/H is isomorphic to the
abstract Bravais lattice of topological crystal ω : X −→ X0 and hence free
abelian. Conversely, for a subgroup H of H1(X0,Z) such that H1(X0,Z)/H
is free abelian, there exists a topological crystal X whose abstract Bravais
lattice is H1(X0,Z)/H.

29The reason to adopt the term “topological crystal” is to emphasize its abstract na-
ture and at the same time to keep the word “crystal” in order to make it clear that we
are addressing the problem of crystals, not the problem of general graphs. Chemical crys-
tallographers adopt the term“ periodic graphs” for the underlying topology of crystal
structures.

30In [4], the term “minimal net” is used for the maximal abelian covering over a finite
graph.



Toshikazu Sunada 17

A subgroup H of H1(X0,Z) such that the factor group H1(X0,Z)/H is
free abelian will be called a vanishing subgroup.

Roughly speaking, the theorem above tells that there is a one-to-one cor-
respondence between the family of topological crystals X over X0 and the
family of vanishing subgroups H of H1(X0,Z).

As an example of X0, let us consider the 3-bouquet graph B3 (Figure
16)31. Let Eo

0 = {e1, e2, e3} be an orientation of B3. Then, e1, e2, e3

constitute a Z-basis of H1(B3,Z). The maximal topological crystal over
B3 is the (topological) cubic lattice. On the other hand, the triangular
lattice is a topological crystal corresponding to the vanishing subgroup H =
Z(e1 + e2 + e3).

Figure 16. The cubic lattice and the triangular lattice

We now give a proof of Theorem 8.1. Let H = {α ∈ H1(X0,Z)| v̂(α) = 0},
the kernel of v̂, and ω : X −→ X0 be the topological crystal corresponding
to H. Define the map Φ : V −→ Rd by setting

Φ(x) = v(ω(e1)) + · · ·+ v(ω(e)),

where c = (e1, . . . , en) is a path in X joining a reference point x0 and x (one
can prove that Φ(x) does not depend upon the choice of c). Then we extend
Φ to a piecewise linear map from X into Rd. The reader may notice that
the definition of Φ is a generalization of what we have illustrated in Section
7 for the honeycomb lattice. The crystal which we wanted is defined as the
image of Φ.

One can check
v(ω(e)) = Φ(t(e))− Φ(o(e))

and

(1) Φ(σx) = Φ(x) + ρ(σ),

where σ is an arbitrary element of the abstract Bravais lattice L = H1(X0,Z)/H,
and ρ : L −→ Rd is the injective homomorphism characterized by v̂(α) =

31The n-bouquet graph is the graph with a single vertex with n loop edges.
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ρ(µ(α)). Here µ : H1(X0,Z) −→ L = H1(X0,Z)/H is the canonical homo-
morphism.

10. Enumeration of topological crystals

If we forget how crystals are placed in space, then the enumeration of crys-
tals reduces to that of topological crystals, or equivalently the enumeration
of finite graphs X0 and vanishing subgroups H of H1(X0,Z).

If we restrict ourselves to the class of finite graphs X0 such that deg x ≥ 3
for every x ∈ V0, then there are only finitely many X0 with a fixed Betti
number. Thus one can enumerate X0 in principle at least.

Figure 17. Several graphs with b1 = 3

Figure 18. Several graphs with b1 = 4

It should be pointed out that, given an integer d with 1 ≤ d < b1(X0),
there are infinitely many vanishing groups H with rank H1(X0,Z)/H = d,
from which it follows that there are infinitely many d-dimensional topolog-
ical crystals over X0. Hence to enumerate topological crystals, we need to
introduce a sort of “magnitude” of vanishing subgroups H. For this sake,
we first define the norm ‖α‖1 of a 1-chain α =

∑

e∈Eo
0

aee by setting

‖α‖1 =
∑

e∈Eo
0

|ae|,

where it should be noted that ‖α‖1 does not depend upon the choice of
an orientation Eo

0 . Then for a Z-basis S = {αd+1, . . . , αb} of a vanishing
subgroup H, we put

h(S) = max(‖αd+1‖1, . . . , ‖αb‖1),
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and define the height of H by

h(H) = min
S

h(S).

Consider two sets

R1 = {S| h(S) ≤ h},
R2 = {H| h(H) ≤ h}.

Clearly R1 is a finite set. The correspondence

S 7→ H generated by S

gives a surjective map of R1 onto R2. Thus we get the following:

Theorem 10.1. For any positive number h and positive integer d with
1 ≤ d < b1(X0), there are only finite number of vanishing subgroups H of
H1(X0,Z) satisfying

(1) rank H1(X0,Z)/H = d,
(2) h(H) ≤ h.

11. Canonical placements

Topological crystals are purely mathematical objects “living in the logical
world, but not in real space” in the sense that they are constructed on the
basis of pure reflection32, thereby being not visible even for the 3D case if
we would leave it intact.

The issue of topological crystals becomes more interesting if we seek the
most natural way to place them in space. For instance, the diamond crystal
is one of the placements in space of the topological diamond (the maximal
topological crystal over the graph (A) in Figure 13). Figure 19 illustrates
another placement of the topological diamond (“graphite-like” placement).

Figure 19. The graphite-like placement of the diamond crystal

Actually there are infinitely many ways to realize a given topological
crystal in space. Then a natural question is raised: “what is the most
canonical placement, especially what are the characteristics possessed by

32This is the so-called Platonic view; that is, we mathematicians insist that mathemat-
ical entities are abstract in not being spatiotemporally located, and hence lie outside a
real world.
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the diamond crystal that differ from all other placements of the topological
diamond ?”

The diamond crystal is more symmetric than its graphite-like placement.
This observation motivates us to seek the most symmetric placements in
general. As a candidate of such placements, we shall introduce the notion
of canonical placements (see Remark below).

We first define the notion of general placements in view of (1). Let X =
(V, E) be a d-dimensional topological crystal with an abstract Bravais lattice
L, and let X0 = (V0, E0) be its fundamental finite graph. A piecewise linear
map Φ : X −→ Rd is said to be a placement if there exists an injective
homomorphism ρ : L −→ Rd satisfying

(1) Φ(σx) = Φ(x) + ρ(σ) (x ∈ V, σ ∈ L),

(2) ρ(L) is a lattice subgroup of Rd.

The image Φ(X) is the cystal33 associated with the topological crystal X.
Its Bravais lattice is ρ(L). The building block {v(e)}e∈E0 of Φ(X) is given
by v(ω(e)) = Φ(t(e)) − Φ(o(e)). As in the case of nets, the building block
determines Φ uniquely (up to translations).

To define the canonical placement of X, we shall resort to a certain min-
imal principle, having in mind Euler’s remark “Since the fabric of the Uni-
verse is most perfect and the work of a most wise creator, nothing at all
takes place in the Universe in which some rule of maximum or minimum
does not appear”.

In order to formulate the minimal principle, let us think of a crystal as a
system of harmonic oscillators; that is, each edge is supposed to represent
a harmonic oscillator whose energy is the square of its length (Figure 20).
This simple model of a crystal leads us to the notion of energy functional
defined as34

(2) E(Φ) = vol
(
Dρ(L)

)−2/d
∑

e∈E0

‖v(e)‖2,

which is regarded as the “normalized” total potential energy of the system
per unit cell. Here vol

(
Dρ(L)

)
stands for the volume of the unit cell Dρ(L)

associated with the Bravais lattice ρ(L).
The presence of the term vol

(
Dρ(L)

)−2/d in (2) makes E(Φ) a size-free
quantity.

The canonical placement is defined to be a placement Φ minimizing E(Φ).

33Strictly speaking, Φ(X) could be pathological in the sense that different vertices may
be mapped by Φ to the same point, the image of an edge may collapse, or the image of
two edges may overlap.

34A real crystal (crystalline solid) is also physically regarded as a system of harmonic
oscillators under an appropriate approximation of the equation of motion, but the shape
of energy is much more complicated.
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Figure 20. A system of harmonic oscillators

Theorem 11.1. ([30],[27]) (1) There exists a unique canonical placement
Φ of E up to homothetic transformations35 of Rd.

(2) A placement Φ is canonical if and only if
∑

e∈E0x

v(e) = 0 (x ∈ V0),(3)

∑

e∈E0

〈v(e),n〉2 = c (constant)(4)

for any unit vector n ∈ Rd,

One can see that (5) is equivalent to there being a positive constant c
such that, for any x ∈ Rd,

(5)
∑

e∈E0

〈
x,v(e)

〉
v(e) = cx.

Namely (5) is equivalent to saying that {v(e)}e∈E0 is a tight frame, a notion
introduced in wavelet analysis.

The condition (3) in the theorem tells that the crystal as a system of
harmonic oscillators is in equilibrium in the sense that the total force acting
on any “atom” from its nearest neighbors vanishes. A placement satisfying
(3) is what we called a harmonic realization in [27] because (3) is equivalent
to saying that Φ is “harmonic” with respect to the discrete version of the
Laplacian ([39], [28], [30]); see Remark (2) in the next section.

The proof for the characterization (3), (4) in Theorem 11.1 relies on the
following fact:

For a symmetric matrix S of size d with positive eigenvalues,

(6) tr S ≥ d(detS)1/d,

where the equality holds if and only if S is a scalar matrix, i.e. S = λId

with λ > 0. The inequality (6) reduces to the inequality of arithmetic and

35A homothetic transformation of Rd is an affine transformation of the form

M(x) = cUx + a (c > 0, a ∈ Rd),

where U is an orthogonal matrix, i.e. U ∈ O(d). A congruent transformation is the case
that c = 1.
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geometric means:
1
d
(a1 + · · ·+ ad) ≥ (a1 · · · ad)1/d.

The existence of canonical placements will be shown in the next section.
In the case of maximal topological crystals, we have the following explicit

inequality
E(Φ) ≥ 2b1(X0)κ(X0)−1/b1(X0),

where κ(X0) is the number of spanning trees in X0. The equality holds if
and only if Φ = Φab (up to homothety).

The following theorem tells that the canonical placement has the property
“extrinsic symmetry =intrinsic symmetry”, and hence has maximal symme-
try among all placement36.

Theorem 11.2. ([30]) Let Φ : X −→ Rd be the canonical placement. Then
there exists a homomorphism κ : Aut(X) −→ M(d) such that

(1) when we write κ(g) =
(
A(g), b(g)

) ∈ O(d)× Rd, we have

Φ(gx) = A(g)Φ(x) + b(g) (x ∈ V ),

(2) the image κ
(
Aut(X)

)
is a crystallographic group,

12. Construction of canonical placements

The canonical placement of the maximal topological crystal Xab
0 is con-

structed in the following way. First we provide H1(X0,R), the 1-homology
group with real coefficients, with a natural inner product (which allows us
to identify H1(X0,R) with the Euclidean space Rb, b = b1(X0)). For this
sake, we start with an inner product on C1(X0,R), the group of 1-chains
with real coefficients.

For e, e′ ∈ E0, we set

〈e, e′〉 =





1 (e′ = e)
−1 (e′ = e)
0 (otherwise)

,

which extends to an inner product on C1(X0,R) in a natural manner; say,
〈 ∑

e∈E0

aee,
∑

e∈E0

be′e
′
〉

=
∑

e,e′∈E0

aebe′〈e, e′〉.

Restricting this inner product to the subspace H1(X0,R) (= Ker ∂ ⊂ C1(X0,
R)), we get an Euclidean structure on H1(X0,R), which will be the space
where the maximal topological crystal Xab

0 is placed.

36Roughly speaking, maximal symmetry means that no structural deformation of its
periodic arrangement of atoms in a crystal will make the structure more symmetrical than
it is
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Let Pab : C1(X0,R) −→ H1(X0,R) be the orthogonal projection, and put
vab(e) = Pab(e), regarding each edge as a 1-chain. Since v̂ab : H1(X0,Z) −→
H1(X0,R) coincides with the injection, it follows from Theorem 8.1 that
vab(e)}e∈E0 is a building block of a placement Φab of the maximal topological
crystal Xab

0 . One can prove that Φab is canonical.
We now go over to the general case. Let X be a topological crystal over

X0 corresponding to a vanishing subgroup H of H1(X0,Z). Let HR be the
subspace of H1(X0,R) spanned by H, and H⊥

R the orthogonal complement
of HR in H1(X0,R):

H1(X0,R) = HR ⊕H⊥
R .

Then dim H⊥
R = rank L = d. By choosing an orthonormal basis of H⊥

R , we
identify H⊥

R with the Euclidean space Rd.
Let P : H1(X0,R) −→ H⊥

R = Rd be the orthogonal projection. If we put
v(e) = P

(
vab(e)

)
, then we find that {v(e)}e∈E0 gives the building block of

the canonical placement of X.
To sum up, we have the following commutative diagram for the canonical

placements.

Xab
0

Φab−−−−→ Rb

ω1

y
yP

X −−−−→
Φ

Rd

i.e., P ◦ Φab = Φ ◦ ω1, where ω1 : Xab
0 −→ X is the subcovering map

of ωab : Xab
0 −→ X0. To coin a phrase, the canonical placement of a

topological crystal is obtained by projecting down the canonical placement
of the maximal topological crystal onto a suitable hyperplane.

Finally we shall give a practical procedure by means of matrix computa-
tions to materialize the logically constructed object, thereby giving a pow-
erful approach to the systematic design of (hypothetical) crystal structures.

(1) Give a finite graph X0, and a vanishing subgroup H of H1(X0,Z).
Take a Z-basis α1, . . . , αb (b = b1(X0)) of H1(X0,Z) such that αd+1, . . . , αb

(d ≤ b) comprise a Z-basis of H. We then have the d-dimensional topological
crystal X corresponding to H.

(2) Compute the square matrix of size b

A =
(〈αi, αj〉

)
=

(
A11 A12

A21 A22

)

where A11 (resp. A22) is a square matrix of size d (resp. b− d).
Put Γ = A11 − A12A

−1
22 A21, which turns out to be a positive definite

symmetric matrix. Take vectors a1, . . . ,ad ∈ Rd such that Γ =
(〈ai,aj〉

)
,

which is to be a Z-basis of the Bravais lattice of the crystal Φ(X).
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(3) Compute b(e) = t
(〈e, α1〉, . . . , 〈e, αb〉

)
(e ∈ E0), and a(e) = A−1b(e) =

t
(
a1(e), . . . , ab(e)

)
. Then putting v(e) =

d∑

i=1

ai(e)ai, we obtain a building

block {v(e)}e∈E0 of the canonical placement Φ : X −→ Rd.

Thus the most important part in the procedure is to take a Z-basis of
H1(X0,Z) (preferably a Z-basis represented by closed paths) with which
everything reduces computation of matrices.

Remark 1 The canonical placement explained here is what we called the
standard realization in [27] (2000), which derives from the asymptotic be-
haviors of random walks on topological crystals. Originally the standard
realizations were introduced as an analogue of the Abel-Jacobi maps in al-
gebraic geometry.

The reader may find a quite a bit analogy with the classical theory of
harmonic integrals in the above discussion. Actually everything we explained
here is a discrete version of the method of orthogonal projections developed
by Weyl, Hodge, and Kodaira. A protoidea in the graph setting is already
seen in Weyl’s work in 1920s applied to the problem of electric circuits (see
[39]).

Remark 2 Crystallographers also sought canonical ways to place periodic
graphs in space, and proposed the notions of archetype embeddings (Eon [22],
1999), archetypical representations (Eon [23], 2011), equilibrium placements
or barycentric placements (Delgado-Friedrichs and O’Keeffe [12], 2003), and
barycentric drawings (Delgado-Friedrichs [14], 2004)37.

The equilibrium placement coincides with the harmonic realization intro-
duced in [27] (2000) as a special case of harmonic maps ([20], [31]), and
hence is characterized as a minimizer of the energy functional with a fixed
homomorphism ρ. Delgado-Friedrichs and O’Keeffe [12] rediscovered this
fact. The first person in crystallography who seems to have mentioned the
idea of equilibrium placements is H-J. Klein [26] (1996). The archetype
embeddings introduced by Eon is a special equilibrium placement of the
maximal topological crystal (minimal net) which is constructed in the same
way as Φab. Actually, reading off the terminology in [23] (being not an easy
task), one may find that the archetypical representations are identical to the
canonical placements.

13. Examples

We are now ready to produce examples of canonical placements based
on the general recipe given in the previous section. An interesting aspect
is that “beautiful” shapes of various crystal structures are characterized by

37Delgado-Friedrichs constructed a poweful algorithm (called SYSTRE) for the
barycentric drawing. The program is available at http://www.gavrog.org/. An input
data for SYSTRE is a finite graph together with an initial building block (with values in
Zd), whereas the input data of our algorithm is a finite graph and a vanishing group.
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the minimal principle. This reminds us of the isoperimetric inequality which
characterizes the round circle, the most symmetric closed curve.

(1) Figure 21 illustrates the canonical placements of the quadrangle lattice,
hexagonal lattice, triangular lattice, and kagome lattice38. They are called
the square lattice (sq1), honeycomb lattice (hcb) (or regular hexagonal lat-
tice), regular triangular lattice (hx1), and regular kagome lattice (kgm),
respectively. Taking a look at their building blocks, we can easily check that
these placements are actually canonical.

Figure 21. Classical 2-dimensional lattices

Here the regular kagome lattice is the canonical placement of the topolog-
ical crystal over the graph depicted in Figure 22 with the vanishing group

H = Z(e1 + e2 + e3) + Z(f1 + f2 + f3).

It is known that some minerals, for instance jarosites (KFe3+
3(OH)6(SO4)2)

and herbertsmithite (ZnCu3(OH)6Cl2), contain layers with kagome lattice
arrangement of atoms in their crystal structure.

Figure 22. A fundamental finite graph of the kagome lattice

Figure 23 is a tiling of pentagons with picturesque properties that has
become known as the Cairo pentagon39. Its 1-skeleton is the canonical place-
ment of a topological crystal over the finite graph depicted on the right.

Figure 24 is the canonical placement associated with the rhombille tiling
(kdg) which has an action by translations of the lattice group generated by
two vectors (represented by arrows). The quotient graph is the one on the
right.

38The term “kagome” derives from two separate Japanese words, meaning the pattern
of holes (“me”, literally “eyes”) in a basket (“kago”).

39This is also called Macmahon’s net or mcm.
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Figure 23. Cairo Pentagon

Figure 24. Dice pattern lattice

(2) Some of real crystals are canonically placed. Here are six examples:
(i) Diamond (dia)
(ii) Lonsdaleite (lon)
(iii) Cubic lattice (pcu)
(vi) Face-centered cubic lattice (fcu)
(v) Body-centered cubic lattice (bcu)
(vi) 3D kagome lattice (crs)

Figure 25. ThSi2 structure

ThSi2 structure. Figure 25 is the canonical placement of what crys-
tallographers call the ThSi2 structure, which is realized in a compound of
Thorium and Silicide, and found in a number of other materials. As an
abstract graph, ThSi2 structure is the maximal topological crystal over the
finite graph depicted on the right.

(3) We shall exhibit several hypothetical crystals.
(i) The K4 crystal is the canonical placement of the maximal topological

crystal over the complete graph K4 ([38]).
The K4 crystal is a purely mathematical object at present, not having

been known so far to exist in nature as a pure crystal like diamond, but
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Figure 26. CG image of the K4 crystal

possessing remarkable mathematical properties by which the K4 crystal de-
serves to be called the diamond twin (see Section 14 and [38]).

The K4 crystal, which I rediscovered by chance in the midst of my study of
random walks, is called (10,3)-a ([42]) or srs net ([13]) by crystallographers
(for more on the history of srs see [25]). The name srs comes from the fact
that it occurs in the compound SrSi2 as the Si substructure. H. S. M.
Coxeter [10] called it “Laves’ graph of girth ten”. It is believed that the
crystallographer who discovered for the first time this crystal structure as
a hypothetical crystal is Fritz H. Laves (1933). The K4 crystal has a close
relationship with the gyroid, an infinitely connected triply periodic minimal
surface discovered by Alan Schoen in 1970. In [9], the K4 crystal is called
the triamond net.

(ii) (tfa) Figure 27 is the canonical placement of the maximal topological
crystal over the graph depicted on the right.

Figure 27. 3D example

(iii) Figure 28 is the canonical placement of the topological crystal over
the graph depicted on the right (called K33) corresponding to the vanishing
subgroup H = Z(e1 + e2 + e3 + e4 + e5 + e6).

(iv) 3D kagome lattice depicted in Figure 14 is usually regarded as a
3D analogue of the kagome lattice in crystallography since the 2D kagome
lattice is a network of corner-sharing triangles while 3D kagome lattice is
comprised of corner-sharing tetrahedra.

There is another 3D analogue of the kagome lattice which is defined to be
the canonical placement of the topological crystal over the graph depicted
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Figure 28. 3D example

Figure 29. Another 3D kagome lattice

on the right in Figure 29 with the vanishing subgroup

H = Z(e1 + e2 + e3 + e4) + Z(f1 + f2 + f3 + f4)

(compare with the description of the kagome lattice given in (1)).

(v) The case that X0 is the graph depicted on the right in Figure 30 with
the vanishing subgroup

H = Z(e1 + e2 + e3 + e4) + Z(f1 + f2 + f3 + f4).

Figure 30. 3D example

14. Open problems

As mentioned in Section 2, the curiosity of Greek mathematicians about
the beautiful shapes led to the classification of regular convex polyhedra.
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This is also the case of Kepler who established the complete classification of
semi-regular polyhedra. Namely an eager desire to explore beautiful forms
has been the pulling force in geometry.

The open problems proposed here are concerned with the classification
of crystal structures with big symmetry. We are thus following the long
tradition of geometry40.

An isotropic41 crystal is a crystal with the property that there is no dis-
tinction in any direction and position in the sense that there is a congru-
ent transformation preserving the crystal and exchanging any two directed
edges. An isotropic crystal as an abstract graph has constant degree.

In the 2-dimensional case, such crystals are the classical lattices mentioned
at the beginning of the previous section; that is,

(i) Square lattice,
(ii) Honeycomb lattice,
(iii) Regular triangular lattice,
(iv) Regular kagome lattice,

together with three series of pathological crystals (see Figure 31 for an ex-
ample of isotropic pathological 2D crystal42).

Figure 31. A pathological isotropic crystal

Here are (non-pathological) 3D examples known heretofore:
(i) K4 crystal, degree 3
(ii) Diamond, degree 4
(iii) 3D kagome lattice (in our sense), degree 4
(iv) Cubic lattice, degree 6

40Here we take for granted the belief that beauty is bound up with symmetry. However
human’s aesthetic sense is not so simple to take the belief above as a complete agreement.
Someone says cynically that “symmetry is death” since, if something has symmetry, it is
static, unchanging, frozen as in death. Needless to say, aesthetic sense depends heavily
upon our cultural background. For instance, compare the asymmetric feature of Japan-
ese architecture with the so-called Greco-Roman tradition that strictly obeys the rule of
symmetry.

41The term “isotropic” is used in a different context in crystallography. That is, an
isotropic crystal is a crystal which has the same optical properties in all directions.

42This figure is placed in my book [37] published in 2006, and is called a Pythahorian
lattice because it is related to rational solutions of the equation x2 + y2 = 1. See [19]
(2009) (and [17], [18]) for a related question in which a weaker version (edge-transitivity)
of isotropy is discussed.
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(v) 3D kagome lattice, degree 6
(vi) Body-centered cubic lattice, degree 8
(vii) Face-centered cubic lattice, degree 12

Problem 1 Classify all 3D isotropic crystals including pathological ones43.

One can consider a stronger version of isotropy. An isotropic crystal is
said to be strongly isotropic if, for any two edges with the same end point,
there is a congruent transformation preserving the crystal and exchanging
these two edges while other edges (with the same end point) are fixed.

The K4 and diamond crystals are the only two 3D crystals having the
strong isotropic property (this is the reason why we call the K4 crystal the
diamond twin). In two dimension, the honeycomb lattice is the only exam-
ple. A typical example in Rd is the d-dimensional diamond, the canonical
placement of the maximal topological crystal over the graph consisting of
2 vertices joined by d + 1 parallel edges. The maximal topological crystal
over the complete graph Kn also yields an example, whose dimension is
(n− 1)(n− 2)/2. Besides the 4-dimensional diamond, the maximal topolog-
ical crystal over the graph in Figure 28 gives a 4D example.

Problem 2 Classify all strongly isotropic crystals of general dimension.

15. Discrete Abel-Jacobi maps

The canonical placement Φab of the maximal topological crystal Xab
0 con-

structed in Section 12 has a special feature, which is properly interpreted
by analogy with classical algebraic geometry. The reader may usefully con-
sult the reference [2], [3], [6], [29], [39] for more about “discrete algebraic
geometry”, an active field still in a state of flux.

For the convenience of the reader, we shall start with a brief review of a
relevant part in classical algebraic geometry.

Given an algebraic curve44 S with a reference point p0, we denote by Ω1(S)
the space of holomorphic 1-forms on S, and think of the first homology group
H1(S,Z) as a subgroup of the dual space

(
Ω1(S)

)∗ by using the pairing map

([α], ω) =
∫

α
ω,

where [α] stands for the homology class of a 1-cycle α. Since H1(S,Z) is a
lattice group of

(
Ω1(S)

)∗, the factor group

J(S) =
(
Ω1(S)

)∗
/H1(S,Z).

43This problem is interesting in view of architectural design.
44Precisely speaking, we are considering a non-singular complex projective algebraic

curve, or equivalently a closed Riemann surfarce.
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is a complex torus, which we call Jacobian (torus). The Albanese map Φ :
S −→ J(S) is the holomorphic map defined by the pairing

(7) (Φ(p), ω) ≡
∫ p

p0

ω (mod H1(S,Z)).

On the other hand, the Picard group is defined as the factor group

Pic(S) = Div0(S)/Prin(S),

where Div0(S) is the group of divisors with degree 0, namely

Div0(S) =
{∑

p∈S

app ∈ C0(S,Z)|
∑

p∈S

ap = 0
}

,

and Prin(S) is the group of principal divisors, which is defined to be the
subgroup of Div0(S) consisting of divisors

(8)
∑

p∈S

ordp(f)p.

associated with meromorphic functions f on S. Here ordp(f) is the order of a
pole or zero of f . A classical result in complex analysis tells

∑

p∈S

ordp(f) = 0,

and hence the divisor (8) belongs to Div0(S).
The Abel-Jacobi map Ψ : S −→ Pic(S) is a holomorphic map defined by

Ψ(p) ≡ p− p0 (mod Prin(S)).

Abel’s theorem, one of the culmination of classical algebraic geometry,
asserts that the correspondence p − p0 7→ Φ(p) yields an isomorphism of
Pic(S) onto J(S). Thus under the identification between Pic(S) and J(S),
the Abel-Jacobi map coincides with the Albanese map.

Having the above review in mind, we are now going to deal with an
analogue of Jacobian torus in discrete set-up. Let X0 = (V0, E0) be a finite
graph with a reference point x0. Define the flat torus J(X0) by setting

J(X0) = H1(X0,R)/H1(X0,Z),

where the flat metric is the one induced from the inner product introduced
in Section 12. We call J(X0) the Jacobian torus45, which has the structure
of abelian group at the same time.

Now let Φab : Xab
0 = (V ab, Eab) −→ H1(X0,R) be the canonical place-

ment of Xab
0 with Φab(x0) = 0. Since

Φab(αx) = Φab(x) + α (α ∈ H1(X0,Z)),

we obtain a piecewise linear map Φab
0 : X0 −→ J(X0). This is what we

regard as an analogue of Albanese map.

45This is also called the Albanese torus.
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To see a resemblance between a holomorphic Albanese map and its graph-
theoretic analogue, we introduce the notion of harmonic 1-form46 as an
analogue of holomorphic 1-form. A harmonic 1-form on X0 is defined to be
a function ω : E0 −→ R satisfying

ω(e) = −ω(e) (e ∈ E0),(9) ∑

e∈E0x

ω(e) = 0 (x ∈ V0).(10)

Then

(11) (Φab
0 (x), ω) ≡ ω(e1) + · · ·+ ω(en)

(
mod H1(X0,Z)

)

for every harmonic 1-form ω and x ∈ V0, where (e1, . . . , en) is a path in X0

joining x0 and x. The pairing on the left hand side is defined by( ∑

e∈E0

aee, ω
)

=
∑

e∈E0

aeω(e).

The right hand side of (11) is regarded as an analogue of line integral along
a curve.

To go further, we introduce the notion of discrete Jacobian, a direct dis-
crete analogue of Jacobian in algebraic geometry.

The homology group H1(X0,Z) with integral coefficients is an integral
lattice in H1(X0,R) in the sense that 〈α, β〉 ∈ Z for every α, β ∈ H1(X0,Z).
Denote by H1(X0,Z)# the dual lattice of H1(X0,Z) in H1(X0,R); that is,

H1(X0,Z)# = {α ∈ H1(X0,R)| 〈α, β〉 ∈ Z for every β ∈ H1(X0,Z)}.
Since the lattice H1(X0,Z) is integral, we have H1(X0,Z) ⊂ H1(X0,Z)#.
Then the discrete Jacobian J(X0) is defined to be the factor group

H1(X0,Z)#/H1(X0,Z),

which is identified with a finite subgroup of the Jacobian torus J(X0).
Now we shall observe Φab

0 (V0) ⊂ J(X0). For any e ∈ E0 and α ∈
H1(X0,Z), we find 〈Pab(e), α〉 = 〈e, Pab(α)〉 = 〈e, α〉 ∈ Z, and vab(e) =
Pab(e) ∈ H1(X0,Z)#. Therefore Φab(x) ∈ H1(X0,Z)# for every x ∈ V ab

0 ,
which immediately leads to Φab

0 (V0) ⊂ J(X0).
We shall call the restriction Φab

0 |V0 : V0 −→ J(X0) the discrete Albanese
map.

Theorem 15.1. (1) Φab
0 (V0) generates J(X0).

(2) The order |J(X0)| coincides with the number of spanning trees κ(X0)
in X0.

The proof of (1) is carried out as follows. Take a spanning tree T of
X0, and let e1, . . . , eb, e1, . . . , eb (b = b1(X0)) be all edges not in T . Then
vab(e1), . . . ,vab(eb) constitute a Z-basis of H1(X0,Z)#. This is because

46The notion of harmonic forms is originally introduced in Riemannian geometry. It is
related to cohomology theory of manifolds.
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we may take a Z-basis of H1(X0,Z) consisting of circuits c1, . . . , cb in X0

such that ci contains ei, and 〈ci,vab(ej)〉 = 〈ci, Pab(ej)〉 = 〈Pab(ci), ej〉 =
〈ci, ej〉 = δij (namely

{
vab(e1), . . . ,vab(eb)

}
is the dual basis of {c1, . . . , cb}}).

From this fact, our assertion immediately follows.
See [29] for the proof of (2).
The discrete Jacobian J(X0) has a natural graph structure defined as

follows. Let Eo
0 be an orientation of X0. The proof of Theorem 15.1 tells

that {vab(e)}e∈Eo
0

generates J(X0). Thus the map i : Eo
0 −→ J(X0) defined

by
i(e) = vab(e) mod H1(X0,Z),

yields a connected graph X
(
J(X0), Eo

0

)
; that is, the Cayley-Serre graph

associated with the map i (see the remark below), which we denote by
J(X0) by abuse of language. It is easy to see that the graph structure
does not depend upon the choice of an orientation. If we assign the edge(
Φab

0

(
o(e)

)
, e

)
of J(X0) to each e ∈ Eo

0 , then, forgetting the orientation, we
get a morphism Φab

0 : X0 −→ J(X0).

Remark Let G be a group, and i : A −→ G be a map of a finite set A into
G such that i(A) generates G. We define the Cayley-Serre graph X(G,A) in
the following way (cf. [36]). The set V of vertices is just G. Directed edges
are the pairs (g, a), g ∈ G, a ∈ A. The origin and terminus of the edge (g, a)
are defined to be g and gi(a), respectively. Forgetting orientation, we get a
connected regular graph X(G,A) of degree 2|A|. The graph X(G,A) has a
natural free G-action given by g(g′, a) = (gg′, a). Thus given a subgroup H
of G, one can consider the quotient graph X(G,A)/H, called the Schreier
graph, whose vertices are right cosets of H. In particular, X(G,A)/G is the
|A|-bouquet graph. In other words, the Cayley-Serre graph X(G,A) is a
regular covering graph over a bouquet graph.

Conversely, a regular covering graph over a bouquet graph is identified
with a Cayley-Serre graph.

We define the group of divisors of degree zero in the discrete category by
setting

Div0(X0) =
{ ∑

x∈V0

axx ∈ C0(X0,Z)|
∑

x∈V0

ax = 0
}

,

and the group of principal divisors by

Prin(X0) = (∂ ◦ ∂∗)
(
C0(X0,Z)

)
,

where ∂∗ is the ajoint of ∂. Obviously Prin(X0) is a subgroup of Div0(X0).
Define the discrete Picard group by

Pic(X0) = Div0(X0)/Prin(X0).

The order |Pic(X0)| turns out to be equal to κ(X0).
Now we are ready to introduce a discrete version of Abel-Jacobi map.

Imitating the case of algebraic curves, we define the discrete Abel-Jacobi
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map Φaj
0 : V0 −→ Pic(X0) by

Φaj
0 (x) ≡ x− x0 (mod Prin(X0)).

An important fact is that the discrete Abel-Jacobi map has the following
“universal” property (cf. [3]).

Theorem 15.2. Let A be an additive group. Given a harmonic function
f : V0 −→ A with f(x0) = 0, there exists a unique homomorphism ψ :
Pic(X0) −→ A such that ψ ◦ Φaj

0 = f .

In the above, a function f : V0 −→ A with values in A is said to be
harmonic if ∑

e∈E0x

[
f
(
t(e)

)− f
(
o(e)

)]
= 0.

The discrete Albanese map is a harmonic function on V0 with values in
J(X0).

The following theorem, a discrete analogue of Abel’s theorem, tells that
the discrete Abel-Jacobi map is essentially the same as the discrete Albanese
map.

Theorem 15.3. (A discrete version of Abel’s theorem) There exists
a unique isomorphism ϕ of Pic(X0) onto J(X0) such that ϕ ◦ Φaj

0 = Φab
0 .

The proof goes as follows. Use the universal property of discrete Abel-
Jacobi maps to find a unique homomorphism ϕ : Pic(X0) −→ J(X0) sat-
isfying ϕ ◦ Φaj

0 = Φab
0 . Since Φab

0 (V0) generates J(X0), we conclude that
ϕ is surjective. That ϕ is an isomorphism is a consequence of the fact
|J(X0)| = κ(X0) = |Pic(X0)|.

16. Appendix

For the convenience of the reader, we shall give a “dictionary” of termi-
nology used in crystallography ([22]) and mathematics.

(i) Cycle space = homology group H1(X0,R)

(ii) Cocycle space = the orthogonal complement of H1(X0,R) in the 1-
chain group C1(X0,R) with respect to the canonical inner product

(iii) Labelled (quotient) graph= a finite graph with a building block

(iv) Cyclomatic number= the first Betti number

(v) Minimal net = the maximal abelian covering graph

(vi) Edge space= 1-chain group C1(X0,Z)

(vii) Equilibrium placement = harmonic realization

(viii) Archetypical representation = standard realization (canonical place-
ment)
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