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Abstract
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1 Introduction

In economic and financial time series, we sometimes observe sudden

and large jumps. Although they are relatively rare events, they often

have significant influence not only on a single financial market but

also on several different markets and macro-economies. There have

been several recent events occurred in European and Asian countries

including the major financial crisis of 2007-2008 (often called Lehman

Shock in Japan).

The standard econometric method for investigating economic and

financial time series has been the statistical analysis of discrete time

series analysis in econometrics. In the statistical time series analysis,

we often assume that the observed time series data are equally spaced

realizations of stochastic process and the state space is Rp in the

multivariate cases. Many statistical procedures of discrete time series

analysis have been developed and applied to economic and financial

time series in the last several decades. When we do not observe events

frequently, however, the traditional use of discrete time series modeling

with continuous state space may have some limitations. For instance,

it may be difficult to distinguish the major large contagious effects

from small contagious events among different financial markets across

international borders.

In this paper we will propose to use an alternative way of investi-

gating economic and financial events with time series data in macro-

economies, that is, the statistical analysis of the marked point process
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approach to investigate multivariate time series events. Although it

has not been a standard approach in time series econometrics, there

have been statistical applications in statistical seismology (see Ogata

(1978, 2015) and its related literature, for instance). We will show

that this approach would be an alternative useful way to investigate

multivariate economic and financial markets and shed some new light

on some aspects sometimes ignored. In particular, we shall propose to

use the simultaneous Hawkes-type multivariate point process models

and their applications in this study. It seems that they are not stan-

dard statistical models in the past econometric analyses, but there are

some reasons that they are useful in economic and financial time series

analysis. By using the standard multivariate time series analysis. it

may not be easy to distinguish the effects of large jumps and small

jumps in data from one series to another one, for instance. Also it is

difficult to distinguish the effects of past events or contemporaneous

events in time and space. We will show in this paper that by using the

simultaneous multivariate Hawkes-type point process (SHPP) model,

which is a new multivariate point process, it is possible to investi-

gate the causal effects of sudden and large events of their magnitude

in the sense of the Granger-non-causality (GNC) and the instanta-

neous Granger-non-causality (IGNC) through the stochastic intensity

modeling. In the econometric time series analysis, the concept of

Granger-Causality has been one of important tools to investigate the

relationships among multivariate time series variables since Granger

3



(1969). In econometric literature, Florens and Fougere (1996) have in-

vestigated several Granger-causality concepts in the framework of con-

tinuous time stochastic processes, but their formulation of the problem

was incomplete because they had excluded the possibility of co-jumps

in their formulation, which means that the simultaneous jumps in

multivariate times series excluded from the beginning. The problem

of co-jumps is important because we often use economic time series

data in discrete time (with the periods of every month, week, day,

hour and/or minute) while the continuous stochastic process formu-

lation has been not unusual recently in financial econometrics. We

need to unify the discrete time series analysis and the continuous

stochastic processes coherently. In this paper, we shall investigate

the possible use of co-jumps in a systematic way and will develop the

new tests of the Granger-non-causality and the instantaneous Granger-

non-causality, which may give some new light on the econometric time

series modeling.

There have been a number of recent studies in financial econo-

metrics which have utilized the point processes and the conditional

intensity modeling. See Ait-Sahalia and Jacod (2014), Ait-Sahalia et

al. (2015), Embrechts et al. (2011), Grothe et al. (2014) and others.

As Bacry et al. (2015) have discussed as a survey on these and other

works, they are mostly on the studies of micro-market structures of

financial markets. Our approach developed in this paper is related

to these works, but the main purpose is quite different from them
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because we are developing a new point process approach assess the re-

lationships among different (international financial) markets. In this

respect, there have been also some studies on the international linkage

of financial markets in the context of economic and financial studies

such as Hamao et al. (1990), but our statistical method is quite dif-

ferent from theirs because they have used the standard discrete time

series modeling.

As empirical examples, we will investigate the interactions among

Tokyo-NY (New York), Tokyo-London, and Tokyo-HK (Hong Kong)

financial markets, and then apply the Granger non-causality tests

we will develop. We have found several important empirical findings

among major financial markets.

In Section 2 we present a general formulation of the simultaneous

multivariate Hawkes-type point process (SHPP) model in this study.

Then in Section 3, we will discuss the estimation method and develop

the non-causality tests in the sense of Granger (1969). In Section 4,

we will discuss some simulation results and the empirical applications

will be given in Section 5. Finally, concluding remarks will be pre-

sented in Section 6. Some mathematical details we use will be given

in Appendix.

5



2 Simultaneous Hawkes-type Point Process

We divide the observation period [0, T ] into the discrete periods Ini =

(tni−1, t
n
i ] (i = 1, · · · , n) and set the initial time is tn0 = 0. We interpret

Ini as the i−th day, but it is possible to use the observation periods

with finer frequency periods than the daily data in principle. Let the

observable d−dimension price process be Pj(t) (j = 1, · · · , d ; tni−1 <

t ≤ tni , i = 1, · · · , n) and in s ∈ Ini we denote the (negative) log-return

of prices Xn
j (s) (t

n
i−1 < s ≤ tni ) as

Xn
j (s) = − log[Pj(s)/Pj(t

n
i−1)] (j = 1, · · · , d; i = 1, · · · , n) .(2.1)

Let the first stopping time when Xn
j (s) exceeds the threshold uj in

s ∈ Ii be τn(i, j, 1). Also let the second stopping time when Xn
j (s)

exceeds the threshold uj in s ∈ Ii ∩ (τn(i, j, 1), tni ] be τn(i, j, 2) and

define the sequence of τn(i, j, k) (k ≥ 1). Then we have a sequence of

sets Jj(i) = #{j : τn(i, j, k) ∈ [tni−1, t
n
i )} and

Nn∗
j (t) =

∑
1≤l≤i−1

1

Jj(l)
Nj(t

n
i−1, t

n
i ) (tni−1 ≤ t ≤ tni ) ,(2.2)

where Nj(t
n
i−1, t

n
i ) is the number of counts that Xn

j (s) (s ∈ (tni−1, t
n
i ])

exceeds uj in the threshold u.

For the resulting expository purpose, we will treat as if the jumps

of the counting process Nn∗
j (s, uk) can occur at tni , the end of each

intervals (tni−1, t
n
i ], because the number of jumps over a threshold in

a finite interval should be finite with probability one and we set the

threshold uj = u (j = 1, · · · , d). We notice that the interval length

goes to zero, that is, maxi=1,···,n |tni − tni−1| −→ 0 as n −→ ∞ for a fixed
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T and the counting process, which is a simple point process, Nn∗
j (s, u)

converges to N∗
j (s, u) weakly. The resulting counting process can be

interpreted as the limiting process in the high frequency asymptotics,

which is not a diffusion type but a pure jump process. (Ikeda and

Watanabe (1989), Ait-Sahalia and Jacod (2014) for instance.)

We consider the point processes, Nn∗
j (t) (j = 1, · · · , d), which are

simple and satisfy the standard condition for point processes that as

∆t → 0 we have

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) = 1|Fn
t ) = λn∗

j (t, u)∆t+ op(∆t) ,

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) > 1|Fn
t ) = op(∆t) ,

where Fn
t is the σ−field generated by the information at t, and the

(conditional) intensity functions are given by

λn∗
j (t, u) = lim

∆t→0
E[

Nn∗
j (t+∆t, u)−Nn∗

j (t, u)

∆t
|Fn

t−] .(2.3)

We denote Ft for Fn
t− in the following analysis whenever there is no

confusion on the notation.

Next, we define the point processes, which are simple, Nn∗
jk (s, u)

by the number of stopping times that Xn
j (s) exceed u (j = 1, · · · , d)

for a particular j and also Xn
k (s) exceed uk (k = 1, · · · , d; k ̸= j) for

another k, and other Xn
l (s) (l ̸= j, k) do not exceed u by the time s

in the interval Ini . By this construction, we can introduce the point

processes Nn∗
jk (t, u) with co-jumps of Nj and Nk by

P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) = Nn∗
k (t+∆t, u)−Nn∗

k (t, u) = 1|Ft)

= λn∗
jk(t, u)∆t+ op(∆t) ,
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P (Nn∗
j (t+∆t, u)−Nn∗

j (t, u) > 1|Ft) = op(∆t) ,

where λn∗
jk(t, u) are the conditional intensity functions of co-jumps.

Then when we have co-jumps of two point processes, we can define

the point processes

Nn
j (s, u) = Nn∗

j (s, u) +
∑
k ̸=j

Nn∗
j,k(s, u) (j, k = 1, · · · , d)(2.4)

and the corresponding conditional intensity functions are given by

λn
j (t, u) = λn∗

j (t, u) +
∑
k ̸=j

λn∗
j,k(t, u) .(2.5)

The resulting point processes can be interpreted as the marginal point

process for the j-th component of the vector point process Nn(s, u)

with d dimension.

By extending this formulation to have more complicated co-jumps and

in general we define

Nn
j (s, u) =

∑
Jj∈(1,···,d)

Nn∗
j1,···,jl(s, u) (j = 1, · · · , p),(2.6)

where the index set Jj = {j1, · · · , jl} ∈ {1, · · · , d} is a subset of

(1, · · · , d). The index sets are defined as Ji = {i} for (i = 1, · · · , d),

Ji = {1, 1+(i−d)} for (i = d+1, · · · , 2d−1), · · · , and Jp = {1, · · · , d}.

Then we sequentially define Nn
i (s, u) = Nn∗

i (s, u) (i = 1, · · · , d),

and Nn
d+1(s, u) = Nn∗

1,2(s, u), · · · , Nn
p (s, u) = Nn∗

1,···,d(s, u). We use the

self-exciting form of conditional intensity functions for co-jumps as

λn∗
j,k(t, x|Fn

t−) in the same way and the marginal conditional intensity

function for the j−th components as

λn
j (t, u) =

∑
Jj∈(1,···,d)

λn∗
j,k(t, u) .(2.7)
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There is a one-to-one transformation betweenNn
j (s, u) andNn∗

j1,···,jd(s, u),

and λn
j (t, u) and λn∗

j1,···,jd(t, u) for j = 1, · · · , p and p = 2d − 1.

The self-exciting Hawkes-type conditional intensity functions for the

marked point processes are given by

λn∗
j (t, x|Fn

t−) =

λj,0 +
p∑

i=1

∫ t

−∞
c∗ji(x)g

∗
ji(t− s)N ∗n

Ji
(ds× dx)

(2.8)

for j = 1, · · · , p, where N∗n
Ji
(ds × dx) are the marked point precesses,

gji(t− s) = e−γji(t−s) are the damping functions, and C(X) = (cji(x))

are the impact functions.

Since we are interested in sudden and large jumps of the underlying

price processes, it is important to use the probability functions of the

return process in the tail areas. Hence it may be appropriate to use the

Generalized Pareto distributions (GDP) as tail probability functions

for x > u (j = 1, · · · , d) as

P (Xn
j (s) > x|Xn

j (s) > u,Fs) =

[
1 + ξj

σj
y
]−1/ξj

[
1 + ξj

σj
u
]−1/ξj

(2.9)

=

1 + ξj
σ∗
j

(y − u)

−1/ξj

,

and we set σ∗
j = ξjuj + σj (σj > 0).

(See Resnick (2007) for the details of GDP in the statistical extreme

value theory (SEVT).)

In this paper we assume that given the return at s Xn
j (s) the condi-

tional density functions are given by

fj(x, s) =
1

σ∗
j

1 + ξj
σ∗
j

(x− u)

−1/ξj−1

(x > u , ξj > 0)(2.10)
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and the conditional intensity functions are given by

λ∗n
Ji
(t, u) = λn

j0 +
p∑

i=1

∫ t

0
[Aji(X

n
i )

c(s−)]gi(t− s)dN ∗n
Ji
(s, u)(2.11)

respectively, whereN ∗n
d+1(s, u) = Nn

1,2(s, u), · · · , N ∗n
p (s, u) = Nn

1,···,d(s, u)

and the parameters λj0 and γi are constants.

As the impact functions, we will mainly consider the form

Cij(X) = (Aij max
j∈Ji

xcj) (0 ≤ c ≤ 1; i, j = 1, · · · , p).

In particular when p = d and Cij = δ(i, j) (indicator functions), they

correspond to the multivariate marked Hawkes-type processes, which

are the simple point processes without co-jumps.

Let p× 1 vector point process Nn(t, u) be partitioned as (d+ (p−

d))× 1 processes as

Nn(t,u) =

 Nn
1(t, u)

Nn
2(t, u)

 =



Nn
1 (t, u)
...

Nn
d (t, u)

Nn
1,2(t, u)
...

Nn
1,2,···,d(t, u)



,(2.12)

(Nn
1(t, u) is the d×1 vector of marginal point processes with p = 2d−1

and Nn
2(t, u) is the (p− d) vector of co-jump point processes) and the
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corresponding conditional intensity functions as

λn(t,u) =

 λn
1(t, u)

λn
2(t, u)

 =



λn
1(t, u)
...

λn
d(t, u)

λn
1,2(t, u)

...

λn
1,2,···,d(t, u)



,(2.13)

and p× p matrices

C(X(s−)) = [cij(Xs−)] , G(t− s) = [diag(gj(t− s))] .

(We use the notation that λn
1(t, u) is the vector process of conditional

intensities of marginal jumps, diag(·) for diagonal matrices and we

often omit n for and λn
Ji
(s) (i = 1, · · · , p) and Nn

Ji
whenever their

meanings are clear.)

Then we rewrite (2.6) and (2.7) as

Nn
1(t, u) = D1N

n(t, u) ,(2.14)

and

Nn
2(t, u) = D2N

n(t, u) ,(2.15)

where D1 is a d× p matrix as

D1 =



1 0 · · · 0 1 1 · · · 0 · · · 1

0 1 · · · 0 1 0 · · · 0 · · · 1
... 1 0 0

... · · · 1

0 · · · · · · 1 0 · · · · · · · · · 1 1
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and D2 is a (p− d)× p matrix as D2 = [O, Ip−d] (p ≥ d).

In this paper we call the above Hawkes-type conditional intensity

models as the simultaneous multivariate Hawkes-type point process

(SHPP) models because the resulting market point processes are not

necessarily simple 1. The classical Hawkes-type point processes have

been useful in applications because they are simple point processes.

However, they exclude the possibility of simultaneous jumps or co-

jumps in consideration, and we need the possibilities of co-jumps for

applications. The above constructions of our marked point processes

can be regarded as an extension of Solo (2007).

3 Stationarity and Decomposition of Bartrett Spec-

trum

3.1 On Stationarity of Haykes-type Processes

In our applications, we will use the stationary self-exciting Hawkes-

type (marked) point processes. We take the expectation of the inten-

sity function of (2.11) and (2.13) in (−∞, t] as

E[λn(t,u)] = λ0 + E[
∫ t

−∞
C(X(s−)G(t− s)dNn(s,u)] .(3.1)

We take the non-negative intensity functions and then a set of suf-

ficient conditions for the existence of stationary point processes are

1The definition of ”simple-point process” and other basic terminologies of point processes and

their mathematical details are given in Dalay and Vere-Jones (2003), for instance.
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that E[C(X(s−))] are bounded for any s and the spectral radius

sup
t

max
1≤i≤p

|µi(Ft)| < 1 ,(3.2)

where µi(Ft) is the characteristic roots of

Ft =
∫ t

−∞
E[C(X(s−)]G(t− s)Fsds .(3.3)

For instance, if we have a constant matrix C = E[C(X(s−)] and

Γ = (diag(γi)), gi(t) = e−γit (γi > 0; i = 1, · · · , p), then we have

Ft = F = CΓ−1 and Γ = diag(γj). When d = p = 1 (one-dimensional

Hawkes process) in particular, C = α and and Γ = γ (> 0), then

F = α/γ.

3.2 On the Use of Bartrett Spectrum

Hawkes (1971) introduced the spectral density for the stationary vec-

tor point process N(t) = (Ni(t)), which was originally developed by

Bartlett (1963), and it is defined for the conditional intensity vector

in the form of

λ(t) = λ0 +
∫ t

−∞
γ(t− u)dN(u) ,(3.4)

where γ(u) = (γij(u)) is a d× d matrix and γ(u) = (0) (zero-matrix)

for u < 0. Let the Fourier transform of γ(τ) be

Γ∗(ω) =
∫ ∞

−∞
e−iωτγ(τ)dτ ,(3.5)

where i2 = −1.

Then when p = d (there are no co-jumps), the Bartrett spectral matrix
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for frequency ω (∈ R) is given by

g(ω) =
1

2π
[Id − Γ∗(ω)]−1Σ[Id − Γ∗′(−ω)]−1 ,(3.6)

where Γ∗ in (3.16) is a d×d matrix for the d−dimensional vector point

process. When there can be co-jumps, the Bartrett spectral matrix

for the d−dimensional marginal point process vector can be defined

by

g(ω) =
1

2π
[Id,O][D−DΓ∗(ω)]−1Σ[D

′ −D
′
Γ∗′(ω)]−1[

Id

O
],(3.7)

where g(ω) = (gij(ω)) is the d × d spectral density matrix and Σ =

(σii) is the diagonal matrix with diagonal elements of the variances

σii (i = 1, · · · , p).

Then we define the relative power contribution (RPC) of the marginal

spectral density function gii(ω) (i = 1, · · · , d) with the frequency ω can

be defined by using the joint spectral density matrix g(ω). The (i,i)-

component of g(ω) can be represented as

gii(ω) =
p∑

k=1

|aik(ω)|2σkk(3.8)

and

RPCk→i(ω) =
|aik(ω)|2σkk

gkk(ω)
(i = 1, · · · , p; k = 1, · · · , d) ,(3.9)

where aij(ω) (i = 1, · · · , d; j = 1, · · · , p) are the functions of complex

variables. Also the instantaneous RPC (IRPCj→i) can be defined by

IRPCj→i(ω) =
|aij(ω)|2σjj

gii(ω)
(j = d+ 1, · · · , p) .(3.10)
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In this way, we can measure the relative power contributions for any

frequency ω, which corresponds to the Granger-causality measures in

the frequency domain. One important aspect of the above formulation

is the fact that we have a natural definition of Instantaneous Granger-

causality in the frequency domain, which is different from the discrete

time series modeling.

3.3 On Conditional Probability Prediction

One of important applications of the conditional intensity modeling is

to asses the conditional probability of rare events in the future from

past observations. Let τ(j) (j = 1, · · · , d) be the first arrival time of

an event to be occur in the j− the market. Then we can write the

probability of the random variable τ(j) as

Pr(τ(j) ≥ T
′|FN

T ) = exp(−
∫ T

′

T
λn
j (t, u|FN

T )dt) ,(3.11)

where FN
T is the σ−field of information available at time T < T

′
and

λn
j (t, u|FN

T ) is the conditional intensity of the j−the variable. .

Kunitomo, Ehara, and Kurisu (2017) have conducted some experi-

ments and suggested that some useful information on the conditional

probability of future events can be extracted from past observations.

For instance, they have given an important example on the conditional

probability prediction of Lehman Shock given past information avail-

able before that events. This would illustrate the possible usefulness

of our approach.
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4 Estimation and Non-causality Tests

4.1 Likelihood Function

When the point process is simple and there is no co-jump, the log-

likelihood function of (d-dimensional) multivariate point process has

been known (see Daley and Jones (2003)) and it is given by

d∑
i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)} .(4.1)

The log-likelihood function of the marked multivariate point process

with the density function fi(x) is given by

logLT = L1T + LT2 ,(4.2)

where

L1T =
d∑

i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)} ,

L2T =
d∑

i=1

{
∫ T

0
log fi(x

n
i (s−))dNn

i (s)}

and the density function for the tail probability is given by

fi(x) =
1

σ∗
i

(1 + ξi
xi − ui
σ∗
i

)
− 1

ξi
−1

(i = 1, · · · , d) .(4.3)

Then we can apply the maximum likelihood method to L1T and L2T

separately. In this formulation we use the GPD (generalized Pareto

distribution) for the marginal distributions.

When there can be co-jumps, the log-likelihood function of (d-dimensional)

marginal point process is not the above form and it should be given

by

logL∗
T = L∗

1T + L∗
2T ,(4.4)
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where

L∗
1T =

d∑
i=1

{−
∫ T

0
λn
i (s)ds+

∫ T

0
log(λn

i (s))dN
n
i (s)}

+
d∑

i ̸=j=1

{−
∫ T

0
λn
ij(s)ds+

∫ T

0
log(λn

ij(s))dN
n
ij(s)}

+ · · ·+ {−
∫ T

0
λn
i···d(s)ds+

∫ T

0
log(λn

i···d(s))dN
n
i...d(s)} .

and L∗
2T = L2T .

In our applications we mainly deal with the case when d = 2 and

then there is only one extra term in the likelihood function because

p = 2d − 1.

We assume the stationarity condition (3.2) and the existence of

second order moments of C(X) = cij(X(s)) in the statistical inference

of Hawkes-type point processes without and with co-jumps. Also we

take λ(u) as the stationary conditional intensity and some q × p pre-

dictable processes ξ(t) having the second order moments.

Then, because of the resulting martingale property given the informa-

tion available at each time, it is straight-forward to show the asymp-

totic properties as we have

1

T

∫ T

0
ξ(t)[N(t, u)− λ(t,u)]dt −→ 0 (a.s.)(4.5)

and
1

T

∫ T

0
ξ(t)[λ(t, u)− λ(u)]dt

p−→ 0(4.6)

as T → ∞.

For the one-dimensional point processes with the stationary inten-

sity function, Ogata (1978) has given a set of sufficient conditions for
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the consistency and asymptotic normality of the maximum likelihood

(ML) estimation. His derivations are based on a martingale central

limit theorem (MCLT) and it is straightforward to extend his argu-

ments to the multi-dimensional case. For the sake of completeness, we

have given some detail of our arguments based on a new MCLT in our

Appendix, which may be more general than the standard literature as

the ones given by Ogata (1978). We will also give the outline of our

proofs of Theorems used in the next subsection, which are developed

for our empirical applications as the new non-causality tests.

4.2 Non-Causality Tests

We will develop and use the Granger non-causality tests based on the

likelihood ratio principle for the Hawkes-type point processes, which

may be new. In particular, our results in this subsection, whose proofs

are given in Appendix, include not only the multivariate extension of

the existing results, but also the cases when the resulting limiting

Fisher information matrix can be random variables. We first state our

result for the case of no co-jumps under a set of regularity conditions,

which will be extended in the more general case. We summarize the

basic result.

Theorem 4.1 : Let the log-likelihood function of the Hawkes-type

point processes with true parameters be LT (θ0), the log-likelihood

function with the maximum likelihood estimator θ̂ML be LT (θ̂ML) un-

derΘ ∈ θ and the log-likelihood function with the restricted maximum
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likelihood estimator θ̂RML be LT (θ̂RML) under Θ1 ∈ θ (Θ1 ⊂ Θ). We

assume that the sufficient conditions for the stationarity, the existence

of the second order moment condition of C(X), and the parameter

spaceΘ ∈ θ inRr the parameter space andΘ1 ∈ θ inRr1 (0 ≤ r1 < r)

are compact sets. Under a set of regularity conditions (see Theorem

A-3 in Appendix), as T → ∞,

2{LT (θ̂ML)− LT (θ̂RML)} d→ χ(r − r1) ,(4.7)

where r− r1 is the number of restrictions of θ = (θk) and χ2(r− r1) is

the χ2−random variable with r − r1 degrees of freedom.

The details of a set of regularity conditions will be discussed in Ap-

pendix. When there can be co-jumps in the Hawkes-type processes,

we cannot apply Theorem 4.1, but it is important to obtain the corre-

sponding results in such cases for econometric applications. Especially

when we use the discrete versions of point processes, which would be

often the case in econometric applications, we need to consider the

existencve co-jumps. Then we will develop the non-causality tests

based on the likelihood ratio principle. In this respect we notice that

in our setting discussed in Section 2, although we allow the possible

co-jumps, it is possible to apply the martingale central limit (MCLT)

theorem for point processes. We state our result, which is an extension

of Theorem 4.1 to the case of co-jumps.

Theorem 4.2 : Let the log-likelihood function of the Hawkes-type

point processes with true parameters be LT (θ0), the log-likelihood
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function with the maximum likelihood estimator θ̂ML be LT (θ̂ML) un-

derΘ ∈ θ and the log-likelihood function with the restricted maximum

likelihood estimator θ̂RML be LT (θ̂RML) under Θ1 ∈ θ (Θ1 ⊂ Θ). We

assume that the sufficient conditions for the stationarity, the existence

of the second order moment condition of C(X), and the parameter

spaceΘ ∈ θ inRr the parameter space andΘ1 ∈ θ inRr1 (0 ≤ r1 < r)

are compact sets. Under a set of regularity conditions (see Theorem

A-3 in Appendix), as T → ∞,

Under a set of regularity conditions even when co-jumps exist, as

T → ∞,

2{LT (θ̂ML)− LT (θ̂RML)} d→ χ(r − r1) ,(4.8)

where r− r1 is the number of restrictions of θ = (θk) and χ2(r− r1) is

the χ2−random variable with r − r1 degrees of freedom.

Some details of the regularity conditions required in Theorem 4.1 and

Theorem 4.2 will be discussed in Appendix.

5 Simulations

To examine the relevance of our estimation procedure proposed in

this paper we have done a set of simulations. The model we have used

in our simulations are the simultaneous Hawkes-type model with two

dimension and the intensity functions are given by

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α13e

−γ(t−s)[max
i

Xi]dN
n
12(s) ,

20



λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α23e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α32e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α33e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) .

We first generate the stock price returns by using the generalized

Pareto distribution as marginal and the two-dimensional Gaussian

copura. Then we use the maximum likelihood (ML) method to obtain

the estimates of the underlying parameters. We give several figures

(Figures 5.1-5.6) among many results and all figures of the finite sam-

ple distributions of the ML estimator are standardized as

I1/2n (θ̂ − θ) ,(5.1)

where θ = (θi) is the vector of parameters and and θ̂ is the ML

estimator. This makes possible to compare them to the standard

normal distributions.

In our numerical evaluations we sometimes hit the boundaries of the

non-negativity of intensity functions with finite samples, which make

the simulation some instabilities. Thus we have set non-negativity re-

strictions on parameters in our simulations. Then we have reasonable

results, but then sometimes we observe that the maximum likelihood

estimators of coefficients have the resulting biases, which are basically

not very large. (Figure 5-2 is a typical example of this kind.) We

summarize the setting of our numerical experiments : the simulation
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Figure 5-1 : α∗
12

size N = 100, and for GPD(σj, ξj) we set (σ1, ξ1) = (0.007, 0.22),

and (σ2, ξ2) = (0.008, 0.15). These numerical values are based on the

preliminary estimates obtained by our empirical studies, which give

reasonable estimates.

α∗
11 α∗

12 α∗
13 α∗

21 α∗
22 α∗

23

True 0.57000 0.00000 0.19000 0.00010 0.71000 0.09500

Mean 0.63641 0.00259 0.12387 0.03994 0.76318 0.07905

RMSE 0.01045 0.00426 0.00913 0.00568 0.01004 0.00557

α∗
31 α∗

32 α∗
33 γ∗ λ∗

1,0 λ∗
2,0 λ∗

3,0

True 0.05900 0.12000 0.20000 0.02700 0.00930 0.00530 0.00084

Mean 0.06748 0.13922 0.11315 0.02859 0.00853 0.00427 0.00107

RMSE 0.00272 0.00380 0.00963 0.00033 0.00019 0.00017 0.00007

Table 5-1 : Simulation results

Among many simulations we illustrate our results in Table 5-1 and

Figures. Because we have taken α∗
12 = 0, we have a sampling dis-
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Figure 5-2 :α∗
21

Figure 5-3 :α∗
23
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Figure 5-4 :γ∗

tribution around zero and the resulting estimate is not significant as

in Figure 5-1. Other estimates of αij take reasonable values on aver-

age and some of the sampling distributions are illustrated in Figures

5.2-5.4. We have found that there are some positive biases on αij

and negative biases on the initial intensities, which may be due to the

results of the non-negative constraints of the parameter restrictions.

In the ML estimation there can be some effects of initial condi-

tions and we have investigated this problem in the SHPP models. We

have confirmed that there are such effects, but they are minor in our

simulations.

We will also use the χ2−distributions as the limiting distributions of

the likelihood ratio statistics for hypotheses testing in our empirical

study. We have confirmed that the χ2−approximations with finite

samples are often appropriate.
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6 Empirical Applications

In this section we will report two empirical examples by using the

SHPP models. The first one is the three major stock markets, namely,

Tokyo, New-York, and London. Since there are some time differences

when each markets are open and close, it is reasonable to assume

that there is no co-jumps. As the second example, we will report the

empirical analysis of Tokyo and HK (Hong Kong) markets. Since the

time zones are similar when two markets are open and time difference

is negligible, it may be reasonable to use the extended Hawkes models

with co-jumps. Our data used in the first example are daily data

of Nikkei225, S&P500 and FTSE100 during 1990/1/2-2015/8/25. We

have chosen u = 2% because Kunitomo, Ehara and Kurisu (2017) have

analyzed this case and obtained reasonable results and we will report

some of their results as Example 1 because they are only available in

Japanese. The example 2 on Tokyo-Hong-Kong markets is completely

new and its empirical observation is the main reason why we have

developed the SHPP models in this study.

In addition to daily data, we also have used the data of the be-

ginning of the day and the lowest of the day in two examples because

these data have been often used is financial industries and the analysis

may give us the robustness check of our results on the conditional in-

tensity modeling including the non-causality tests. However, we have

omitted reporting the details of the results because they are basically

the same as we will report in this section.
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Table 6-1 : Tail Distributions

Log Likelihood σ∗
i ξi

J -1190.72 0.00806 0.16874

SD 0.00065 0.06431

Log Likelihood σ∗
i ξi

NY -797.385 0.00765 0.21538

SD 0.00076 0.08082

Log Likelihood σ∗
i ξi

L -775.779 0.00850 0.10799

SD 0.00084 0.07717

6.1 Example 1 (Tokyo-NY-London)

We first maximize the likelihood L2T to estimate the marginal distri-

butions of financial market returns. As we have shown in Table 6.1, we

have confirmed that the marginal distributions of market returns have

thicker tails than the normal distribution. Hence, it may be appropri-

ate to use the generalized Pareto distribution in our estimation. The

standard deviations (SD) are estimated by the numerical evaluation

of Fisher Information matrix.

As the estimated models with two dimension (d = p = 2), we take

the impact functions c(x) as Case (1) c(x) = 1, Case (2) c(x) = x,

and Case (3) c(x) = xc (0 < c < 1). The estimated values of the log-

likelihood and AIC are those with the marginal distribution L1T . The

full likelihood can be calculated by using L1T and L2T . The standard

deviations of the estimated coefficients are also evaluated numerically
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by using the inverse of the estimated Fisher information matrix.

Case 1

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ11(t−s)dNn
1 (s) +

∫ t

0
α12e

−γ12(t−s)dNn
2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ21(t−s)dNn
1 (s) +

∫ t

0
α22e

−γ22(t−s)dNn
2 (s) .

Since the maximum likelihood estimates can be sometimes unstable

numerically, we set the restriction that the discounted parameters

γij (i, j = 1, 2) have the same value γ in the following estimation.

We show our estimation results on Case 1 in Table 6.2.

Table 6-2 (1): Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY -2444.14 4902.27 0.01490 0.00452

SD 0.002102 0.00162

α21 α22 γ λ10 λ20

0.00000 0.01796 0.0234 0.00583 0.00390

0.00070 0.00247 0.0030 0.00126 0.00093

In the above table N1 corresponds to Tokyo and N2 corresponds

to NY in Tokyo-NY markets. In Tokyo-London, N1 corresponds to

Tokyo while N2 corresponds to London.

The most important finding in Table 6.2 (and also in Table 6.3

below), is the fact that the coefficient α12 is statistically significant
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Table 6-2 (2) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London -2421.02 4856.04 0.01692 0.00437

SD 0.00235 0.00173

α21 α22 γ λ10 λ20

0.00062 0.02028 0.02729 0.00683 0.00361

0.00073 0.00284 0.00341 0.00126 0.00087

while the coefficient α21 is not statistically significant. This is a kind

of the non-causality test, but as we will discuss in more formal ways.

We have found reasonable values for other parameters and they are

significant both in Tokyo-NY and Tokyo-London.

Case 2

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s) ,

and we have shown our estimation results in Table 6.3.

In the present case we have similar values for the estimated coefficients

as Case 1 except α21. It seems that we have more significance than in

Case 1, which correspond to the likelihood values and their AIC.

Case 3
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Table 6-3 (1) : Tokyo-NY

Log Likelihood AIC α11 α12

Tokyo-NY -2441.59 4897.19 0.48308 0.13139

SD 0.07110 0.05232

α21 α22 γ λ10 λ20

0.00000 0.58128 0.02328 0.0067209 0.0043152

0.02584 0.08305 0.00310 0.00131 0.00095

Table 6-3 (2) : Tokyo-London

Log Likelihood AIC α11 α12

Tokyo-London -2418.77 4851.55 0.57164 0.13416

SD 0.08127 0.05768

α21 α22 γ λ10 λ20

0.02901 0.68684 0.02833 0.007645 0.00388

0.02905 0.09947 0.0037 0.00130 0.00089

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1
c11dNn

1 (s) +
∫ t

0
α12e

−γ(t−s)X2
c12dNn

2 (s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X2
c21dNn

1 (s) +
∫ t

0
α22e

−γ(t−s)X2
c22dNn

2 (s) .

The maximum likelihood estimates are sometimes unstable numer-

ically, we have set the restriction that the discounted parameters

γij (i, j = 1, 2) have the same value γ and also we set the restric-

tion c11 = c12, c21 = c22 after several different trials. We show the

estimation results in Table 6.4.

In this case the values of the estimated coefficients are reasonable,
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Table 6-4 (1) : Tokyo-NY

Log Likelihood AIC α11 α12 α21 α22

Tokyo-NY -2440.769 4899.538 0.0789 0.02271 0.0000 0.0948

SD 0.3553 0.1005 0.0053 0.1169

γ λ10 λ20 c11 = c12 c21 = c22

0.02320 0.006132 0.00403 0.4739 0.47605

0.00305 0.00159 0.00096 1.28043 0.35940

Table 6-4 (2) : Tokyo-London

Log Likelihood AIC α11 α12 α21 α22

Tokyo-London -2417.74 4853.48 0.21233 0.05087 0.00656 0.17068

SD 0.27649 0.06779 0.01023 0.17829

γ λ10 λ20 c1,1=c1,2 c2,1=c2,2

0.02800 0.00730 0.00373 0.71330 0.59962

0.00363 0.00133 0.00089 0.37337 0.29613

but often they are not statistically significant. For instance, the esti-

mated value of c is between zero and one. From our estimated results,

it seems that we have found that Model 2 and Model 3 are better than

Model 1. Also by using AIC Model 2 is better than Model 3 mainly

because Model 3 has too many parameters and Model 2 is better than

Model 3 as Tokyo-NY markets. Hence we have adopted Model 2 or

Case 2 in the following non- causality tests.

Non-Causality Tests

When we apply the Granger Non-Causality test procedure, we have set

the impact function as c(x) = x. We report our empirical results for
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the hypothesis H0 : αij = 0 by using the likelihood ratio test statistics

based on the Tokyo-NY data. For the null-hypothesisH0 : α21 = 0, the

likelihood ratio was 2× (−2441.594+2441.594) ∼ 0 and we could not

reject the null-hypothesis. (The 95% upper-percentage point of χ2(1)

is 3.481 in Table 6-5(1).) This means that the change of the Japanese

financial market has little impact on the U.S. financial market.

For testing the null-hypothesis H0 : α12 = 0, the likelihood ratio

test statistics based on the Tokyo-NY data was 2 × (−2441.594 +

2446.297) = 9.406, and then the null-hypothesis was rejected. This

means that there is a significant effect from the U.S. market to the

Japanese financial markets (see Table 6-5(2)).

Similarly, we have done the empirical analysis on Tokyo-London

markets. For the null-hypothesis H0 : α21 = 0, the likelihood ra-

tio statistic was 2 × (−2418.773 + 2419.359) = 1.172 and the null-

hypothesis was not rejected. This means that the effect of Japanese

financial market on London is rather limited.

For the null-hypothesis H0 : α12 = 0, the likelihood ratio statistic

based on the Tokyo-London data was 2 × (−2418.773 + 2422.848) =

8.15 and the null-hypothesis was rejected. This means that there is

an effect of London market on Tokyo (see Tables 6-2(2), 6-3(2) and

6-4(2)).

To summarize our findings among three major financial markets,
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the effects of Japanese market on the U.S. and London are rather lim-

ited while we have found significant effects of U.S. financial market

and London financial market on Tokyo market, were rather statisti-

cally significant.

6.2 Example 2 : Tokyo-HK markets

For the second example, we have used daily data of Nikkei-225 and

Hansen Index of Hong-Kong(HK) during 1990/1/2-2015/8/25. Since

the trading periods in two financial markets are quite similar, we had

expected that there can be simultaneous movements in two markets.

Because there can be many additional parameters in Case 3, which

has the general form of impact functions, the estimated results are

often not statistically significant and we have omitted to report our

results of Case 3.

We first maximize the likelihood L∗
2T to estimate the marginal dis-

tributions of financial market returns. As we have shown before, we

have confirmed that the marginal distributions of market returns have

thicker tails than the normal distribution in Table 6-7. Hence, it may

be appropriate to use the generalized Pareto distribution in our esti-

mation.

The estimated models with two dimensions (d = 2 and p = 3), we

take the impact functions c(x) as Case (1) c(x) = 1 and Case (2) c(x) =

x. The estimated values of the log-likelihood and AIC are those with

the marginal distributions L∗
1T . The full likelihood can be calculated
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Table 6-5 : Tail Distributions

Log Likelihood σ∗
i ξi

J -1919.307 0.00757 0.22778

SD 0.00051 0.05552

Log Likelihood σ∗
i ξi

HK -1888.716 0.00861 0.15773

SD 0.00055 0.05076

by using L∗
1T and L∗

2T . The standard deviations of the estimated coef-

ficients are evaluated numerically by using the inverse of the estimated

Fisher information matrix.

Case 1

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)dNn
1 (s) +

∫ t

0
α12e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α13e

−γ(t−s)dNn
1,2(s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)dNn
1 (s) +

∫ t

0
α22e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α23e

−γ(t−s)dNn
1,2(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)dNn
1 (s) +

∫ t

0
α32e

−γ(t−s)dNn
2 (s)

+
∫ t

0
α33e

−γ(t−s)dNn
12(s) .

Again the maximum likelihood estimates can be sometimes unstable

numerically, we have set the restriction that the discounted parameters

γij (i, j = 1, 2, 3) have the same value γ. We show the estimation

results in Table 6-6.
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Table 6-6 : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK -3954.73 7935.47 0.015 0.000 0.012

SD 0.002 0.001 0.0036

α31 α32 α33

Tokyo-HK 0.0015 0.0035 0.0086

SD 0.0007 0.0008 0.0022

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.000 0.020 0.007 0.0262 0.0090 0.0048 0.0008

SD 0.00074 0.0025 0.0033 0.0028 0.0016 0.0012 0.0007

We note that in the above table N1 corresponds to Tokyo and N2

corresponds to NY in Tokyo-NY markets.

Case 2

We estimated the intensity function as

λn
1(t) = λn

10 +
∫ t

0
α11e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α12e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α13e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) ,

λn
2(t) = λn

20 +
∫ t

0
α21e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α22e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α23e

−γ(t−s)[max
i

Xi]dN
n
12(s) ,

λn
12(t) = λn

12,0 +
∫ t

0
α31e

−γ(t−s)X1dN
n
1 (s) +

∫ t

0
α32e

−γ(t−s)X2dN
n
2 (s)

+
∫ t

0
α33e

−γ(t−s)[max
i

Xi]dN
n
1,2(s) .

We have shown our estimation results in Figure 6.7. From our es-

timated results, we find that Model 2 is better than Model 1 as in
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Example 1. By comparing Table 6-7 and Table 6-8, there are several

interesting findings. The value of AIC in Case 2 is better than Case 1

as we have observed in the Tokyo-NY and Tokyo-London Data sets.

The estimates of coefficients of the past effects are often statistically

in-significant while the contemporaneous effects of co-jump term are

statistically significant. This aspect basically agrees with our motiva-

tions for developing the SHPP models.

Table 6-7 : Tokyo-HK

Log Likelihood AIC α11 α12 α13

Tokyo-HK -3944.79 7915.58 0.5675 0.000 0.1930

SD 0.764 0.0373 0.0738

α31 α32 α33

Tokyo-HK 0.0586 0.1242 0.0547

SD 0.0007 0.0008 0.0022

α21 α22 α23 γ λ1 λ2 λ3

Tokyo-HK 0.0001 0.7147 0.0950 0.0267 0.0094 0.0053 0.0008

SD 0.0241 0.0871 0.0701 0.0029 0.0016 0.0012 0.0007

Non-Causality Tests

When we apply the Granger-causality test procedure, we have set the

impact function as c(x) = x. We report our empirical results for the

hypothesis H0 : αij = 0 by using the likelihood ratio test statistics.

For the null-hypothesis H0 : α13 = 0, the likelihood ratio based on
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Tokyo-HK data set was 11.14 and we reject the null-hypothesis. (The

95% upper-percentage point of χ2(1) is 3.481.) This means that we

have a significant instantaneous causal relation between the Japanese

financial market and Hong-Kong financial market.

For testing the null-hypothesis H0 : α12 = 0, the likelihood ratio test

statistics was 0.0, and then the null-hpothesis was accepted.

Also for testing the null-hypothesis H0 : α12 = 0, α13 = 0 the likeli-

hood ratio test statistics was 11.14, and then the null-hypothesis was

rejected.

Next, for the null-hypothesis H0 : α21 = 0, the likelihood ratio was

0.006 and we reject the null-hypothesis. (The 95% upper-percentage

point of χ2(1) is 3.481.)

For testing the null-hypothesis H0 : α23 = 0, the likelihood ratio test

statistics was 2.42, and then the null-hypothesis was accepted(see Ta-

ble 6-10(5)).

Similarly, for testing the null-hypothesis H0 : α21 = 0, α23 = 0 the

likelihood ratio test statistics was 2.66, and then the null-hypothesis

could not be rejected.

To summarize our findings in this subsection among Tokyo and

Hong Kong financial markets, we have found that the simultaneous

effects of two markets are significant while the effects of past events

are rather small.
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Figure 6-1 : Relative Power Contributions

6.3 A Further Empirical Analysis

We also use the spectral decomposition and the relative power contri-

butions as we explained in Section 3. Three figures of US, UK and HK

are given as Figure 6-1, 6-2 and 6-3. In the first two decompositions

we assume that there are no co-jumps while in the last one we do have

co-jumps terms. We have adopted the cases when cij(x) = x because

the resulting models have the minimum AIC.

For the relationship between Tokyo-NY financial markets, the self

contribution play major contribution while there is some contribution

from NY to Tokyo in the low frequency, which corresponds to the

long-run relation. On the other hand, for the relationship between

Tokyo-HK financial markets, the instantaneous contribution plays a

major contribution in all frequencies as well as the self contribution.

This aspect reflects the fact that we have used the SHPP models.
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Figure 6-2 : Relative Power Contributions

Figure 6-3 : Relative Power Contributions
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7 Conclusions

In this paper we developed a new method of econometric analysis

of multivariate time series of events and proposed the simultaneous

Hawkes-type point process modeling. Unlike some existing literatures,

we develop and use the new statistical models for simultaneous sudden

and large events and delayed events occurred explicitly. By using the

simultaneous multivariate Hawkes-type point process approach and

the SHPP models, we have investigated the Granger-causality and

the instantaneous Granger causality on different financial markets and

economies and developed the non-causality tests.

By applying the non-causality tests for both the Granger non-

causality (GNC) and the Granger instantaneous non-causality (GINC),

we have found the important relations among major financial markets

and several empirical findings. In Tokyo-NY financial markets, there

is a strong one way direction in causation while in Tokyo-HK financial

markets the simultaneous effects are dominant.

There are several questions remained to be answered. First, al-

though we have used the Hawkes-type marked point processes, there

can be many possible non-linear point processes and Kurisu (2016)

has found one way to justify the use ot SHPP models. In economic

and financial econometrics it is standard to handle the discrete obser-

vations of time series such as year, month, weak, day, an hour and a

minute. Thus we need a coherent way of investigating abrapt or sud-

den events and we are proposing one way to deal with discrete time
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series events in this paper. In this respect, it should be interesting

to investigate the robustness of our empirical results further. Second,

the choice of threshold parameter is an important one, which is related

to the relevance of the generalized Pareto distribution (GPD) in the

statistical extreme value theory in our empirical analysis. Since we

have used a simple threshold parameter, apparently we need a more

convincing statistical theory on the choice of threshold. Finally, when

d > 2 there can be many parameters to be estimated and often the es-

timated parameters would be statistically not significant. This aspect

is important when we have the possibility of co-jumps. Hence there

should be some ways to handle this problem.

These questions are currently under investigation and we shall re-

port our progresses in another occasion.
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APPENDIX : Mathematical Details

In this Appendix, we give some mathematical details we have used

in the previous sections. In the statistical analysis of point processes,

Ogata (1978) derived the asymptotic properties of consistency and

asymptotic normality of the maximum likelihood estimation for one

dimensional intensity models, which have been classical and often cited

in the related studies. He obtained the results by using a martingale

central limit (CLT) theorem for point processes, which has not been

well-known for econometricians, and also the asymptotic normality

holds under more general conditions often cited. Hence, we first dis-

cuss some properties of jump martingales with continuous time pa-

rameter. We omit the subscript n without any loss of generality in

this Appendix.

(i) A Martingale CLT

We present a general martingale CLT for one-dimensional point pro-

cesses and then we can apply to our situation as an application.

Theorem A.1 : Let an F−adapted simple point process on R+ be

N and the F−(continuous)compensator be A. We assume that for

any T (> 0) there exists an F−adapted gT (t) and an F0−adapted

(positive) random variable η, which satisfy the following conditions.

(i) E[ 1T
∫ T
0 (gT (x))

2dA(x)] < ∞ ,

(ii) For any δ (> 0),
1

T 1+δ
A(T )

p−→ 0,(A.1)
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(iii) As T −→ ∞

1

T

∫ T

0
(gT (x))

2dA(x)
p−→ η2,(A.2)

(iv) For any c > 0, as c → ∞

E[
1

T

∫ T

0
(gT (x)I(|gT (x)| > c))2dA(x)|F0]

p−→ 0 .(A.3)

Then

XT =
1√
T

∫ T

0
gT (x)[dN(x)− dA(x)](A.4)

converges to Uη in the sense of F0−(stable convergence sense), where

U is N(0, 1), which is independent of F0.

Remark A-1 : The method of proof is basically a modification of

the one given by Daley=Vere-Jones (2008, Vol-II), as Theorem 14.5.I.

They derived a martingale CLT under a Lyapunov condition. Our

condition includes the speed of compensator, which may be a reason-

able condition.

Proof : For any real number y and fT (u) = (1/
√
T )gT (u), we define

ζT (t, y) = exp

(
iy
∫ t

0
fT (u)[dN(u)− dA(u)] +

1

2
y2
∫ t

0
[fT (u)]

2dA(u)

)
.

(A.5)

By using Lemma A-1 below, when A(t) and N(t) are a continuous

process and a pure jump process, respectively, we can represent

ζT (t, y) = exp

(
(
1

2
y2[fT (u)]

2 − iy
∫ t

0
fT (u))dA(u)

)
(A.6)

×
∏
i

[1 + (exp(iy
∫ t

0
fT (ti)− 1)∆N(ti)] ,
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where ti are jump times. By using the transformation of jump process,

we have

ζT (t, y)− 1

=
∫ t

0
ζT (u−, y)

[
1

2
y2[fT (u)]

2 − iyfT (u)]dA(u) + [exp(iyfT (u))− 1]dN(u)

]

=
∫ t

0
ζT (u−, y)(exp(iyfT (u))− 1)(dN(u)− dA(u))

+
∫ t

0
ζT (u−, y)

[
exp(iyfT (u))− 1− iyfT (u) +

1

2
y2[fT (u)]

2
]
dA(u) .

We define the stopping time τ by τ = inf{t :
∫ T
0 [fT (u)]

2dA(u) ≥

η2}. Then for any F0−measureable and essentially bounded random

variable Z, we set t = T ∧ τ . By the martingale property we have

E

[
Z
∫ T∧τ

0
ζT (u−, y)(exp(iyfT (u))− 1)(dN(u)− dA(u))|F0

]
= 0 .

Hence

|E(ZζT (T ∧τ)|F0]−Z)| ≤ E[|Z|
∫ T∧τ

0
|ζ(u−, y)R(fT (u), y)|dA(u)|F0] ,

where

R(fT (u), y) = exp(iyfT (u))− 1iyfT (u) +
1

2
y2[fT (u)]

2 .

For 0 < u < T ∧ τ we have

|ζT (T ∧ τ)| ≤ exp(
1

2
y2
∫ T∧τ

0
[fT (u)]

2dA(u)) ≤ exp(
1

2
y2η2) .

Also by the Taylor-expansion,

|R(fT (u), y)| ≤ y2|fT (u)|2I[|fT (u)| > cT ]+
|θy|3

3!
|fT (u)|3I[|fT (u)| ≤ cT ]
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and then

|E(ZζT (T ∧ τ)|F0]− Z|

≤ |Z|[y2
∫ T∧τ

0
|fT (u)|2I[|fT (u)| > cT ]dA(u)

+|yθ|3
∫ T∧τ

0
|fT (u)|3I[|fT (u)| ≤ cT ]dA(u) ,

where |θ| ≤ 1. Therefore the right-hand side multiplying exp(−1/2y2η2)

is bounded by

|E(Z[ρTeiyXT − e−1/2y2η2])| ,

where

ρT = exp

[
iy
∫ T

T∧τ
fT (u)([dN(u)− dA(u)]− 1

2
(η2 −

∫ T

0
[fT (u)]

2dA(u))+

]
.

We set gT (u) = fT (u)/
√
T and c = cT/

√
T . Then

∫ T∧τ

0
|fT (u)|3I[|fT (u) ≤ cT ]dA(u) ≤

c3

T 3/2
A(T ∧ τ) ,

which converges to zero by our conditions. Here we have

ζT (u−, y)e−y2η2/2 = eiyXT

[
eiy

∫ T∧τ

0
fT (u)(dN−dA)+y2

2

∫ T

0
fT (u)

2dA−iy
∫ T

0
fT (u)(dN−dA)−y2η2

2

]
= eiyXTρT .

Because |ρT | ≤ 1 and ρ → 1, we find that E[Z(ρT − 1)eitXT )] → 0 and

then

E[Z exp(iyXT )] −→ E[Ze−
1
2y

2η2/2] .

Then by the use of weak-convergence and stable convergence (Dalay=Vere-

Jones(2008), Jacod=Protter (2012)), we have that XT −→ X (F0)-

stably). This means that for any bounded F0−measurable random
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variable Z, E [ZeiyX ] = E [Ze−y2η2/2], which implies E [eiyXT /η|F0] =

e−y2/2.

Q.E.D.

We give the integration-by-parts formula, which has been known in

stochastic analysis (see Chapter II of Protter (2003), for instance).

Lemma A.1 : Let

G1(t) =
∏
i

(1 + w(ti))∆N(ti), G2(t) = exp

(∫ t

0
v(u)dA(u)

)
,(A.7)

where v(u) = (y2/2)[fT (u)]
2 − iyfT (u) and w(ti) = exp(iyfT (ti)− 1).

Then by the integration-by-parts formula,

G1(t)G2(t)−G1(0)G2(0)(A.8)

=
∫ t

0
G1(u)dG2(u) +

∫ t

0
G2(u)dG1(t)

=
∫ t

0
G1(u−)G2(u)v(u)dA(u) +

∑
i

G2(ti)G1(ti−)w(ti)∆N(ti) .

By using Theorem A.1, it is straightforward to obtain a martingale

convergence result under the same assumptions of Theorem A.1. That

is, for any ϵ > 0 we have

YT =
1

T 1/2+ϵ

∫ T

0
gT (x)[dN(x)− dA(x)]

p−→ 0 .(A.9)

Thus, we do not need to use the Ergodic Theorem for stationary

stochastic processes, which was one of key arguments on the asymp-

totic results obtained by Ogata (1978).

It is also straightforward to extend Theorem A.1 to the multivariate
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cases. Let N = (Ni) be a p × 1 vector F−adapted simple point pro-

cesses onR+ andA = (Ak) are the F−(continuous)compensators. For

any T (> 0) we consider q × p F−adapted and predictable processes

gT (t) = (gijT (t)) and a q × q F0−adapted (positive-definite) random

matrix η = (ηij), we assume the following conditions.

(i)
′
max1≤i,j≤q max1≤k≤pE[

1
T

∫ T
0 |gikT (t)||gikT (t)|dAk(t)] < ∞ ,

(ii)
′
For any δ (> 0),

1

T 1+δ
max
1≤k≤p

Ak(T )
p−→ 0,(A.10)

(iii)
′
As T −→ ∞

1

T

∫ T

0

p∑
k=1

gikT (t)g
jk
t (x)dAk(t)

p−→ ηij ,(A.11)

where η = (ηij) is a q × q non-negative definite matrix.

(iv)
′
For any c > 0, as c → ∞

max
1≤k≤p

E[
1

T

∫ T

0
∥g·,k

T (t)∥2I(∥g· k
T (t)∥ > c)dAk(t)|F0]

p−→ 0 ,(A.12)

where g·k
T (t) = (g1,kT , · · · , gp,kT )

′
.

Then we have the result.

Theorem A.2 : For the proint processes N = (Ni) and their com-

pensators A = (Ai) stated, we assume the conditions (i)
′−(iv)

′
. Then

a q × 1 vector process

XT =
1√
T

∫ T

0

p∑
i=1

g·,k
T (t)[dNk(t)− dAk(t)](A.13)

converges to η1/2U in the sense of F0−(stable convergence sense),

where U is Nq(0, Iq), which is independent of F0 and we have used
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the notation η1/2η1/2 = η.

(ii) A Wilks Property

We consider the parametric point process models for the case when

the intensity function is λi(s, θ) for the point processes Ni(s, θ) (i =

1, · · · , p) over the observation period [0, T ]. We take θ = (θi) ∈ Rr.

Then the log-likelihood function is given by

LT (θ) =
p∑

i=1

LiT (θ) ,(A.14)

where

LiT (θ) =
∫ T

0
log λi(s, θ)dNi(s)−

∫ T

0
λi(s, θ)ds ,(A.15)

and its derivatives are given by

∂LiT (θ)

∂θ
=
∫ T

0

log λi(s, θ)

∂θ
[dNi(s)− λi(s, θ)ds] ,(A.16)

and

∂2LiT (θ)

∂θ∂θ′ =
∫ T

0

1

λi

∂2λi

∂θ∂θ′ [dNi(s)−λi(s, θ)ds]−
∫ T

0
[
log λi(s, θ)

∂θ
∂θ

′
]λi(s, λ)ds .

(A.17)

Theorem A.3 : Let the log-likelihood function be LT (θ), the log-

likelihood function under the true parameter vector θ0 be LT (θ0), and

the log-likelihood function under the maximum likelihood estimator

θ̂ML be LT (θ̂ML). Then under the following regularity conditions as

T → ∞

2{LT (θ̂ML)− LT (θ0)} d→ χ(r) ,(A.18)
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where r is the dimension of θ = (θk) and χ(r) is the χ2−distribution

with degrees of freedom r. The conditions are

1

T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ

∂ log λi

∂θ′ ]λi(s, θ)ds
p−→ I(θ0) > 0 (a positive definite matrix),

(A.19)
1√
T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ
][dNi(s)− λi(s, θ)ds]

w−→ Nr(0, I(θ0)) ,(A.20)

1

T

p∑
i=1

∫ T

0
[
∂2λi

∂θ∂θ′ ]
1

λi
[dNi(s)− λi(s, θ)ds]

p−→ 0 ,(A.21)

and
1

T

p∑
i=1

∫ T

0
[
∂ log λi

∂θ

∂ log λi

∂θ′ ][dNi(s)− λi(s, θ)ds]
p−→ 0 ,(A.22)

where I(θ0) is the Fisher information matrix.

As Corollaries of Theorem A.2, it is straight-forward, but lengthy

and standard arguments, to give the formal proofs of Theorem 4.1

and Theorem 4.2 as the non-causality tests we have developed and

discussed in Section 4.

As the final remark of Appendix we should point out again that

while Ogata (1978) has discussed a set of sufficient conditions for the

consistency and the asymptotic normality of the ML estimator in one-

dimensional self-exciting point processes, we have extended his results

significantly to the multivariate point processes under a set of weaker

conditions. For instance, I(θ0) is not necessarily a constant matrix

and our conditions means the mixed Gaussiann distribution in our
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formulation. Then the limiting χ2 property of the statistics is often

called the Wilks Property.
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