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Abstract. We study the homogenization of a reaction-diffusion-convection
system posed in an ε-periodic δ-thin layer made of a two-component (solid-air)
composite material. The microscopic system includes heat flow, diffusion and
convection coupled with a nonlinear surface chemical reaction. We treat two
distinct asymptotic scenarios: (1) For a fixed width δ > 0 of the thin layer,
we homogenize the presence of the microstructures (the classical periodic ho-
mogenization limit ε → 0); (2) In the homogenized problem, we pass to δ → 0
(the vanishing limit of the layer’s width). In this way, we are preparing the
stage for the simultaneous homogenization (ε → 0) and dimension reduction
limit (δ → 0) with δ = δ(ε). We recover the reduced macroscopic equations
from [21] with precise formulas for the effective transport and reaction coeffi-
cients. We complement the analytical results with a few simulations of a case
study in smoldering combustion. The chosen multiscale scenario is relevant
for a large variety of practical applications ranging from the forecast of the
response to fire of refractory concrete, the microstructure design of resistance-
to-heat ceramic-based materials for engines, to the smoldering combustion of
thin porous samples under microgravity conditions.
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1. Introduction.

1.1. Aim of the paper. We wish to investigate the sub-sequential homogenization
and dimension reduction limits for a reaction-diffusion-convection system coupled
with a non-linear differential equation posed in a periodically-distributed array of
microstructures; see [21, 20] for details on the smoldering combustion context in-
spiring this paper. To prove the homogenization limit we rely on the two-scale
convergence (cf. e.g. [6, 26, 15]). Relying on the estimates obtained in this paper,
we hope to deal at a later stage with the boundary layers occurring during the
simultaneous homogenization-dimension reduction procedure. We expect that the
concept of two-scale convergence for thin heterogeneous layers [29] and appropriate
scaling arguments, somewhat similar to the spirit of [4, 7] are applicable. A similar
strategy would be to use a periodic unfolding operator depending on two parame-
ters [11]. It is worth noting that the simultaneous homogenization and dimension
reduction limit is a relevant research topic related to the rigorous derivation of plate
theories, and away from the elasticity framework; see e.g. [16, 1, 27] and references
cited therein.

This paper prepares a framework where such a simultaneous limit can be done
for a filtration combustion scenario.

1.2. Mathematical background. Homogenization of problems depending on two
or more small parameters is a useful averaging tool when dealing for instance with
reticulated structures (see e.g. [12]) or with porous media with thin fractures (see
e.g. [4]). Often in such cases, the small parameters correspond to scale-separated
processes and can therefore be treated as being independent of each other. The
most challenging mathematical situation is when the two small parameters are inter-
related, i.e. δ = δ(ε) where ε > 0 takes into account the periodicity scale (or the
length scale of a reference elementary volume) and δ > 0 a typical length scale
of the microstructure. This kind of scaling dependence δ = δ(ε) with δ > ε > 0
makes such setting resemble a boundary layer case. Essentially, due to the lack
of scale separation, one can easily imagine that when passing to δ → 0 one looses
the information at the ε-scale; like for instance, in the balance in measures setting
discussed in [34].

1.3. Estimating the heat response of materials with microstructure. Ho-
mogenization of heat transfer scenarios has attracted the attention of many re-
searchers in the last years; see for instance the references indicated in [39, 26, 3]
as well as in the doctoral thesis by Habibi [17] (where the focus is on the radiative
transfer of heat). For a closely related multiscale setting where convection interplays
with diffusion and chemistry, we refer the reader to the elementary presentation of
the main issues given in [37]. For a computational approach to heat conduction in
multiscale solids, see [33].

The practical application we have in mind includes the multiscale modeling of
reverse smoldering combustion, aiming at understanding the behavior of fingering
patterns arising from a controlled experimental study of smoldering combustion
of thin porous samples under microgravity conditions. The details of such an ex-
perimental scenario have been reported previously in [41, 32], and treated math-
ematically in different contexts [22, 14, 25, 40]. In all these papers, the models
are introduced directly at the macroscopic scale and less attention is paid on the
choice of microstructures as well as to the influence of physical processes at the pore
scale. Our paper wishes to fill some gaps in this direction. There are also other
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related studies [35, 31] dealing with averaging of combustion processes. Closely re-
lated application areas include the design of microstructures for refractory concrete
– a composite heterogeneous material with special chemical composition (meant to
postpone dehydration [36]), also referred to as blast furnace. The refractory con-
crete materials are expected to sustain high temperatures and moderate convection,
typical of situations arising in the furnace of steel factories; for more details see [5]
and references cited therein.

1.4. Organization of the material. We proceed as follows: We first ensure the
solvability of the microscopic combustion model. Then we check how the model
responds to the application of the two-scale convergence as ε → 0 for the case
δ = O(1) recovering in this way the structure of the averaged model equations
obtained in [21] by means of formal asymptotics homogenization. Then as next
step, the limit δ → 0 turns to be a regular perturbation scenario that we approach
with techniques inspired by the averaging of reticulated geometries; see [12]. Using
the macroscopic equations obtained in the case ε → 0 for δ → 0, we illustrate
numerically the instability of combustion fingers as observed experimentally in [41].
Finally, we conclude the paper with a brief enumeration of a couple of open problems
arising from this filtration combustion scenario.

1.5. Contents of the paper. The paper is organized in the following fashion:
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2. Notations. Assumptions on geometry. Unknowns. The geometry of the
porous material we have in mind is depicted in Figure 2. It is basically obtained
by replicating and then glueing periodically the unit cell/pore structure depicted in
Figure 1.
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Figure 1. δ-cell (ball microscopic fabric).
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Figure 2. Periodically-distributed array of cells contained in a
ε-thin layer.
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Figure 3. δ-cell (parallelipiped microscopic fabric).
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Figure 4. Periodically-distributed array of cells contained in a
ε-thin layer.

To describe the porous structure of the medium, the following notations will
be used (very much in the spirit of [19]): The time interval of interest is [0, T ],
0 < T <∞. Assume the scale factors ε > 0 and δ > 0 to be given3.

Being our representative pore, Y δ contains two phases: a connected solid phase

Y δs and a connected gas phase such that Y δ = Y δg ∪ Y δs ; see Figure 1 for a sketch of

the microstructure Y δ we have in mind. To fix ideas, let’s take now Y δ to be the
δ-cell

Y δ :=

{
3∑
i=1

λiei : 0 < λi < 1(i = 1, 2),−δ
2
< λ3 <

δ

2

}
,

where ei is the ith unit vector in R3. Correspondingly, Y δ := Y δg ∪ Y
δ

s, where Y δg
and Y δs are δ-dilated versions of Yg and Ys. In this paper, we consider two options of
microstructure solid fabrics: (1) Figure 1 indicates that Y δ contains a ball that does

3Actually, ε and δ are sequences of strictly positive numbers going to zero such that
(
1
ε
, 1
δ

)
∈ N2.
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not touch ∂Y δ, and (2) Figure 3 indicates that Y δ contains a (solid) parallelepiped
that does not touch ∂Y δ.

For subsets X of Y δ and integer vectors k = (k1, k2, k3) ∈ Z3 we denote the
e1, e2-directional shifted subset by

Xk := X +

2∑
i=1

kiei.

The geometry within our layer Ωδ includes the pore skeleton Ωδεs and the pore
space Ωδεg . Obviously, we have

Ωδ := Ωδεg ∪ Ω
δε

s

with

Γδε := ∂Ωδεs
as the (total) gas-solid boundary. As indicated in the Figures above, the microstruc-
tures are not allowed to touch neither themselves nor the outer boundary of the layer
Ωδ.

Finally, note that

∂Ωδ = ΓδD ∪ ΓδN ∪ Γδε,

that is the boundary of the layer Ωδ can be split into the exterior Dirichlet and
Neumann boundaries (ΓδD and ΓδN ) and the inner gas-solid boundary Γδε.

On the other hand, w.l.o.g. assume that we can take Ω a bounded domain in R2

as side for the layer Ωδ such that Ωδ := Ω × [−δ
2
,
δ

2
]. Later on in section 6, when

taking δ → 0 we will understand that Ωδ → Ω×{0} (the dimension reduction step)
with Y δ → Y × {0}, where Ω, Y ⊂ R2. We will write for the reduced homogenized
problem Ω, Y , etc. instead of Ω × {0} and Y × {0} and so on. Also, denote

Ω̂ := Ω×
[
− 1

2 ,
1
2

]
.

By χΘ we denote the characteristic function of the set Θ. Typical choices for the
set Θ will be Y δg , Y

δ
s , etc.

Given uδε : Ωδεg → R3 velocity of the flow, the unknowns of the microscopic model

are: Cδε : Ωδεg → R – the concentration of the active species (typically oxygen),

T δεg : Ωδεg → R and T δεs : Ωδεs → R – the temperatures corresponding to the solid

and gas phases of the material, and Rδε : Γδε → R – the solid reaction product.
For the sake of a simpler notation, for the case δ = O(1), we omit to write the

dependence of the solution vector (Cδε, T δε, Rδε) [with T δε := (T δεg , T δεs )] on the
scale factor δ; we just write (Cε, T ε, Rε) but still keep the presence of δ in the
definition of the space domain.

3. Setting of the microscopic equations - the model (Pδε). We investigate
the model equations proposed in [21] to describe the smoldering combustion of a
porous medium and pose it now in the thin layer Ωδ (see Figure 2 or Figure 4) as
follows: Find the triplet (Cδε, T δε, Rδε) satisfying

∂tC
δε +∇ · (uδεCδε −Dδε∇Cδε) = 0 in Ωδεg ,

Cδεg ∂tT
δε
g +∇ · (Cδεg uδεT δεg − λδεg ∇T δεg ) = 0 in Ωδεg ,

Cδεs ∂tT
δε
s −∇ · (λδεs ∇T δεs ) = 0 in Ωδεs ,

∂tR
δε = W (T δε, Cδε) on Γδε,

(1)
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together with initial and boundary conditions

Cδε(0, x) = C0 in {t = 0} × Ωδεg
T δεi (0, x) = T 0

i in {t = 0} × Ωδεi , i ∈ {g, s}
Rδε(0, x) = R0 on {t = 0} × Γδε

(λδεg ∇T δεg − λδεs ∇T δεs ) · ν = εQW (T δε, Cδε) on Γδε,

T δεg = T δεs on Γδε,

Dδε∇Cδε · ν = −εW (T δε, Cδε) on Γδε,

(2)
and {

T δεi = Tu, Cδε = Cu on ΓδD
∇T δεi · ν = 0, ∇Cδε · ν = 0 on ΓδN .

(3)

We denote the production term by surface combustion reaction by W (T δε, Cδε) :=
ACδεf(T δε). We refer to this microscopic model as the (Pδε)-model.

4. Solvability of the (Pδε)-model.

4.1. Working hypotheses. Before performing any asymptotics, we ensure that
the microscopic model (Pδε) is well-posed. To do so, we introduce a set of restric-
tions on the data and parameters. We assume the following set of assumptions, to
which we refer to as Assumptions (A):

(A1) Dδ, λδg, λ
δ
s ∈ L∞(Y δ)3×3, (Dδ(x)ξ, ξ) ≥ D0|ξ|2 for D0 > 0, (λδg(x)ξ, ξ) ≥

λ0
g|ξ|2 for λ0

g > 0, (λδs(x)ξ, ξ) ≥ λ0
s|ξ|2 for λ0

s > 0 and every ξ ∈ R3, y ∈ Y δ.
(A2) f is bounded and Lipschitz function. Furthermore

f(α) =

{
positive, if α > 0,

0, otherwise.

(A3) Cδεg , C
δε
s are bounded from below by C0

g , C
0
s , respectively.

(A4) C0, C0
g , C

0
s ∈ H1(Ωδ)∩L∞+ (Ωδ), R ∈ L∞+ (Γδ). C0, T 0

g , T
0
s ∈ H1(Ωδ)∩L∞+ (Ωδ)

and R ∈ L∞+ (Γδ).

(A5) ‖uδε‖L2([0,T ]×Ωδ) ≤Mu <∞ and uδε → uδ strongly as ε→ 0.

(A6) Cu, Tu ∈ H1(0, T ;H1(Ωδεg )) ∩ L∞+ ((0, T )× Ωδεg ).

We also define the following uniform in δ constants

MC := ‖C0‖L∞(Ωδ), (4)

MT := max{‖T 0
g ‖L∞(Ωδ), ‖T 0

s ‖L∞(Ωδ)},
MR := max{‖R0‖L∞(Γδ),MT }.

Definition 4.1. We call (Cδε, T δεg , T δεs , Rδε) a weak solution to (1)–(2) if Cδε ∈
Cu+L2(0, T ;H1

Γ(Ωδεg )), ∂tC
δε ∈ ∂tCu+L2(0, T ;L2(Ωδεg )), T δεg ∈ Tu+L2(0, T ;H1

Γ(Ωδεg )),

∂tT
δε
g ∈ ∂tTg +L2(0, T ;L2(Ωδεg )), T δεs ∈ L2(0, T ;H1(Ωδεs ))∩H1(0, T ;L2(Ωδεs )), and
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Rδε ∈ H1(0, T ;L2(Γδε)) satisfies a.e. in (0, T ) the following formulation∫
Ωδεg

∂tC
δεφdx+

∫
Ωδεg

Dδε∇Cδε∇φdx+

∫
Ωδεg

uδε∇Cδεφdx = −ε
∫

Γδε

W (T δε, Cδε)φdγ,

∫
Ωδεg

Cδεg ∂tT
δε
g ϕdx+

∫
Ωδεg

λδεg ∇T δεg ∇ϕdx+

∫
Ωδεg

Cδεg uδε∇T δεg ϕdx+

∫
Ωδεs

Cδεs ∂tT
δε
s ϕdx

∫
Ωδεs

λδεs ∇T δεs ∇ϕdx = ε

∫
Γδε

QW (T δε, Cδε)ϕdγ,

∫
Γδε

∂tR
δεψdγ =

∫
Γδε

W (T δε, Cδε)ψdγ,

for all φ ∈ L2(0, T ;H1
Γ(Ωδεg )), ϕ ∈ L2(0, T ;H1

Γ(Ωδεg )) × L2(0, T ;H1(Ωδεs )), ψ ∈
L2((0, T )×Γδε) and Cδε(t)→ C0, T δεg (t)→ T 0

g in L2(Ωδεg ), T δεs (t)→ T 0
g in L2(Ωδεs ),

Rδε(t)→ R0 in L2(Γδε) as t→ 0.

4.2. Basic estimates and results.

Lemma 4.2. (Energy estimates) Assume (A1)–(A4), then the weak solution to the
microscopic problem (Pδε) in the sense of Definition 4.1 satisfies the following a
priori estimates

‖ Cδεg ‖L2(0,T ;L2(Ωδεg )) + ‖ ∇Cδεg ‖L2(0,T ;L2(Ωδεg ))≤ C, (5)

‖ T δεi ‖L2(0,T ;L2(Ωδεi )) + ‖ ∇Cδεi ‖L2(0,T ;L2(Ωδεi ))≤ C, for i ∈ {g, s} (6)
√
ε ‖ Rδε ‖L∞((0,T )×Γδε) +

√
ε ‖ ∂tRδε ‖L2((0,T )×Γδε)≤ C (7)

Proof. We test with φ = Cδε to get

t∫
0

∫
Ωδεg

∂t|Cδε|2dxdτ + 2D0

t∫
0

∫
Ωδεg

|∇Cδε|2dxdτ +

t∫
0

∫
Ωδεg

uδε · ∇CδεCδεdxdτ

≤ 2εA

∫
Γδε

|Cδε|2f(T δε)dγdτ.

Convection term in (8) vanishes. This follows from

t∫
0

∫
Ωδεg

uδε∇CδεCδεdxdτ =
1

2

t∫
0

∫
Ωδεg

uδε∇|Cδε|2dxdτ

=
1

2

t∫
0

∫
Γδε

n.uδε|Cδε|2dxdτ − 1

2

t∫
0

∫
Ωδεg

∇ · uδε|Cδε|2dxdτ.

Using the boundedness of f , the fact that uδε is divergence-free and zero on the
boundary and the trace inequality, we obtain

t∫
0

∫
Ωδεg

∂t|Cδε(t)|2dxdτ + (2D0 − ε2C)

t∫
0

∫
Ωδεg

|∇Cδε|2dxdτ ≤ C
t∫

0

∫
Ωδεg

|Cδε(t)|2dxdτ.
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Choosing ε small enough and applying Gronwall’s inequality, we obtain the desired
result. Let us take φ = (T δεg , T δεs ) ∈ L2(0, T ;H1

Γ(Ωδεg ))× L2(0, T ;H1(Ωδεs )) to get

C0
g

t∫
0

∫
Ωδεg

∂t|T δεg |2dxdτ + 2λ0
g

t∫
0

∫
Ωδεg

|∇T δεg |2dxdτ + C0
g

t∫
0

∫
Ωδεg

uδε∇|T δεg |2dxdτ

+C0
s

t∫
0

∫
Ωδεs

∂t|T δεs |2dxdτ + 2λ0
s

t∫
0

∫
Ωδεs

|∇T δεs |2dxdτ

≤ 2εAQ

t∫
0

∫
Γδε

f(T δε)CδεT δεdγdτ ≤ εC
t∫

0

∫
Γδε

CδεT δεdγdτ. (8)

The convection term disappears by the argument given above. Furthermore, we
estimate the integral on right hand side as follows:

εC

t∫
0

∫
Γδε

CδεT δεdγdτ ≤ εC
t∫

0

∫
Γδε

(|Cδε|2 + |T δε|2)dγdτ

≤ C

t∫
0

∫
Ωδεg

(
|Cδε|2 + ε2|∇Cδε|2 + |T δεg |2 + ε2|∇T δεg |2

)
dxdτ

+C

t∫
0

∫
Ωδεs

(
|T δεs |2 + ε2|∇T δεs |2

)
dxdτ.

(8) becomes

C0
g

t∫
0

∫
Ωδεg

∂t|T δεg |2dxdτ + (2λ0
g − ε2C)

t∫
0

∫
Ωδεg

|∇T δεg |2dxdτ

+C0
s

t∫
0

∫
Ωδεs

∂t|T δεs |2dxdτ + (2λ0
s − ε2C)

t∫
0

∫
Ωδεs

|∇T δεs |2dxdτ

≤ C
t∫

0

∫
Ωδεg

(
|Cδε|2 + ε2|∇Cδε|2 + |T δεg |2

)
dxdτ + C

t∫
0

∫
Ωδεs

|T δεs |2dxdτ.

Choosing ε conveniently, using estimates (5) and applying Gronwall’s inequality, we
get

∫
Ωδεi

|T δεi (t)|2dx+

t∫
0

∫
Ωδεi

|∇T δεi |2dxdτ ≤ C i ∈ {g, s}.
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We set as a test function ψ = Rδε and get

ε

t∫
0

∫
Γδε

∂t|Rδε|2dγdτ = 2εA

t∫
0

∫
Γδε

f(T δε)CδεRδεdγdτ

≤ εC

t∫
0

∫
Γδε

(
|Cδε|2 + |Rδε|2

)
dγdτ.

Applying Gronwall’s inequality together with trace inequality, we have

ε

∫
Γδε

|Rδε(t)|2dγ ≤ C

t∫
0

∫
Ωδεg

(
|Cδε|2 + ε2|∇Cδε|2

)
dx

Using (5), we have the result. Now we take as a test function ψ = ∂tR
δε and obtain

ε

t∫
0

∫
Γδε

|∂tRδε|2dγdτ = εA

t∫
0

∫
Γδε

f(T δε)Cδε∂tR
δεdγdτ

≤ εA

t∫
0

∫
Γδε

( 1

2ξ
|Cδε|2 +

ξ

2
|∂tRδε|2

)
dγdτ

ε(1− Aξ

2
)

t∫
0

∫
Γδε

|∂tRδε|2dγdτ ≤ A

2ξ

t∫
0

∫
Ωδεg

(
|Cδε|2 + ε2|∇Cδε|2

)
dx.

Choosing ξ conveniently and using (5) to obtain

√
ε ‖ ∂tRδε ‖L2((0,T )×Γδε)≤ C.

Lemma 4.3. (Positivity) Assume (A1)-(A4), and let t ∈ [0, T ] be arbitrarily cho-
sen. Then the following estimates hold:

(i) Cδε(t), T δεg (t) ≥ 0 a.e. in Ωδεg , T δεs (t) ≥ 0 a.e. in Ωδεs and Rδε(t) ≥ 0 a.e. on

Γδε.
(ii) Cδε(t) ≤ MC , T δεg (t) ≤ MT a.e. in Ωδεg , T δεs (t) ≤ MT a.e. in Ωδεs and

Rδε(t) ≤MR a.e. on Γδε, where MC , MT and MR are defined in 4.

Proof. (i) We test with φ = −[Cδε]− and obtain the following inequality

1

2

t∫
0

∫
Ωδεg

∂t|[Cδε]−|2dxdτ +D0

t∫
0

∫
Ωδεg

|∇[Cδε]−|2dxdτ +

t∫
0

∫
Ωδεg

uδε∇Cδε[Cδε]−dxdτ

≤ εA

t∫
0

∫
Γδε

|[Cδε]−|2dγdτ. (9)
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The convection term in (9) vanishes. Apply the trace inequality to the expression
on the right hand side gives

1

2

t∫
0

∫
Ωδεg

∂t|[Cδε]−|2dxdτ +D0

t∫
0

∫
Ωδεg

|∇[Cδε]−|2dxdτ

≤ C

t∫
0

∫
Ωδεg

(
|[Cδε]−|2 + ε2|∇[Cδε]−|2

)
dxdτ.

Choosing ε conveniently and applying Gronwall’s inequality together with the pos-
itivity of the initial data, we conclude that Cδε ≥ 0 a.e. in (0, T ) × Ωδεg . Testing

with ϕ = (−[T δεg ]−, [T δεs ]−) leads to

C0
g

2

t∫
0

∫
Ωδεg

∂t|[T δεg ]−|2dxdτ + λ0
g

t∫
0

∫
Ωδεg

|∇[T δεg ]−|2dxdτ

+
C0
g

2

t∫
0

∫
Ωδεg

uε∇|[T δεg ]−|2dxdτ

+
1

2
C0
s

t∫
0

∫
Ωδεs

∂t|[T δεs ]−|2dxdτ + λ0
s

t∫
0

∫
Ωδεs

|∇[T δεs ]−|2dxdτ

≤ −εQA
t∫

0

∫
Γδε

f(T δε)Cδε[T δεg ]−dγdτ ≤ 0. (10)

The expression on right hand side of (10) is zero by assumption (A). Note that the
convection term on left hand side vanishe as well. Gronwall’s inequality together
with the positivity of the initial data provides that T δεg ≥ 0 a.e. in (0, T )×Ωδεg and

T δεs ≥ 0 a.e. in (0, T )× Ωδεs . Let us test with ψ = −[Rδε]−

1

2
∂t

∫
Γδε

|[Rδε]−|2dγ = −
∫

Γδε

W (T δε, Cδε)[Rδε]−dγ ≤ 0. (11)

We conclude that Rδε ≥ 0 a.e. on (0, T )× Γδε. (ii) Taking [Cδε −MC ]+, we get

1

2

t∫
0

∫
Ωδεg

∂t|[Cδε −MC ]+|2dxdτ +D0

t∫
0

∫
Ωδεg

|∇[Cδε −MC ]+|2dxdτ

+C0
g

∫
Ωδεg

uδε∇C [
εC

δε −MC ]+dxdτ

≤ −εA
t∫

0

∫
Γδε

Cδεf(T ε)[Cδε −MC ]+dγdτ ≤ 0. (12)
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Arguing as before, we observe that the convection term vanishes. Applying Gron-
wall’s inequality together with C0 ≤ MC a.e. in Ωδεg , we end up with the bound-

edness of the Cδε ≤ MC a.e. in Ωδεg for all t ∈ (0, T ). Note that since Cδε ∈
L2(0, T ;H1

Γ(Ωδεg ))∩L∞((0, T )×Ωδεg ), by Claim 5 in [15] we have Cδε ∈ L∞((0, T )×
Γδε). Testing with ([T δεg −MT ]+, [T δεs −MT ]+) and the resulting inequalities

C0
g

2

t∫
0

∫
Ωδεg

∂t|[T δεg −MT ]+|2dxdτ +
C0
s

2

t∫
0

∂t

∫
Ωδεs

|[T δεs −MT ]+|2dxdτ

+ λ0
g

t∫
0

∫
Ωδεg

|∇[T δεg −MT ]+|2dxdτ + λ0
s

t∫
0

∫
Ωδεs

|∇[T δεs −MT ]+|2dxdτ

+
1

2

t∫
0

∫
Ωδεg

uδε∇|[T δεg −MT ]+|2dxd ≤ εQA
t∫

0

∫
Γδε

f(T δε)Cδε[T δε −MT ]+dγdτ

≤ εQAMc

t∫
0

∫
Γδε

|[T δε −MT ]+|2dγdτ. (13)

Using boundedness of Cδε on Γδε and the sublinearity of f and, then, applying trace
inequality, leads to

t∫
0

∫
Ωδεg

∂t|[T δεg −MT ]+|2dxdτ +

t∫
0

∫
Ωδεs

∂t|[T δεs −MT ]+|2dxdτ

+(
2λ0

g

C0
g

− Cε2)

t∫
0

∫
Ωεg

|∇[T δεg −MT ]+|2dxdτ

+(
2λ0

s

C2
s

− Cε2)

t∫
0

∫
Ωδεs

|∇[T δεs −MT ]+|2dxdτ

≤ C
t∫

0

∫
Ωδεg

|[T δεg −MT ]+|2dxdτ + C

t∫
0

∫
Ωδεs

|[T δεs −MT ]+|2dxdτ.

Let us choose ε small enough. Applying again Gronwall’s inequality, we obtain
T δεg ≤ MT a.e. in Ωδεg and T δεs ≤ MT a.e. in Ωδεs . Now we test with [Rδε − (t +

1)MR]+ and obtain∫
Γδε

(
∂t|[Rδε − (t+ 1)MR]+|2 +MR[Rδε − (t+ 1)MR]+

)
dγ

≤ C
∫

Γδε

Mc[R
δε − (t+ 1)MR]+dγ

∫
Γδε

∂t|[Rδε − (t+ 1)MR]+|2dγ ≤ (CMc −MR)

∫
Γδε

[Rδε − (t+ 1)MR]+dγ
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Using (A5) and Gronwall’s inequality to get Rδε ≤MR a.e. in (0, T )× Γδε.

Remark 1. Based on Cδε ∈ L∞((0, T )×Ωδεg )∩L2(0, T ;H1(Ωδεg )), we use Claim 5

in [15] to obtain Cδε ∈ L∞((0, T )× Γδε).

Lemma 4.4. Consider Assumption (A). There exists a unique weak solution in the
sense of Definition 4.1.

Proof. We assume that (C̃δε, T̃ δεg , T̃ δεs , R̃δε) and (Ĉδε, T̂ δεg , T̂ δεs , R̂δε) are two solu-

tions in the sense of Definition 4.1 having the same initial data. We set Cδε :=
C̃δε − Ĉδε, T δεg := T̃ εg − T̂ δεg , T δεs := T̃ δεs − T̂ δεs and Rδε := R̃δε − R̂δε. Consider

C̃ε and Ĉε, and the difference of the resulting expressions and then testing it with
Cδε := C̃δε − Ĉδε, we get

t∫
0

∫
Ωδεg

∂t|Cδε|2dxdτ + 2D0

t∫
0

∫
Ωδεg

|∇Cδε|2dxdτ +

t∫
0

∫
Ωδεg

uδε∇|Cδε|2dxdτ

≤ −2εA

∫
Γδε

|Cδε|2f(T δε)dγdτ.

The convection term vanishes as before. Using the boundedness of f together with
the trace inequality, we get

t∫
0

∫
Ωδεg

∂t|Cδε|2dxdτ + (2D0 − ε2C)

t∫
0

∫
Ωδεg

|∇Cδε|2dxdτ ≤
t∫

0

∫
Ωδεg

|Cδε|2dxdτ.

Applying Gronwall’s inequality together with C̃0 = Ĉ0, we obtain C̃δε = Ĉδε a.e.
in Ωδεg for all t ∈ (0, T ). We obtain

C0
g

t∫
0

∫
Ωδεg

∂t|T δεg |2dxdτ + 2λ0
g

t∫
0

∫
Ωδεg

|∇T δεg |2dxdτ + C0
g

t∫
0

∫
Ωδεg

uδε∇|T δεg |2dxdτ

+C0
s

t∫
0

∫
Ωδεs

∂t|T δεs |2dxdτ + 2λ0
s

t∫
0

∫
Ωδεs

|∇T δεs |2dxdτ

≤ 2εA

∫
Γδε

Cδε
(
f(T̂ δε)− f(T̃ δε)

)
T δεdγdτ.

Convection terms vanishes. Using the boundedness of Cδε on microscopic interfaces
and the Lipschtiz continuity of f , we have

C0
g

t∫
0

∫
Ωδεg

∂t|T δεg |2dxdτ + (2λ0
g − ε2C)

t∫
0

∫
Ωδεg

|∇T δεg |2dxdτ

+C0
s

t∫
0

∫
Ωδεs

∂t|T δεs |2dxdτ + (2λ0
s − ε2C)

t∫
0

∫
Ωδεs

|∇T δεs |2dxdτ
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≤ C

∫
Ωδεg

|T δεg |2dxdτ + C

∫
Ωδεs

|T δεs |2dxdτ.

choosing ε conveniently, applying Gronwall’s inequality and taking supremum along
t ∈ [0, T ], we obtain the following estimate

C0
g

∫
Ωδεg

|T δεg |2dx+ C

T∫
0

∫
Ωδεg

|∇T δεg |2dxdτ

+C0
s

∫
Ωδεs

|T δεs |2dx+ C

T∫
0

∫
Ωδεs

|∇T δεs |2dxdτ ≤ 0.

Hence, we conclude that T̂ δεi = T̃ δεi , i ∈ {g, s} a.e. t ∈ (0, T ) in Ωδεi . The uniqueness
of Rδε is a natural consequence of the uniqueness of T δε and Cδε.

Theorem 4.5. (Global Existence) Assume the hypothesis of Lemma 4.4. Then
there exists at least a global-in-time weak solution in the sense of Definition 4.1.

Proof. The proof is based on the Galerkin argument. Since W (T δε, Cδε) is globally
Lipschitz function in both variables, this makes the proof rather standard.

Lemma 4.6. (Additional a priori estimates) Assume the hypothesis of Lemma 4.4.
The following ε-independent bounds hold:

‖ ∂tCδε ‖L2(0,T ;L2(Ωδεg )) + ‖ ∂tT δεi ‖L2(0,T ;L2(Ωδεi ))≤ C, i ∈ {g, s}, (14)

where C a generic constant independent of ε.

Proof. To obtain the estimates (14), we consider a sufficiently regular extension of

the Dirichlet data Cu, Tu to the whole Ω
δ
. We test with φ = ∂t(C

δε − Cu) to get

t∫
0

∫
Ωδεg

|∂tCδε|2dxdτ +
D0

2

t∫
0

∫
Ωδεg

∂t|∇Cδε|2dxdτ +

t∫
0

∫
Ωδεg

uδε · ∇Cδε∂tCδεdxdτ

≤ 1

2

t∫
0

∫
Ωδεg

(
ξ|∂tCδε|2 +

1

ξ
|∂tCu|2

)
dxdτ +

D0

2

t∫
0

∫
Ωδεg

(
|∇Cδε|2 + |∇∂tCu|2

)
dxdτ

+
Mu

2

t∫
0

∫
Ωδεg

(
|∇Cδε|2 + |∂tCu|2

)
dxdτ − εA

t∫
0

∫
Γδε

Cδεf(T δε)∂t(C
δε − Cu)dxdτ.
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(1− Cξ

2
)

t∫
0

∫
Ωδεg

|∂tCδε|2dxdτ +
D0

2

∫
Ωδεg

|∇Cδε(t)|2dx

≤ D0

2

∫
Ωδεg

|∇Cδε(0)|2dx+
1

2ξ

t∫
0

∫
Ωδεg

|∂tCu|2dxdτ

+
D0

2

t∫
0

∫
Ωδεg

(
|∇Cδε|2 + |∇∂tCu|2

)
dxdτ +

Mu

2δ

t∫
0

∫
Ωδεg

|∇Cδε|2dxdτ

+
Mu

2

t∫
0

∫
Ωδεg

(
|∇Cδε|2 + |∂tCu|2

)
dxdτ

+ εC

t∫
0

∫
Γδε

(
∂t|Cδε|2 + |Cδε|2 + |∂tCu|2

)
dxdτ.

(1− Cξ

2
)

t∫
0

∫
Ωδεg

|∂tCδε|2dxdτ +
D0

2

∫
Ωδεg

|∇Cδε(t)|2dx

≤ D0

2

∫
Ωδεg

|∇Cδε(0)|2dx+ C

t∫
0

∫
Ωδεg

(
|∇Cδε|2 + |∇∂tCu|2 + |∂tCu|2

)
dxdτ

+ C

∫
Ωδεg

(
|Cδε(t)|2 + ε2|∇Cδε(t)|2 + |Cδε(0)|2 + ε2|∇Cδε(0)|2

)
dx

+ C

t∫
0

∫
Ωδεg

(
|Cδε|2 + ε2|∇Cδε|2 + |∂tCu|2 + ε|∇∂tCu|2

)
dxdτ.

Choosing ξ conveniently and using the inequalities in Lemma 4.2 together with (A4)
and (A6), we get

‖ ∂tCδε ‖L2(0,T ;L2(Ωδεg ))≤ C.

Now we take as a test function(
∂t(T

δε
g − Tu), ∂tT

δε
s

)
∈ L2(0, T ;L2(Ωδεg ))× L2(0, T ;L2(Ωδεs ))

and have

C0
g

t∫
0

∫
Ωδεg

|∂tT δεg |2dxdτ +
λ0
g

2

t∫
0

∫
Ωδεg

∂t|∇T δεg |2dxdτ

+C0
g

t∫
0

∫
Ωδεg

uδε · ∇T δεg ∂tT
δε
g dxdτ + C0

s

t∫
0

∫
Ωδεs

|∂tT δεs |2dxdτ
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+
λ0
s

2

t∫
0

∫
Ωδεs

∂t|∇T δεs |2dxdτ

≤
t∫

0

∫
Ωδεg

λδεg ∇T δεg ∇∂tTudxdτ +

t∫
0

∫
Ωδεg

Cδεg ∂tT
δε
g ∂tTudxdτ

+C0
g

t∫
0

∫
Ωδεg

uδε · ∇T δεg ∂tTudxdτ + εQA

t∫
0

∫
Γδε

Cδεf(T δε)∂tT
δεdxdτ

C0
g

t∫
0

∫
Ωδεg

|∂tT δεg |2dxdτ +
λ0
g

2

∫
Ωδεg

|∇T δεg (t)|2dx

+C0
s

t∫
0

∫
Ωδεs

|∂tT δεs |2dxdτ +
λ0
s

2

∫
Ωδεs

|∇T δεs (t)|2dx

≤
λ0
g

2

∫
Ωδεg

|∇T δεg (0)|2dx+
λ0
s

2

∫
Ωδεs

|∇T δεs (0)|2dx

+
Mu

2

t∫
0

∫
Ωδεg

(1

ξ
|∇T δεg |2 + ξ|∂tT δεg |2

)
dxdτ

+
C0
g

2

t∫
0

∫
Ωδεg

(
δ|∂tT δεg |2 +

1

ξ
|∂tTu|2

)
dxdτ

+C

t∫
0

∫
Ωδεg

(
|∇T δεg |2 + |∂tTu|2 + |∇∂tTu|2

)
dxdτ

+εC

t∫
0

∫
Γδε

∂t|T δε|2dγdτ

Making use of the boundedness of Cδε on (0, T )× Γδε and of the sub-linearity of f

(C0
g −

Muξ

2
)

t∫
0

∫
Ωδεg

|∂tT δεg |2dxdτ +
λ0
g

2

∫
Ωδεg

|∇T δεg (t)|2dx

+C0
s

t∫
0

∫
Ωδεs

|∂tT δεs |2dxdτ +
λ0
s

2

∫
Ωδεs

|∇T δεs (t)|2dx

≤
λ0
g

2

∫
Ωδεg

|∇T δεg (0)|2dx+
λ0
s

2

∫
Ωδεs

|∇T δεs (0)|2dx
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+C

t∫
0

∫
Ωδεg

(
|∇T δεg |2 + |∂tT δεg |2 + |∇∂tT δεg |2

)
dxdτ

+C

∫
Ωδεs

(|T δεs (t)|2 + ε2|∇T δεs (t)|2 + |T δεs (0)|2 + ε2|∇T δεs (0)|2)dx.

Choosing ξ conveniently and using the inequalities in Lemma 4.2 together with
(A4), we get

‖ ∂tT δεg ‖L2(0,T ;L2(Ωδεg )) + ‖ ∂tT δεs ‖L2(0,T ;L2(Ωδεs ))≤ C. (15)

Remark 2. We can use the Cauchy-Schwarz inequality together with (15) to show
the boundedness from above of the microscopic instantaneous bulk burning rate

V δε(t) :=

∫
Ω

|∂tT δε(t, x)|1
δ
dx (16)

as well as its time average

< V δε(t) >t:=
1

t

∫ t

0

V δε(s)ds (17)

with

T δε(x, t) :=

{
T δεg (x, t), if x ∈ Ωδεg
T δεs (x, t), if x ∈ Ωδεs ,

for any t ∈ (0, T ). We refer the reader to [13] for the terminology and use of such
bulk burning rates.

5. The homogenization limit ε→ 0. The case δ > ε > 0, δ = O(1).

5.1. Extensions to Ωδ. Our main interest lies in the passing to the homogenization
limit ε→ 0. Before passing to this limit, we extend all the unknowns of the problem
to the whole space Ωε. Using a standard extension result due to D. Ciorănescu and
J. Saint Jean Paulin [10], we extend the concentration defined in Ωεg inside the solid
grains; see also Lemma 2.4 in [26] for a related result. The temperature extends
naturally in the whole domain by taking the extended temperature field

T ε(x, t) :=

{
T εg (x, t), if x ∈ Ωεg
T εs (x, t), if x ∈ Ωεs.

Since the nonlinearity imposed at the microstructure boundary turns to be globally
actually Lipschitz, there are no problems in stating the existence of the extended
temperature field. We refer the reader to [23] for a situation where, due to the
presence of (boundary) multivalued functions, a more detailed investigation of the
existence of the extension is needed. If more effects are introduced at the microscopic
solid-gas interfaces like temperature jumps, or heating delays (etc), effects that
could require the introduction of a second temperature (see e.g. [14, 26]), then the
extension step requires a special care.
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5.2. Two-scale convergence step.

Definition 5.1. (Two-scale convergence; cf. [2, 30]) Let {uε} be a sequence of
functions in L2((0, T )× Ω) (Ω being an open set of RN ) where ε being a sequence
of strictly positive numbers tends to zero. {uε} is said to two-scale converge to a
unique function u0(t, x, y) ∈ L2((0, T )×Ω×Y ) if and only if for any ψ ∈ C∞0 ((0, T )×
Ω, C∞# (Y )), we have

limε→0

∫ T

0

∫
Ω

uε(t, x)ψ(t, x,
x

ε
)dxdt =

1

|Y |

∫
Ω

∫
Y

u0(t, x, y)ψ(t, x, y)dydxdt. (18)

We denote (18) by uε
2
⇀ u0.

Theorem 5.2. (Two-scale compactness on volumes; cf. [2, 30])

(i) From each bounded sequence {uε} in L2((0, T ) × Ω), one can extract a subse-
quence which two-scale converges to u0(t, x, y) ∈ L2((0, T )× Ω× Y ).
(ii) Let {uε} be a bounded sequence in H1((0, T ) × Ω), then there exists ũ ∈
L2((0, T )×Ω;H1

#(Y )/R) such that up to a subsequence {uε} two-scale converges to

u0(t, x) ∈ L2((0, T )× Ω) and ∇uε 2
⇀ ∇xu0 +∇yũ.

Definition 5.3. (Two-scale convergence for ε−periodic hypersurfaces; cf. [28]) A
sequence of functions {uε} in L2((0, T )×Γε) is said to two-scale converge to a limit
u0 ∈ L2((0, T )× Ω× Γ) if and only if for any ψ ∈ C∞0 ((0, T )× Ω, C∞# (Γ)) we have

limε→0ε

∫ T

0

∫
Γε

uε(t, x)ψ(t, x,
x

ε
)dσxdt =

1

|Y |

∫
Ω

∫
Γ

u0(t, x, y)ψ(t, x, y)dσydxdt.

Theorem 5.4. (Two-scale compactness on hypersurfaces; cf. [28])

(i) From each bounded sequence {uε} ∈ L2((0, T ) × Γε), one can extract a subse-
quence uε which two-scale converges to a function u0 ∈ L2((0, T )× Ω× Γ).
(ii) If a sequence of functions {uε} is bounded in L∞((0, T )×Γε), then uε two-scale
converges to a function u0 ∈ L∞((0, T )× Ω× Γ).

The estimates stated in Lemma 4.2 and Lemma 4.6 ensure the following conver-
gence results:

Lemma 5.5. Assume (A1)–(A6). Then, for any fixed δ > 0, we have as ε→ 0 the
following convergences (up to subsequences):

(a) Cδε, T δε ⇀ Cδ, T δ weakly in L2(0, T ;H1(Ωδ),

(b) Cδε, T δε
∗
⇀ Cδ, T δ weakly in L∞((0, T )× Ωδ),

(c) ∂tC
δε, ∂tT

δε ⇀ ∂tC
δ, ∂tT

δ weakly in L2((0, T )× Ωδ),
(d) Cδε, T δε strongly in L2(0, T ;Hβ(Ωδ)) for 1

2 < β < 1,

also
√
ε ‖ Cδε − Cδ ‖L2((0,T )×Γδε)→ 0 and

√
ε ‖ T δε − T δ ‖L2((0,T )×Γδε)→ 0 as

ε→ 0.
(e) Cδε, T δε

2
⇀ Cδ, T δ,∇Cδε 2

⇀ ∇xCδ +∇yC̃δ, C̃δ ∈ L2((0, T ) × Ωδ;H1
#(Y δg )/R),

∇T δε 2
⇀ ∇xT δ +∇yT̃ δ, T̃ δ ∈ L2((0, T )× Ωδ;H1

#(Y δ)/R),

(f) Rδε
2
⇀ Rδ, and Rδ ∈ L∞((0, T )× Ωδ × Γδ),

(g) ∂tC
δε, ∂tT

δε 2
⇀ ∂tC

δ, ∂tT
δ, and ∂tR

δε 2
⇀ ∂tR

δ ∈ L2((0, T )× Ωδ × Γδ).

Proof. (a) and (b) are obtained as a direct consequence of the fact that Cδε, T δε are
bounded in L2(0, T ;H1(Ωδ))∩L∞((0, T )×Ωδ). Up to a subsequence (still denoted
by Cδε, T ε), Cδε, T δε converge weakly to Cδ, T δ in L2(0, T ;H1(Ωδ)) ∩ L∞((0, T )×
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Ωδ). A similar argument gives (c). To get (d), we use the compact embedding

Hβ′
(Ωδ) ↪→ Hβ(Ωδ), for β ∈ ( 1

2 , 1) and 0 < β < β′ ≤ 1 (since Ωδ has Lips-

chitz boundary). We have W := {Cδε, T δε ∈ L2(0, T ;H1(Ωδ)) and ∂tC
δε, ∂tT

δε ∈
L2((0, T )× Ωδ)}. For a fixed ε, W is compactly embedded in L2(0, T ;Hβ(Ωδ)) by
the Lions-Aubin Lemma; cf. e.g. [24]. Using the trace inequality for oscillating
surfaces

√
ε ‖ Cδε − Cδ ‖L2((0,T )×Γδε) ≤ C ‖ Cδε − Cδ ‖L2(0,T ;Hβ(Ωδεg ))

≤ C ‖ Cδε − Cδ ‖L2(0,T ;Hβ(Ωδ))

where ‖ Cδε −Cδ ‖L2(0,T ;Hβ(Ωδ))→ 0 as ε→ 0. Similar argument holds for the rest
of (d). To investigate (e), (f) and (g), we use the notion of two-scale convergence as
indicated in Definition 5.1 and 5.3. Since Cδε are bounded in L2(0, T ;H1(Ωδ)), up

to a subsequence Cδε
2
⇀ Cδ in L2((0, T )× Ωδ), and ∇Cδε 2

⇀ ∇xCδ +∇yC̃δ, C̃δ ∈
L2((0, T ) × Ωδ;H1

#(Y δg )/R). By Theorem 5.4, Rδε in L∞((0, T ) × Γδε) converges

two-scale to Rδ ∈ L∞((0, T ) × Ωδ × Γδ) and ∂tR
δε converges two-scale to ∂tR

δ in
L2((0, T )× Ωδ × Γδ).

5.3. Derivation of upscaled limit equations. To be able to formulate the limit
(upscaled) equations in a compact manner, we define two classes of cell problems
(local auxiliary problems) very much in the spirit of [18].

Definition 5.6. The cell problems for the gaseous part are given by{
−∇y.(D(y)∇yωk) =

∑3
i=1 ∂ykDki(y) in Y δg ,

−D(y)∂ω
k

∂n =
∑3
i=1Dki(y)ni on Γδ,

(19)

for all k ∈ {1, 2, 3} and ωk are Y δ-periodic in y.{
−∇y.(λg(y)∇yωkg ) =

∑3
i=1 ∂ykλgki(y) in Y δg ,

−λg(y)
∂ωkg
∂n =

∑3
i=1 λgki(y)ni on Γδ,

(20)

for all k ∈ {1, 2, 3} and ωkg are Y δ-periodic in y. The cell problems for the solid part
are given by {

−∇y.(λs(y)∇yωks ) =
∑3
i=1 ∂ykλski(y) in Y δs ,

−dλs(y)
∂ωks
∂n =

∑3
i=1 λski(y)ni on Γδ

(21)

for all k ∈ {1, 2, 3}, ωks are Y δ-periodic in y.

Standard theory of linear elliptic problems with periodic boundary conditions
ensures the weak solvability of the families of cell problems (19) – (21); see e.g. Ref.
[9].

The main result of this section is the following:

Theorem 5.7. The sequence of weak solutions of the microscopic problem (in the
sense of Definition (4.1)) converges as ε→ 0 to the triplet (Cδ, T δ, Rδ), where Cδ ∈
Cu+L2(0, T ;H1

Γ(Ωδ)), ∂tC
δ ∈ ∂tCu+L2(0, T ;L2(Ωδ)), T δ ∈ Tu+L2(0, T ;H1

Γ(Ωδ)),
∂tT

δ ∈ ∂tTu + L2(0, T ;L2(Ωδ)), and Rδ ∈ H1(0, T ;L2(Ωδ × Γδ)) satisfying weakly
the following macroscopic equations a.e. in Ωδ for all t ∈ (0, T )

∂tC
δ +∇ · (−D∇Cδ + uδCδ) = − |Γ

δ|
|Y δg |

W (T δ, Cδ), (22)



FILTRATION COMBUSTION IN HETEROGENEOUS THIN LAYERS 19

C∂tT
δ +∇ · (−L∇T δ+ < Cg >Y δg uδT δ) =

|Γδ|
|Y δ|

QW (T δ, Cδ), (23)

∂t < Rδ >Γδ= W (T δ, Cδ), (24)

where

< Rδ >Γδ (t, x) :=
1

|Γδ|

∫
Γδ
Rδ(t, x, y)dγ

and

< Cg >Y δg :=
1

|Y δg |

∫
Y δg

Cg(y)dy

for all x ∈ Ωδ and all t ∈ (0, T ). Furthermore, the effective heat capacity C, the
effective diffusion tensor D, and the effective heat conduction tensor L are given by

C :=

∫
Y δ

[Cg(y)χY δg (y) + Cs(y)χY δg (y)]dy (25)

(D)jk :=
1

|Y δg |

3∑
`=1

∫
Y δg

(D)jk + (D)`k∂y`ω
j)dy (26)

(L)jk := (Λg)jk + (Λg)jk (27)

(Λg)jk :=

3∑
`=1

∫
Y δ

((λg)jk + (λg)`k∂y`ω
j
g)χY δg (y)dy

(Λs)jk :=

3∑
`=1

∫
Y δ

((λs)jk + (λs)`k∂y`ω
j
s)χY δs (y)dy

with ωj , ωji being solutions of the cell problems defined in Definition 5.6. Here
i ∈ {g, s} and j, k ∈ {1, 2, 3}. The initial values

Cδ(0, x) = C0(x), T δg (0, x) = T 0(x) for x ∈ Ωδ

Rδ(0, x, y) = R0(x, y) for (x, y) ∈ Ωδ × Γδ,

together with the boundary conditions

Cδ = Cu on ΓδD, (28)

−D∇Cδ · ν = 0 on ΓδN , (29)

T δ = Tu on ΓδD, (30)

−L∇T δ · ν = 0 on ΓδN . (31)

complete the formulation of the macroscopic problem.
Furthermore, it exists at most one triplet (Cδ, T δ, Rδ) satisfying the above prop-

erties.

Proof. Relying on Lemma 5.5, we apply the two-scale convergence results stated
in Definition 5.1 and Definition 5.3 to derive the weak and strong formulations of
the wanted upscaled model equations. We take as test functions incorporating the

following oscillating behavior φ̄(t, x) = φ(t, x)+εφ̃(t, x, xε ), with φ ∈ C∞0 ([0, T ]×Ωδ)
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and φ̃ ∈ C∞0 ([0, T ]× Ωδ;C∞# (Y δg )). Applying the concept of two-scale convergence
yields

|Y δg |
T∫

0

∫
Ωδ

∂tCφ(t, x)+

T∫
0

∫
Ωδ

∫
Y δg

D(∇xCδ(t, x)+∇yC̃δ(t, x, y))(∇xφ(t, x)+∇yφ̃(t, x, y))

−|Y δg |
T∫

0

∫
Ωδ

uδ · ∇xCδφ(t, x)dxdt = − lim
ε→0

ε

T∫
0

∫
Γδε

W (T δε, Cδε)φdγdt,

= −|Γδ|
T∫

0

∫
Ωδ

W (T δ, Cδ)φdxdt. (32)

Now, we take ϕ̄(t, x) = ϕ(t, x)+εϕ̃(t, x, xε ) with ϕ ∈ C∞0 ([0, T ]×Ωδ), ϕ̃ ∈ C∞0 ([0, T ]×
Ωδ;C∞# (Y δ)). We thus get

T∫
0

∫
Ωδ

∫
Y δ

[Cg(y)χY δg (y) + Cs(y)χY δs (y)]∂tT
δ(t, x)ϕ(t, x) +

T∫
0

∫
Ωδ

∫
Y δ

[λgχY δg (y) + λsχY δs (y)](∇xT δ(t, x) +∇yT̃ δ(t, x, y))(∇xϕ(t, x) +∇yϕ̃(t, x, y)

+

T∫
0

∫
Ωδ

∫
Y δg

Cg(y)uδ(t, x) · ∇xT δ(t, x)ϕ(t, x)dxdydt =

T∫
0

∫
Ωδ

∫
Γδ

QW (T δ, Cδ)ϕdxdγdt.

Take now ψ(t, x, xε ) ∈ C∞([0, T ]×Ωδ, C∞# (Γδ)) and pass to the limit in the ordinary
differential equations for Rε and choose in the respective weak form ψ = 1. Then
averaging over the variable y leads to (24). To proceed further, we set φ = 0 in (32)

to calculate the expression of the unknown (corrector) function C̃δ and obtain

T∫
0

∫
Ωδ

∫
Y δg

D(y)(∇xCδ(t, x) +∇yC̃δ(t, x, y))∇yφ̃(t, x, y)dxdydt = 0.

Since C̃δ depends linearly on ∇xCδ, it can be defined as

C̃δ :=

3∑
j=1

∂xjC
δωj ,

where the cell function ωj is the unique solution of the corresponding cell problem
defined in Definition 5.6. Similarly, we have T̃ δ :=

∑3
j=1 ∂xjT

δ(ωjs + ωjg), where ωjg
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and ωjs are the cell solutions. Setting φ̃ = 0 in (32), we get

T∫
0

∫
Ωδ

∫
Y δg

3∑
j,k=1

Djk(y)(∂xkC
δ(t, x) +

3∑
m=1

∂ykω
m∂xmC

δ(t, x))∂xjφ(t, x)dydxdt

= |Y δg |
T∫

0

∫
Ωδ

3∑
j,k=1

(D)jk∂xkC
δ(t, x)∂xjφ(t, x)dxdt.

Hence, the coefficients entering the effective diffusion tensor D (for the active
gaseous species) is given by

(D)jk :=
1

|Y δg |

3∑
`=1

∫
Y δg

(D)jk + (D)`k∂y`ω
j)dy.

Similarly, we obtain the following coefficients

(Λg)jk :=

3∑
`=1

∫
Y δg

((λg)jk + (λg)`k∂y`ω
j
g)dy.

and

(Λs)jk :=

3∑
`=1

∫
Y δs

((λs)jk + (λs)`k∂y`ω
j
s)dy.

defining the heat conduction tensor L cf. (27).
The uniqueness of weak solutions follows in a straightforward way; see related

comments in Remark 4.

Remark 3. The tensors D and L are symmetric and positive definite, see [9].
Note that a similar estimate as the one reported in Remark 2 holds also for the
macroscopic instantaneous burn bulk rates and for their time averages.

Remark 4. From now on, let us refer to the homogenized equations (22)–(31) as
problem (Pδ0). Note that the compactness results associated with the two-scale
convergence guarantee the existence of positive weak solutions to (Pδ0). On top of
this, Tietze’s extension result ensures that the obtained weak solutions also satisfy
a weak maximum principle (so, we have L∞ bounds on the temperature, reaction
product and on the concentration). Having this in view, proving the uniqueness of
weak solutions to our semilinear parabolic system (Pδ0) becomes a simple exercise,
and therefore we omit the proof of the uniqueness statement.

6. The dimension reduction limit δ → 0. In this section, we wish to pass to the
dimension reduction limit δ → 0. To do this, we follow the main line of the ideas
from [8], i.e. we use a scaling argument and employ weak convergence methods (δ-
independent estimates) to derive the structure of the limit equations for the reduced
problem – (P00). Closely related ideas are included in section 4 of [38].

Consider the following set of restrictions, collected as Assumptions (B):

(B1) The microstructures are chosen such that the ratios |Γ
δ|

|Y δg |
and |Γδ|

|Y δ| are of

order of O(1); Compare Figure 2 and Figure 4.
(B2) uδ is δ-independent. We refer to it as u0.
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(B3) Assume all model parameters (D,L,C, etc.) to be constant in the Oz-
coordinate. The same holds for the initial data R0, C0, T 0 and for the Dirichlet
boundary values Tu and Cu.

(B4) limδ→0 < Cg >Y δg =< Cg >Yg .

We introduce now the bijective mapping

Ωδ 3 (x, y, z)→ (X,
w

δ
) ∈ Ω̂ (33)

for any δ > 0, where X := (x, y). Γ̂ will denote the transformation of Γδ under
this mapping. The main role of this transformation is to fix the width of the
layer independently on δ with the price of having some δ-dependent coefficients
multiplying derivatives in the Oz direction, i.e. (33) transforms ∇ϕ into ∇Xϕ +
δ∇wϕ for any sufficiently smooth choice of ϕ. This way the dimension reduction
problem is reformulated as an anisotropic singular perturbation problem.

After applying (33) to the averaged equations, we can rewrite Theorem 5.7 in a
slightly modified form as:

Theorem 6.1. Let Assumptions (A) and Assumptions (B) to hold. There exists

a unique triplet (Cδ, T δ, Rδ), where Cδ ∈ Cu + L2(0, T ;H1
Γ(Ω̂)), ∂tC

δ ∈ ∂tCu +

L2(0, T ;L2(Ω̂)), T δ ∈ Tu + L2(0, T ;H1
Γ(Ω̂)), ∂tT

δ ∈ ∂tTu + L2(0, T ;L2(Ω̂)), and

Rδ ∈ H1(0, T ;L2(Ω̂× Γ̂)) satisfying weakly the following macroscopic equations a.e.

in Ω̂ for all t ∈ (0, T )

∂tC
δ +∇X · (−D∇XCδ + uδCδ) +

1

δ2
∇w · (−D∇wCδ) = − |Γ

δ|
|Y δg |

W (T δ, Cδ), (34)

C∂tT
δ + ∇X · (−L∇XT δ+ < Cg >Y δg uδT δ)

+
1

δ2
∇w · (−L∇wT δ+ < Cg >Y δg uδT δ) =

|Γδ|
|Y δ|

QW (T δ, Cδ), (35)

∂t < Rδ >Γδ= W (T δ, Cδ). (36)

The main result of this section is the following:

Theorem 6.2. Consider the hypothesis of Theorem 6.1. There exists a subsequence
(Cδ, T δ, Rδ), where Cδ ∈ Cu+L2(0, T ;H1

Γ(Ω̂)), ∂tC
δ ∈ ∂tCu+L2(0, T ;L2(Ω̂)), T δ ∈

Tu + L2(0, T ;H1
Γ(Ω̂)), ∂tT

δ ∈ ∂tTu + L2(0, T ;L2(Ω̂)), and Rδ ∈ H1(0, T ;L2(Ω̂))
converging weakly to the weak solution of the following reduced equations a.e. in Ω
for all t ∈ (0, T )

∂tC
0 +∇X · (−D∇XC0 + u0C0) = − |Γ|

|Yg|
W (T 0, C0), (37)

C∂tT
0 + ∇X · (−L∇XT 0+ < Cg >Yg u0T 0) =

|Γ|
|Y |

QW (T 0, C0), (38)

∂tR0 = W (T 0, C0). (39)

Proof. The proof of this Theorem is rather lengthy and uses anisotropic singular
perturbations. We only sketch here the main steps:

Step 1: Derivation of δ-independent estimates
This step consists in a few technical Lemmas that we state in what follows.
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Lemma 6.3. Assume Assumptions (B). Then there exist (C0, T 0,R0) and a sub-
sequence still labeled with δ converging to zero such that

(i) Cδ ⇀ C0, ∇XCδ ⇀ ∇XC0 and ∂tC
δ ⇀ ∂tC in L2((0, T );L2(Ω̂).

(ii) T δ ⇀ T 0, ∇XT δ ⇀ ∇XT 0 and ∂tT
δ ⇀ ∂tT in L2((0, T );L2(Ω̂).

(iii) < Rδ >⇀ R0 in L2((0, T ), L2(Ω̂)), ∂t < Rδ >
∗
⇀ ∂tR0 in L∞((0, T ), L∞(Ω̂)).

(iv) W (T δ, Cδ) ⇀W (T 0, C0) in L2((0, T ), L2(Ω̂)).

Proof. (i)-(iii)The proof of these estimates follows the same line of the proof of
Lemma 4.2 and Lemma 4.6. We omit to show it here. (iv) Note that we actually have

the strong convergence Cδ → C0 in L2((0, T );L2(Ω̂) as well as f(T δ) ⇀ f(T 0) in

L2((0, T );L2(Ω̂). This concludes thatW (T δ, Cδ) ⇀W (T 0, C0) in L2((0, T ), L2(Ω̂)).
Compare Lemma 5.5 (d).

Lemma 6.4. Under the assumptions of Lemma 6.3, the following statements hold
true:

(i) For any ϕ ∈ H1
Γ(Ω̂), the functions t →

∫
Ω̂
Cδϕdx and t →

∫
Ω̂
C0ϕdx belong to

H1(0, T ) and for the same subsequence we have∫
Ω̂

Cδϕdx→
∫

Ω̂

C0ϕdx in L2(0, T ) and in C([0, T ])

and ∫
Ω̂

Cδϕdx ⇀

∫
Ω̂

C0ϕdx in H1(0, T ).

(ii) For any φ ∈ H1
Γ(Ω̂), the functions t →

∫
Ω̂
T δφdx and t →

∫
Ω̂
T 0φdx belong to

H1(0, T ) and for the same subsequence we have∫
Ω̂

T δφdx→
∫

Ω̂

T 0φdx in L2(0, T ) and in C([0, T ])

and ∫
Ω̂

T δφdx ⇀

∫
Ω̂

T 0φdx in H1(0, T ).

Proof. The proof follows the lines of Lemma 3.3 in [8].

Step 2: (Recovering the weak and strong formulations of problem (P00))
This step is more delicate and its success strongly depends on the regularity con-
straints from Assumptions (B). We skip here the proof and refer the reader to [8],
where a scalar case has been treated in full details. To recover the ordinary differ-
ential equation for R0, one proves first that the sequence (Rδ) is a Cauchy sequence
in a suitable functions space. Section 5.1 from [15] provides the insight needed to
show this property.

Step 3: (Uniqueness of weak solutions to problem (P00))
Since the system is semi-linear, the globally Lipschitz non-linearity of the production
term by chemical reaction ensures the desired uniqueness of (weak) solutions.

Step 4: (Removing the w-dependency. Projection on Ω)
Integrating the PDE system over the w-variable reduces the formulation of the

model posed on Ω̂ to a formulation posed on the ”plate” Ω. Integrating over the
reaction term does not commute with the nonlinearity. This requires a proof of a

corrector estimate of the type |
∫ 1

0
W
(
T δ, Cδ

)
dw−W

(∫ 1

0
T δdw,

∫ 1

0
Cδdw

)
| ≤ Cδ,
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with an appropriate constant C independent of the choice of δ (see Lemma 4.5 in
[38] for a related corrector estimate).

7. Numerical illustration of the fingering instability. The case δ > ε > 0,
δ = O(1). In this section, we illustrate an application of the macroscopic equations
with effective diffusion constants recovered via two-scale convergence for the typical
case δ > ε > 0, δ = O(1). For this scenario, we consider a simple two-dimensional
unit cell Y = [0, 1]2 containing a circular open set (solid part), Ys, with a smooth
boundary Γ. The gaseous part is denoted by Yg := Y \ Y s, as depicted in Figure 5.

Yg

Ys

u

Figure 5. Unit cell used in the current simulations.

The steps of our numerical multiscale homogenization procedure are as follows:

1. Solve the cell problems in each of the canonical ej directions for the temper-
ature and concentration fields;

2. Calculate the effective thermal conductivity and diffusion tensors using the
solutions of the cell problems;

3. Solve the coupled system of homogenized problems for the temperature T 0

and concentration C0 fields.

In Figure 6, we illustrate the solutions to the cell problems for the temperature
and concentration fields. The cell functions ωj allow to compute the effective dif-
fusion matrices depicted in (40) . Since the geometry of the problem is symmetric,

Figure 6. Solutions to the cell problems. For the temperature
field, see top left: ω1; and right: ω2. For the concentration field,
see bottom left: ω1 and right: ω2
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the effective thermal conductivity and diffusion constants are isotropic, and the
calculated values are given viz.

λeff =

(
3.96 · 10−4 0.00

0.00 3.96 · 10−4

)
Deff =

(
0.080523 0.00

0.00 0.080523

)
. (40)

In the next step, the effective diffusion constants are used together with the upscaled
equations in order to verify our homogenization process. The macroscopic system of
equations is used to verify the development of fingering instability of a thin porous
sample subjected to a reverse smoldering combustion. The macroscopic behavior
of the captured flame structure is illustrated in Figure 7, where R0 is the smolder
pattern on the surface of the sample. T 0 is the macroscopic temperature field, C0

the concentration and W is the nonlinear heat released rate.

Figure 7. Macroscopic profiles of the spatial structure of the flame
front: (a) Temperature T 0, (b) Reaction product R0, (c) Active
concentration C0, (d) Heat released rate W (C0, T 0).

8. Discussion. We keep as further work the case δ = O(ε), when δ vanishes uni-
formly (in space). Since the diagram of taking the limits ε → 0 and δ → 0 seems
to be commutative, we expect that the concept of thin heterogeneous convergence
cf. [29] can be applied to (Pδε) in a rather straightforward way. The derivation of
corrector estimates in terms of O(ε, δ) is open; this fact makes unavailable rigorous
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MsFEM approximations for this multiscale problem. Particularly critical is how to
proceed in the fast convection case uε = O

(
1
εα

)
and/or in the fast reaction case

A = O
(

1
εβ

)
, with α > 0, β > 0 (or in suitable combinations of both).

(x) (x)

Figure 8. Heterogeneous thin layer of height of order of O(δ(x)):
Microscopic view (left) and macroscopic view (right).

For a non-uniform shrinking of the layer (see Figure 8 for an illustration of the
case δ(x) → 0), we expect that a convergence in measures is needed to describe
how the ”mass” and the ”energy” distribute on the flat supporting surface as the
volume of the layer vanishes; see [34] for a related context. Both cases δ(x) = O(1)
and δ(x) = O(ε) are for the moment open.
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