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Abstract

In this study, a new automatic point cloud registration algorithm based on point cloud
registration is proposed to broaden registration ways. The proposed method extracts features of
point cloud region for performing the coarse registration. Based on the coarse registration results,
the Iterative Closest Point (1CP) algorithm is used for performing the fine registration to restore
the measured model. The proposed registration approach is able to do automatic registration
without any assumptions about initial positions, and avoid the problems of traditional ICP
algorithm in the bad initial estimation. The proposed method along with ICP algorithm provides
efficient 3D modeling for computer-aided engineering, computer-aided design and application

with Kinect.

1. Introduction

In reverse engineering, the registration for measured data taken from different
viewpoints has become a significant research topic [1]. The purpose of registration is to calculate
the transforming relation of the overlap part of the measured model for moving measured data into
a correct position to restore the model in the cyber place based on measured data from different
viewpoints. Conventionally, lterative Closet point (ICP) algorithm [2] proposed by Besl has been
widely used for performing registration,

However, it is very difficult to transform the data to the correct position for restoring the
original model using ICP algorithm i measured data from different viewpoints are not close
enough. Therefore, when using this algorithm, a modified way is to perform initial registration to
move measured data into a close position at first, and then apply ICP algorithm to obtain the
correct registration result. In this approach, parameters for performing the initial registration are
calculated and determined properly through finding probable corresponding points or combining
transforming parameters from measured data.

Furthermore, in recent years, Microsoft Kinect [3] has been used as a 3D Sensor as these

inexpensive and commonly available systems can be used to obtain 3D depth information




efficiently. The applications for indoor environment by using Kinect with ICP algorithm [4], and
researches for indoor map generating of robots by ICP algorithm [5] have become more popular as
well.

For using Microsoft Kinect, methods such as [6, 7] are used to perform registration
based on ICP algorithm. These methods extract SIFT [8] feature points from color images taken
from different viewpoints by Kinect and determine the best corresponding points pairs for
calculating the transforming parameters to apply ICP algorithm. However, in some cases such as
indoor environment it is very difficult to extract SIFT feature points; consequently, the correct
transforming parameters could not be obtained.

In order to solve these new problems brought by recent applications with ICP algorithm,
in this study, we propose a point cloud region based method, which could perform the accelerated
and correct registration without calculating features of each point. Details of the algorithm are

described as follows.

2. Feature extraction

2.1 The significance of analyzing point region

Different from the pre-existing methods [9, 10] based on the feature point extracted
through the eigenspace transformation, it is important for our method to analyze the features of the
set of points. Hence we proposed a new method based on the eigenspace transformation, analyzing
the set of points and extracting features as follows. Here, a set of points from measured point

cloud data is called point cloud region, and is denoted as R .

2.2 The central point of the point region R

The central point: As the central point of R , the coordinates of p, can be calculated as follows.
N N N
PR AP IS
i=1 =}

P = T,%,T . )

In the equation N represents the total point number of R , and the coordinates of an
arbitrary point p, of R are denoted as (6,32, 1i=12,.N By using the central point and all
points of R , the eigenspace analysis can be performed for this point cloud data. Through the

eigenspace transformation, we analyze the point cloud region to obtain more features as follows.

2.3 Analysis by eigenspace transformation

The eigenvector ¢ and the eigenvalue 4 : In order to do the eigenspace transformation with all 3D points

of R , the Variance-Covariance matrix of R is defined as follows.
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Here, C is the Variance-Covariance matrix of R , p, — p, is a 3 times 1 column vector, C is a 3
times 3 matrix. By analyzing the matrix C  and calculating the eigenvalue, the eigenvector
featureefe, e, ¢, } and the corresponding eigenvalue feature M A, 4,04, < 4, 2 4, ) are obtained.

The average distance # : By using the central point p. and the minimal eigenvalue corresponding
eigenvector ¢, , the method can be used to generate the approximate plane of all points of R . The distance d
between point P, and the approximate plane, and the average distance # to the point p, are calculated as

follows respectively.
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l N
=— =p- 4
n==2lp-r] @
In these equations, ‘ ’ denotes the length of the vector and ” “ denotes the distance
between two points.
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Fig. 1. Curvature estimation.

The approximate curvature / : Search all points of R to find the closest point p, to the vector that passes
through p, in the direction of €, . As shown in Fig. 1, the distance, the average distance, and the radius of

curvature of the approximate curve surface that consists of all points of satisfy the relationship as follows:
w=d*=r*—(r-dy. ®)

Here, as the approximate curvature f of R , substituting »=1/f into (5), f can be

calculated as follows.
F==. (6)

The axis direction projective length D : Set the eigenvector ¢, as Z axis, ¢, as X axis, and




e, as Y axis; all points of R are projected into XY plane. The evaluating value D consists of D; ,
D, where D, is defined as the maximal projected length on X axis whereas D, is defined as
maximal projected length on Y axis.

The axis direction projective length difference E : In positive and negative directions of X axis
and Y axis maximal projected lengths are calculated as I, I,, L , L, respectively. The evaluating

value E consists of F and £, , which are defined as follows.

E =

L(’—LbI,E: :ch—Ldl' (7)

2.4 The definition of features

As mentioned above, corresponding features for a point cloud region R  are

summarized as follows.
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Because through the rotating or the translation transformation of R in 3D space, the
value of each item in the equation (8) changes as well. p. is the central point of R, ande is the
corresponding eigenvector obtained by performing eigenvalue analysis of R .

In (9) there are invariable features of R , because through the rotating or the translation
transformation of R in 3D space, the value of each item in the equation (9) remains the same.

A is the eigenvalue obtained by performing eigenvalue analysis of R, # is the
average of distances of all points of R to the approximate plane through p, , f is the

approximate curvature of R,and D, E are projection features of on X- and Y- axis respectively.

3. The registration algorithm by using features of point cloud region

The proposed registration algorithm consists of four main parts, and details of the

algorithm are described as follows.

3.1 Point cloud region extraction

To solve the problem that we mentioned at the beginning, this study focuses on the
possibility of solutions based on the point cloud region. Therefore, here we extracted point cloud

regions from measured data by utilizing method discussed in [11].

From point cloud data P , O that are measured through different viewpoints the extracted

the point regions are denoted as follows.
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3.2 Matching

3.2.1 The ratio of features
Corresponding invariable feature ratios of a pair of point cloud regions g, R¢ can be
i J

calculated as follows.

Table 1. Calculating feature ratios for one pair R," . Rj“) ;

R’ A A £ ¥ E;
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Ratio RT(X,2°) RT(X,2) . .. .. RT(E'E?

Here, after values of A are normalized [10], the ratios of two parameters # |,V are
calculated using the function R7() defined as follows.

Min(,u, v)
RT\y,v)=——F=.
()= ) (1
The function Max() is defined as the maximum value of two parameters, whereas the
function Min() is defined as the minimum value of two parameters. The sum of the weight of

feature ratios for one pair of matched point regions can be calculated as follows.

k=w, -RT(A', 2)+w, -RT(X,A2)...+w, -RT(E!  E2). (12)
Weight coefficients for ratio items in the equation are denoted as w,, , w,, ,..., w,,
respectively and in order to simplify the calculation they are set equal asw, =w,, =...=w,, =1/9.

Furthermore, for any pair of matched point regions R” and R , this sum is denoted as k, . Total
number of arbitrary permutation and combination of R" , R? equals to i times j. Thus, we can

rewrite them into a matrix as follows.
Matw=\|... ... ...]|. (13)

The value %, of a point cloud region pair which has similar features is close to 1; on
the contrary, the value £, of a point cloud region pair which has different features is close to 0. It
is possible to judge whether that smaller &, corresponding of R", R” is correct matching pair or

not. For this reason, from the matrix we extract bigger &, with corresponding R , R? pairs as




follows.

From the matrix for each row the first »' k, of largest values are extracted with
corresponding R’ , R pairs. Here n' equals to the integral part of & . The value of &5 is
determined by experiment and set as 0.55-0.65. For example, when i=5, j=5,n'=3, the three
values of the first row of the matrix &, , k, and k, are bigger than the rest of values,
corresponding point cloud region pairs (R",R?), (R/,R’) and (R/,R’) are extracted. These

point cloud region pairs are possible identical area of the measured model.
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(a) Projection plane in 3D space (b) Project points into the plane
Fig. 2. Project points from 3D space into 2D plane.
3.2.2 Projection on the approximate plane
Thus if the points of a pair R’ , R are projected into the same plane, it can be

determined that this region pair is incorrect matching pair when the small overlap rate is close to
0.

Furthermore, in order to accelerate the calculation, points on the projection plane are put
into different grids. The most left coordinate value and the most bottom coordinate point value
from projected points are set as the original point (0,0) . The arbitrary projected point coordinate is
denoted as (x,',y,') . The corresponding number of grids on X axis and Y axis can be calculated as

follows.

W = INT(x +0.5)- N,
H =INT(y|+0.5)-N,

Here INT() is the rounding function for taking out integer part of the parameter,

W represents the number of the corresponding grid on X axis, H represents the number of the
corresponding grid on Y axis, N, is the total grid number on X axis, and N, is the total grid
number on ¥ axis. Projecting all points of a region pair R , R on the plane, the corresponding
grids with projected points are denoted as N,, , N, respectively. The approximate overlap rate of
the pair on the plane can then be calculated in (15). In this equation, the intersection of ~, and

N, calculates represents the number of overlap grids that have projected points of both point

cloud regions, and the union represents the number of overlap grids that have projected points of




both point cloud regions, and the union represents the number of grids that have projected points
of both point cloud regions. In this equation, the intersection of and represents the number of
overlap grids that have projected points of both point cloud regions, and the union represents the

number of grids that have projected points of both point cloud regions.

N, NN
Rate, el O NN, ) (15)
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This result is then compared with the pre-set threshold value ¢ . If it is smaller than &
the corresponding pair is determined as the wrong matching pair and then removed. The value
of ¢ is decided by experiment and set as 0.8-0.9. Remaining matching pairs are classified in the

next step for calculating the coarse registration parameters.

3.2.3 Multi-group relation

In this step, the remaining point cloud region pairs are classified into different groups
through two processes as follows.

Firstly, the central distance ratio is used for classification. For two point cloud region

pairs the central distance ratio is defined as follows.

s=|rR7(L,.L,). (16)

Fig. 3. Point cloud region pairs classification.

Here, L, is the central distance between central points of two regions R, | R? and L, is
the central distance between central points of two regions R’ , RY from two point cloud region
pairs. The function R7() defined previously in (11) is used in the equation. If the value of the
distance ratio § in (16) is less than the pre-set threshold ¥ , these two point cloud pairs are
classified into the same group. The value of ¥ is decided by experiment and set as 0.9. As
shown in Fig. 3, between pair | and pair 2 this ratio is calculated as s = 1 ; thus, pairl and pair 2 are
classified into the same group.

Secondly, the included angle is used for classification. As mentioned previously, the
eigenvector feature e(e,,e,,e,) which was shown in Fig.2 (a) can indicate the position and the

direction of the point cloud region. For this reason, included angles between eigenvector features




of the point region pairs from the same group should be close. For example, by using the central
distance ratio of point cloud region pairs, (R',R?) and (R!,R’) are classified into the same

group, corresponding included angles that between eigenvectors are denoted as (A40,,, 41,,,42,,),

139
and included angles of matching pairs (R, ,R?) are(A40,,,4l,,,42,,). Therefore, the ratio for each
corresponding angle from each region that can be calculated
as (RT(A0,,,A0,,),RT(Al,,Al,,),RT(A2,,A42,,)) by using the function R7() in (11). If one ratio
is less than the pre-set threshold value, it is determined that the corresponding point cloud pairs
are classified incorrectly and should be removed from the group. The value of is decided by

experiment and set as 0.8-0.9.

3.2.4 RMS error
In 3.2.3 point cloud pairs are classified into different groups. For each group, by using
the central points and eigenvector features of the pairs, transforming matrix is calculated and one

time registration for the point cloud P , O is performed. After that, Root-Mean-Squared error [9,

12] is calculated to evaluate the registration result. The corresponding RMS error is calculated for

each group, and the minimum value obtained is denoted as MinE,, . . The corresponding RMS error

RAMS

If MinE

is calculated for each group, and the minimum value obtained is denoted as MinE, -

RMS °
is less than a smaller standard convergency value [9], it is determined that the corresponding point
cloud pairs of the group are the best matching pairs which can be used for calculating the coarse

registration transforming matrix.

3.3 Transforming Matrix

In 3.2.4 the best matching pairs of one group can be obtained. For performing the coarse
registration, transforming matrix is calculated based on matching pairs using previous methods in

[10] based on the corresponding center point of point regions.

3.4 Transforming

Firstly, by using transforming parameters obtained as above to perform the coarse

registration, point cloud data P, 0 can be moved into a relatively close position through rotating

transforming and the translation transforming.
Secondly, it is fine registration. The second step is fine registration. Based on the coarse

registration result and by using ICP algorithm, measured point cloud data P , O are transformed
into a close enough position and the process of the whole registration is finished.
4. Experimental result

As shown on the left side in Fig. 4 (a) and Fig. 4 (b) there are sample data P , O of a toy

car which is measured by a 3D laser measurement machine.
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(a) P with corresponding regions (b) O with corresponding regions

Fig. 4. Point cloud sample data of P , O with corresponding point cloud regions.

Points of point cloud data P , O in set | are uniform and edges of point cloud regions are very
smooth. Points of point cloud data P , Q in set 2 are non-uniform and edges of point cloud regions
are not so smooth with some noise. And points of point cloud data P , Q in set 3 are non-uniform
and edges of the point cloud regions are not smooth with much noise.

Based on one matched pair in the group obtained above, the transforming matrix is
calculated and the coarse registration is performed. Fig. 5 (a), Fig.5 (b) and Fig. 5 (c) show
corresponding coarse registration results of three sets data. In Fig. 5, red and green contours
represent overlapped parts or separated parts of registration results. By using coarse results, ICP
algorithm is applied to perform the fine registration and the result is shown in Fig. 5(d).

The fine registration result is overlapped very well without any separated parts, which is
better than coarse registration results The RMS error mentioned in chapter 3.2.4 is calculated for

measuring the fine registration result of Fig.5 (d), and the value is 0.217.
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(a) Result of set 1 (b) Result of set 2 (c) Result of set 3 (d) Fine registration result

Fig. 5. Coarse registration results and fine registration result by ICP.

(a) The point cloud data P (b) The point cloud data Q (c) Result from the front view

Fig. 6. Application sample by Kinect.

As shown in Fig.6 (a)-Fig.6 (c), there is one indoor application sample taken by Kinect.
Point cloud data are shown in Fig.6 (a) and Fig.6 (b). The fine registration result of Fig.6 (a) and
Fig.6 (b) is shown in Fig.6 (c), which suggests that the proposed method works well based on the

new device.




5. Discussion

As mentioned previously for point cloud regions of non-uniform points and not smooth
edges, the proposed method can find correct transforming matrix to move the point cloud data into
a close enough initial position for doing the fine registration. Based on these results, the
robustness of the proposed method is verified. When applying the proposed method of this
research, it is not necessary for the points of the measured point cloud data to be evenly
distributed.

For the proposed method, suppose there are N points in the point cloud data, and the
number of extracted point regions is N, ; for the toy car sample, N ~4000 and ~, =10. The
calculation time could be reduced as in this method features are extracted from 10 regions whereas
in the pre-existing point based method feature for each point ( N ~ 4000 ) has to be extracted.

The proposed method can be used when there are few points in the data because point
cloud regions can be extracted from the data and there are enough features that can be extracted
from these regions.

As the Kinect application sample shows, the point number of measured data for one time
becoming 640x 480 = 307200 . For this reason the calculation time based on a few of point cloud
regions could be reduced compared to the calculation time by pre-existing method 1 which
extracts each point feature for over 300,000 measured points. In particular, the proposed method
can be applied to the indoor environment where it is difficult to extract feature points from
measured data, whereas pre-existing methods based on feature points would not obtain the correct

coarse registration result.

6. Conclusion

In this study on the registration in the reverse engineering field, the automatic method
based on point regions has been proposed. The robustness of the proposed method is verified and
the method could find correct transforming parameters to move the point cloud data into a close
enough initial position for doing the fine registration even though point could regions data are not
so perfect. The proposed method can be used for the case in which it is difficult to extract feature
point but easy to extract point cloud regions, especially for the indoor application based on ICP

algorithm.
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