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Abstract

A new type of mesh generator is developed by using a self-organized pattern in a reaction-diffusion system. The
system is the Gray-Scott model, which creates a spot pattern in a specific parameter region. The spots correspond to
nodes of a mesh. The mesh generator has several advantages: the algorithm is simple and processes to improve the
mesh, such as smoothing, (locally) addition, and removal of nodes, are automatically performed by the system.
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1. Introduction

The reaction-diffusion system is one of the well studied mathematical models and includes the so-called self-
replication/self-organization mechanism. According to Turing, the combination of diffusion and reaction has the
potential to create a pattern in a self-organized manner [1]. Many researchers believe that the mechanism of pattern
formation in a reaction-diffusion system mimics that in nature [2, 3]. Indeed, Turing patterns have been experimentally
confirmed in chemical systems [4, 5, 6, 7], apart from being observed on the skin of a marine angelfish [8]. The
development of a mathematical theory for the reaction-diffusion system in 50 years is stunning. Moreover, many
applications have been developed in the real world [9, 3, 8].

Here, by using the self-organizing pattern formation mechanism, we propose a new type of application of the
reaction-diffusion system, i.e., a self-organized mesh generator. The proposed mesh generator is a triangular-mesh
generator suitable for numerical simulations, especially for the finite element method (FEM). The strategy used in the
mesh generator is quite different from previous ones, quadtree/octree [10], Delaunay [11, 12, 13], advancing front [14],
bubble [15], and so on. In practical numerical simulations, it is important to obtain a good mesh for a specific domain
shape. It is also necessary to optimize the mesh size according to the domain shape and the properties of the solutions.
Our strategy is based on the self-organized pattern appearing in a reaction-diffusion system, the Gray-Scott model
(GS model) [16, 17, 18, 19], that produces a spot pattern in a suitable parameter region. The spot pattern is obtained
from appropriate initial data, and subsequently, the spots fill the domain automatically. We first introduce the concept
of the self-organized mesh generator based on the GS model. We then demonstrate the advantages and usefulness of
our strategy.
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2. Algorithm for a self-organized mesh generator

2.1. The Gray-Scott model
The GS model represents the two reactions U + 2V → 3V and V → P, where U and V are the reacting chemicals

and P is an inert product. The reaction-diffusion system, in normalized units, can be written as
∂u
∂t

= ∇ · (Du∇u) − uv2 + F(1 − u),

∂v
∂t

= ∇ · (Dv∇v) + uv2 − (F + k)v,
(GS)

where u = u(x, t) and v = v(x, t) are the concentrations of the chemicals U and V , respectively, as a function of
position x and time t; Du and Dv are the diffusion coefficients of the chemicals, respectively, and F and k are positive
parameters. Details of the GS model can be found in references [16, 17, 18, 19]. In a suitable parameter region, the
GS model produces a two-dimensional spot pattern. The features of the obtained spot pattern are as follows. (i) The
domain is filled by spots. (ii) For fixed Du and Dv, the distances between neighbouring spots are almost equal. (iii)
The spot pattern exactly fits the domain shape. It is important to note that these features are automatically realized
when the GS model is used.

We use the spot pattern appearing in the GS model for mesh generation. As expected, the spots correspond to the
nodes (nodal points) of a triangular mesh. Although Du and Dv in (GS) are constants in the whole domain, we change
the constants into spatially dependent functions, i.e., Du = Du(x) and Dv = Dv(x), to control the local mesh size. We
note that no spot pattern appears in the region {x; Du(x) = Dv(x) = 0}. Finally, a mesh is generated from a set of
nodes by using the Delaunay criterion [20].

2.2. Procedure
Let Ω be a given domain and Γ be the boundary of Ω. For performing computations in Ω, we need a mesh

Th = {Kl}ne
l=1, where Kl is the so-called element, i.e., a two-dimensional triangle or a three-dimensional tetrahedron,

ne is the total number of elements, and h is the representative mesh size. Let np be the total number of nodes of Th

and Nh (]Nh = np) be the set of the nodes. The procedure for the construction of the mesh generator consists of the
following five steps and is explained in Figure 1. The five snapshots correspond to the five steps involved in the mesh
generation for a complex domain near Tokyo Bay.

(a) (b) (c)

(d) (e)

Figure 1: Snapshots of the different steps (steps 1–5) in the self-organized mesh generation.
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Step 1: The domain Ω is given by users. In the grey-scale (bitmap) image shown in Figure 1(a), the non-white region
is the domain. We set a fictitious rectangular domainΩ0(⊃ Ω) and consider heterogeneous diffusion coefficients
Du and Dv : Ω0 → R. The colours in the grey-scale image correspond to the values of Dv, which is zero and
positive in the white and non-white regions, respectively.

Step 2: An artificial spot pattern is set as the initial value in the GS model (see Figure 1(b)); the artificial spots are
put on the interfaces between two different colours, including the boundary Γ, and the locations of the artificial
spots are fixed.

Step 3: The system (GS) is numerically solved in Ω0 by the finite difference method (FDM). Subsequently, the artifi-
cial fixed spots on the interfaces produce daughter spots until the domain is filled (Figure 1(c)). The distances
of the spots are decided on the basis of the values of the diffusion coefficients.

Step 4: A set of nodes Nh is obtained from the final spot pattern (Figure 1(d)).

Step 5: A mesh Th is generated from Nh by using the Delaunay criterion (Figure 1(e)).

The self-organized mesh generator described above has following advantages: (i) The procedure is quite simple.
(ii) Nodes are produced almost automatically by solving the GS model. It does not need complex techniques and cri-
teria, for example, techniques for smoothing, (local) addition, or removal of nodes; such operations are automatically
realized.

2.3. Implementation

We describe the details of the implementation in each step of the procedure. First, we fix F = 0.032 and k = 0.063
and obtain a spot pattern for Du/Dv = 2 in the GS model. Since our implementation is realized through (pixel) image-
based computation, we introduce a discrete domainΩ = {xi, j; (i, j) ∈ S}, where xi, j ≡ (i δx, j δx) for i, j ∈ Z∪{Z+1/2},
δx ≡ 1 is the computational mesh size for the FDM, and S ⊂ Z2.

In step 1, we set a discrete rectangular domain Ω0 ≡ {xi, j; (i, j) ∈ S0} satisfying Ω ⊂ Ω0 (S ⊂ S0) with boundary
Γ0 ≡ {xi, j < Ω0; {xi, j±1, xi±1, j} ∩ Ω0 , ∅}. We assume that white colour is used for Ω0 \ Ω and that the colour in
Ω is not white. Let Ω̃0 ≡ Ω0 ∪ Γ0. In the case of Figure 1, Ω0 = {1, · · · , 1000} × {1, · · · , 800}(= S0) ⊂ N2 and
Γ0 = ({1, · · · , 1000} × {0, 801}) ∪ ({0, 1001} × {1, · · · , 800}). We define spatially dependent diffusion coefficients Du

and Dv : Ω̃0 → R by
(Du,Dv)(x) ≡ (2, 1)d(x), (1)

where d : Ω̃0 → R is a function that takes positive values in Ω and zero in Ω̃0 \ Ω. Then, the relation Du/Dv = 2
holds in Ω and a spot pattern appears only in Ω. The domain Ω can be recognized from the function d. In Figure 1,
d = 1.5×10−1, 9.6×10−2, 5.4×10−2, and 0 for the black, dark-grey, light-grey, and white (Ω̃0\Ω) regions, respectively.
When d is a constant in whole domain, the rough relation

h ≈ c∗
√

d (2)

with c∗ = 48 holds by our simulations. We can therefore expect the distance between neighbouring spots in the black,
dark-grey, and light-grey regions will be about 18.6, 14.9, and 11.2, respectively.

To solve the GS model numerically, we introduce an approximation (Un,Vn)(xi, j) ∈ R2 of (u, v)(xi, j, tn) for xi, j ∈
Ω̃0 and n = 0, 1, · · ·; here, tn ≡ n δt and δt is a time increment. Let V∗ ≡ 0.6. ‘An artificial spot pattern’ in step 2 is

U0(xi, j) = 1 (xi, j ∈ Ω̃0), and V0(xi, j) =

 V∗ (xi, j ∈ A),

0 (xi, j ∈ Ω̃0 \ A),
(3)

where A is a set of lattice points on the interfaces between two different colours. We note that the distance between
neighbouring spots in A does not have to be consistent exactly with c∗

√
d in (2). Indeed, in Figure 1 there are three

types of interfaces-between black and dark grey, between dark grey and light grey, and between light grey and white-,
and the distance between neighbouring spots inA at these interfaces is almost 18, 14, and 10, respectively.
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In step 3, we use the following explicit finite difference scheme to compute the GS model: find {(Un,Vn)(xi, j); xi, j ∈
Ω̃0, n = 0, 1, · · ·} ⊂ R2 such that

Un+1 − Un

δt
(xi, j) = (Lδx(u)Un)(xi, j) − Un(Vn)2(xi, j) + F(1 − Un)(xi, j) (xi, j ∈ Ω0),

Vn+1 − Vn

δt
(xi, j) = (Lδx(v)Vn)(xi, j) + Un(Vn)2(xi, j) − (F + k)Vn(xi, j) (xi, j ∈ Ω0 \ A),

Vn+1(xi, j) = V∗ (xi, j ∈ A),

(4)

for n = 0, 1, · · ·, with the initial condition (3) (artificial spot pattern in step 2), and the zero Neumann boundary
condition for Γ0; Lδx(a) : {W : Ω̃0 → R} → {W : Ω0 → R} (a = u, v) is an operator defined by

(Lδx(a)W)(xi, j) ≡
2∑

k=1

[∇δx,k{Da(∇δx,kW)}](xi, j) (xi, j ∈ Ω0),

with (∇δx,kW)(xi, j) ≡ {W(xi, j + (δx/2)ek) −W(xi, j − (δx/2)ek)}/δx (k = 1, 2), ek ≡ (δk1, δk2). Further, δpq (p, q = 1, 2)
is the Kronecker delta and Da(xi, j + (δx/2)ek) ≡ {Da(xi, j + δx ek) + Da(xi, j)}/2. We can write[

∇δx,1{Du(∇δx,1Un)}
]
(xi, j) =

1
δx2

[
Du(xi+1/2, j){Un(xi+1, j) − Un(xi, j)} − Du(xi−1/2, j){Un(xi, j) − Un(xi−1, j)}

]
.

For sufficiently large n0, we obtain the numerical stationary solution {(Un0 ,Vn0 )(xi, j)}xi, j∈Ω0 . In our computation, we
have used the condition

‖Vn0 − Vn0−1‖l2/‖Vn0−1‖l2 < ε ≡ 10−5

for every 5, 000 time steps, where for W : Ω0 → R, ‖·‖l2 is a discrete L2-norm defined by ‖W‖l2 ≡ {δx2∑
xi, j∈Ω0

W(xi, j)2}1/2.
We note that a highly accurate solution is not required, i.e., a rough computation is enough if spots are created,
and that the mesh size h can be controlled by varying d. Because of Lδx(a) in scheme (4), δt needs to satisfy
δt ≤ δx2/4 max{‖Du‖∞, ‖Dv‖∞} (= δx2/8‖d‖∞ when relation (1) is used), where ‖ · ‖∞ is the maximum norm. In
Figure 1, δt = 2/3.

In step 4, Nh is created from the stationary solution {(Un0 ,Vn0 )(xi, j)}xi, j∈Ω0 obtained in step 3, i.e., the local peaks
of {Vn0 (xi, j)}xi, j∈Ω0 become nodes. In our computation, for xi, j ∈ Ω0, if the condition

Vn0 (xi, j) > max
{
Vn0 (xl,m); xl,m ∈ Ω0, xl,m , xi, j, l ∈ [i − ci, j, i + ci, j], m ∈ [ j − ci, j, j + ci, j]

}
(Ci, j)

is satisfied, we define the point xi, j as a node, where ci, j ≡ c0
√

d(xi, j), with c0 ≡ 20. Here, we have set ci, j by using (2).
We then obtain Nh, which is defined by

Nh ≡ {xi, j ∈ Ω0; xi, j satisfies (Ci, j)}.

The set of pointsA used for the ‘artificial spot pattern” in step 1 will be a subset of Nh. This means that we have the
flexibility to set the nodes at appropriate points.

In step 5, the Delaunay criterion gives a triangulation Th from Nh, where the problem of non-convexity of the
domain Ω in the triangulation is solved by using d.

3. Quality of meshes

We examine the quality of meshes generated by the self-organized mesh generator for two sample domains. The
quality is confirmed by the distribution of the inner angles and lengths of meshes.

3.1. Example 1
The first sample domain is Figure 1(a) for the generated mesh shown in Figure 1(e), for which np = 2, 379 and

ne = 4, 234. Theoretical results for the FEM [21] imply that regular triangles are preferred. Figure 2 shows graphs of
relative frequency versus angle (left) and length (right). We can see that there are many almost regular triangles and
that there are three peaks of length around 10, 14, and 18. The three peaks correspond to the three positive values of
d. These results imply that the self-organized mesh generator produces a mesh whose elements are almost regular and
whole local mesh sizes are controlled by d.
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Figure 2: Graphs of relative frequency vs. angle (left) and length (right) for the first sample domain near Tokyo Bay.

3.2. Example 2

The other sample domain is shown in Figure 3 (leftmost figure); the boundary is complex, the mesh size is uniform,
and Ω0 ≡ (1, 250) × (1, 350). In our mesh generator, d = 0.1 and 0 in the black and white regions, respectively, and
δt = 1. For this example, we compare our mesh with that generated by FreeFem++ [22], which is one of the most
famous free FEM softwares. The obtained meshes are shown in the centre (FreeFem++, np = 231, ne = 389) and
rightmost panels (ours, np = 237, ne = 401) of Figure 3, where we have considered identical boundary nodes. Figure 4
shows plots of relative frequency versus angle (left) and length (right). To see the progress of the self-organized mesh
generator, we show two graphs of n = 5, 000 and 20, 000 in addition to the graphs of the FreeFem++ mesh and our
mesh with n = 55, 000 (final). The red and blue lines indicate a mesh generated by FreeFem++ and our (final) mesh,
respectively. The green and magenta lines correspond to n = 5, 000 and 20, 000 in step 3. We can observe that the
distribution of the angles and lengths of our meshes improves as n increases, that the inner angles and lengths of our
meshes are concentrated near π/3 and 15, respectively, and that the final mesh (n = 55, 000) is better than the mesh
generated by FreeFem++.

Figure 3: Second sample domain (left), a mesh generated by FreeFem++ (center), and our mesh (right).
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Figure 4: Graphs of relative frequency vs. angle (left) and length (right) for the second sample domain and comparison with the graphs for the
FreeFem++ generated mesh.

In order to see the difference of finite element solutions by the two meshes of the example (i.e., the centre
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(FreeFem++) and rightmost panels (ours) of Figure 3), we solve a Poisson problem with an inhomogeneous Dirich-
let boundary condition, where the external force and the boundary value of the problem are given so that the exact
solution is φ(x) ≡ sin(x1/100) sin(x2/100). Using the linear (P1) finite element in the FEM, we obtain two finite
element solutions φhFF and φhGS from the mesh generated by FreeFem++ and our mesh, respectively. Let ‖ · ‖H1

0

be the norm of the Sobolev space H1
0(Ω). The relative errors between the finite element and exact solutions are

‖φhFF − φ‖H1
0
/‖φ‖H1

0
= 5.37 × 10−2 and ‖φhGS − φ‖H1

0
/‖φ‖H1

0
= 4.86 × 10−2, which imply that φhGS is almost 10 percent

closer to φ than φhFF in the sense of H1
0(Ω)-norm.

The computational time for our meshes is much longer than that for the meshes generated by FreeFem++. The
actual computational times for the second sample domain are almost 85 (ours, n = 55, 000) and 0.01 s (FreeFem++)
on a notebook computer (Intel Core i7 1.8GHz, 4GB memory), i.e., the computational times differ by a factor of about
8,500. This is the main disadvantage of our mesh generator, although the generated meshes are quite good. Step 3
accounts for the largest part of the computational time of our mesh generation (obtaining the solution of the GS model
by using the FDM). Since the FDM works well in general-purpose computing on graphics processing units (GPGPU)
and shows high performance, the disadvantage relating to the computational time might be considered tolerable.

In general, the computational time of our mesh generation is not so sensitive to the complexity of the domain
shape and mainly depends on the size of Ω0. Indeed, for a star-shaped domain with the same Ω0 = (0, 250) × (0, 350)
it is almost 90 s (n = 60, 000), and for a twice larger (and similar) domain of Figure 3 (leftmost figure) with Ω0 =

(0, 500) × (0, 700) it is almost 455 s (n = 70, 000).

4. Conclusions

We have proposed a self-organized mesh generator based on a spot pattern of the GS model. It shows the features
of a self-replicating system, i.e., it fills the domain with spots, fits the spot pattern to the domain shape, and maintains
almost equal distances between neighbouring spots. We have discussed a (pixel) image-based implementation, which
works well and is useful for practical digital images. The domain shape and the mesh size are controlled by d in (1),
which gives spatially dependent diffusion coefficients Du and Dv in the GS model. The mesh generator has a unique
advantage: the fairly simple procedure does not require additional complex processes and criteria, such as smoothing,
(local) addition, and removal of nodes. These additional processes are automatically performed by the non-linear
system (GS), i.e., through the self-organization mechanism. Although only a two-dimensional mesh generator has
been realized here, the concept of the generator is expected to be useful for the development of a three-dimensional
mesh generator. There is a possibility that the generator can control the mesh orientation, if Du and Dv in (GS) are
modified as matrix valued diffusion coefficients and a modified (Delaunay) triangulation technique is employed.
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