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Abstract

Political events and economic problems occurred in one country have increasingly influ-

enced the economies and financial markets worldwide since the global economic crisis

driven by the bankruptcy of Lehman Brothers in September 2008. For making both

short-term and long-term investment strategies for investment firms and pension fund

managements, and for planning financial and economic policies to control the crisis

spillovers, it is indispensable to understand the fluctuation characteristics of financial

markets that cause changes of the financial and economic environments in short-term

and long-term periods. This article aims at detecting information flows for short-term

and long-term investments by investigating the fluctuation relationships between domi-

nant components of stock market return, based on long-term daily time series of TOPIX,

S&P500 and DAX Index. We decompose each stock market return into two components,

i.e., the return trend component and the return cyclical component, which are derived

by applying a seasonal adjustment model proposed by Gersch and Kitagawa (1983) and

Kitagawa and Gersch (1984, 1996) to the stock market index. The dominant component

is found for each of short-term and long-term returns, respectively. Then, we investigate

the relationships of fluctuation between dominant components of stock market return

by conducting generalized power contribution analysis (Tanokura and Kitagawa 2004,

2015). The information flows of the influential factors are detected. Our findings in-

dicate the importance of observing mutual relationships of long-term fluctuations, i.e.,

trends, between the three markets and can provide the useful information for building

an investment strategy and making an economic policy.

Keywords: Generalized power contribution, Seasonal adjustment model, Return
decomposition, Time series analysis, Long-term investment
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1 Introduction

Political events and economic problems occurred in one country have increasingly

influenced the economies and financial markets worldwide since the global eco-

nomic crisis driven by the bankruptcy of Lehman Brothers in September 2008.

Under these circumstances, in Japan, having a serious problem of aging society

in near future, the awareness of pension has largely increased. For making both

short-term and long-term investment strategies for investment firms and pension

fund managements, and for planning financial and economic policies to control

the above-mentioned spillovers, it is indispensable to understand the fluctuation

characteristics of financial markets that cause changes of the financial and eco-

nomic environments in short-term and long-term periods. In particular, since

the prices of financial markets fluctuate with both serial correlations and time se-

ries correlations, it is significant to evaluate the degree and direction of influence

between markets.

This article aims at detecting information flows for short-term and long-term

investments by investigating the fluctuation relationships between dominant com-

ponents of stock market return. We focus on the analysis of three stock market

indices such as TOPIX (Japan), DAX Index (Germany) and S&P 500 (US) for

the period from January 4, 1993 to May 31, 2019 (6,890 days).

In financial market analysis, technical analysis is practically well known. Mur-

phy defines technical analysis as the study of market action, primarily through the

use of charts, for the purpose of forecasting future price trends (Murphy 1986).

In a stock market, a trend of the stock price may be regarded as the gradually

changing long-term fluctuations caused by characteristics specific to the stock.

On the other hand, a cyclical fluctuations around the trend can sensitively be in-

fluenced by those of any other stock prices, and they may behave as only a price

adjustment or may lead to a future change in the trend direction. Therefore,

identifying a trend of price movement is significantly important.

We decompose each stock market return into two components, i.e., the return

trend component and the return cyclical component. These components are de-

rived by applying a seasonal adjustment model proposed by Gersch and Kitagawa

(1983) and Kitagawa and Gersch (1984, 1996) to the stock market index. The

dominant component is found for each of short-term and long-term returns. This

implies the effectiveness of the seasonal adjustment model.

To evaluate the influence of external information on the stock markets for the

last 26 years, we focus on two influential indices such as WTI crude oil futures

which is often referred to as a proxy of the oil price, and JPYUSD which is

the foreign exchange rate of the Japanese Yen against the US dollar. Then, we

investigate the relationships of fluctuation between dominant components of stock
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market return by conducting generalized power contribution analysis (Tanokura

and Kitagawa 2004, 2015). As a result, the influential factors are detected. Our

findings indicate the importance of observing mutual relationships of long-term

fluctuations, i.e., trends, between these markets. The information flows of the

influential components of return detected by statistical modeling can provide the

useful information for building an investment strategy and making an economic

policy. As far as we know, there is no researches analyzing long-term financial

time series by applying statistical methods.

This article consists of two parts. The following chapter introduces two sta-

tistical methods which we utilize in this article, such as a seasonal adjustment

model and a generalized power contribution. Chapter 3 provides the empirical

analysis for three stock market indices. Each stock market return is decomposed

into the return trend component and the return cyclical component. And then,

we detect the dominant component for each of short-term and long-term returns

and investigate the influential factors in fluctuation of these returns. Finally, we

state our conclusions and future works.

2 Statistical Modeling

2.1 A Seasonal Adjustment Model

This section briefly introduces a seasonal adjustment model proposed by Gersch

and Kitagawa (1983) and Kitagawa and Gersch (1984, 1996).

For an observed time series yn is expressed as

yn = tn + sn + pn + wn. (1)

A trend component tn is estimated by the following trend component model with

the trend order k

∆ktn = vn1, vn1 ∼ N(0, τ21 ). (2)

A seasonal component sn, which forms seasonal fluctuations if it exists, is ex-

pressed by the following seasonal component model with a period length p:

p−1∑
i=0

sn−i = vn2, vn2 ∼ N
(
0, τ22

)
. (3)

A stationary component pn is estimated by the following stationary AR compo-

nent model of AR order m:

pn =
m∑
i=1

aipn−i + vn3, vn3 ∼ N(0, τ23 ), (4)

which expresses relatively shorter cyclical fluctuations than the gradual long-term

trend component (2). Finally, the distribution of the observation noise wn in (1)
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is given by

wn ∼ N(0, σ2).

As each component model can be expressed in a state-space model form, the

parameter estimations are performed through the composite form of state-space

models. The details can be found in Kitagawa (2010).

2.2 Generalized Power Contribution

As a tool to detect ramifications of price fluctuations, we introduce a generalized

power contribution which extends the concept of the Akaike’s power contribution

(Akaike 1968) by decomposing a variance covariance matrix of the noises.

Assume that an l-dimensional stationary time series yn = (yn(1), yn(2), · · · , yn(l))t,
n = 1, · · · , N , is expressed as the following multivariate AR model with order m:

yn =
m∑
j=1

Ajyn−j + vn, (5)

where Aj is an l × l AR coefficient matrix with its (r, s)-component aj(r, s). An

l-dimensional white noise vn satisfies the following conditions:

E(vn) = [0, · · · , 0]t,E(vnv
t
n) = W,E(vnv

t
h) = O (n ̸= h),E(vny

t
h) = O (n > h).

Here, O is the l × l zero matrix, and W = (σrs) is a symmetric positive definite

matrix (i.e., σrs = σsr) that is referred to as the variance covariance matrix of

the noises.

The cross spectrum matrix is defined as the l × l matrix P(f) = (Prs(f)),

where the element Prs(f) is the Fourier transform of the cross-covariance function

Ck(r, s) and is referred to as the cross spectrum. Here, f is a frequency satisfying

−1/2 ≤ f ≤ 1/2. The diagonal element Prr(f) is referred to as the power

spectrum.

It is well known that P(f) can be obtained as

P(f) = A(f)−1W(A(f)−1)∗, (6)

where A(f) is the l × l complex matrix with its (r, s)-component Ars(f), and

A∗ denotes the complex conjugate of a matrix A. Here, Ars(f) is defined as the

Fourier transform of the coefficients aj(r, s) in the multivariate AR model (5):

Ars(f) =
m∑
j=0

aj(r, s)e
−2πijf , (7)

where a0(r, r) = −1, and a0(r, s) = 0 for r ̸= s (Whittle 1963; Akaike and

Nakagawa 1988). For simplicity, denoting A(f)−1 as B(f) = (brs(f)), (6) is

given by

P(f) = B(f) W B(f)∗. (8)
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As the original definition in Akaike (1968) assumes that the components of

the noise vn are mutually uncorrelated: σrs = 0, r ̸= s, W is diagonal. Therefore,

from (8) the power spectrum of the r-th component yn(r) of yn at a frequency f

can be simply expressed as

Prr(f) =
l∑

s=1

brs(f)σssbrs(f)
∗ ≡

l∑
s=1

|brs(f)|2σss. (9)

That is, the power spectrum Prr(f) of yn(r) is composed of l noise influences, and

the degree of influence from the s-th noise component vn(s) on the fluctuation

of yn(r) is evaluated by |brs(f)|2σss for s = 1, . . . , l. Therefore, Akaike’s power

contribution is defined as

rrs(f) =
|brs(f)|2σss

Prr(f)
, (10)

which expresses the proportion of the fluctuation of yn(r) caused by the s-th noise

component vn(s) at a frequency f .

For a general case, we consider decomposing W into a sum of matrices with

rank one. We assume that the common influence of all the variables is derived

from the smallest correlation coefficient. Then, W is expressed as a sum of at

most l(l + 1)/2 terms:

W =
l−2∑
k=0

k+1∑
j=1

ql−(k+1)+j,j IHj(k)I
t
Hj(k)

+
l∑

j=1

qjj IHj(l−1)I
t
Hj(l−1), (11)

where IHj(k) = [ijk(1), . . . , ijk(l)] is an l-dimensional vector, of which k compo-

nents are 0 and (l − k) components are either 1 or −1, depending on the signs

of correlations for k = 0, . . . , l − 1; j = 1, . . . , k + 1. Here, Hj(k), the suffix of

IHj(k), is a subset Hj(k) = {hj,1, . . . , hj,k} of H = {1, . . . , l} and indicates the

components of 0 of IHj(k). Note that the last term of (11) can be expressed as

diag{q11, . . . , qll}.
Then, by (8),

P(f) =

l−2∑
k=0

k+1∑
j=1

ql−(k+1)+j,j B(f) IHj(k)I
t
Hj(k)

B(f)∗

+B(f) diag{q11, . . . , qll} B(f)∗. (12)

Therefore, the power spectrum of its r-th component is expressed as

Prr(f) =
l−2∑
k=0

k+1∑
j=1

ql−(k+1)+j,j

l∑
h=1,h̸=r

l∑
n=1,n̸=r

crjk(h)crjk(n)
∗

+
l∑

j=1

qjj |brj(f)|2, (13)

where crjk(h) = ijk(h) brh(f).

5



(13) implies that the power spectrum Prr(f) can generally be decomposed into

two terms. The first term expresses the l(l − 1)/2 common influences resulting

from correlations between l noise components, and the second one does the l

influences resulting from the diagonal matrix of the noises. We refer to the first

term as correlated noise and the second term as independent noise. Note that

(13) becomes (9) when qrs = 0 for r ̸= s.

Finally, the generalized power contribution is defined as

r̃rjk(f) =



ql−(k+1)+j,j

l∑
h=1,h̸=r

l∑
n=1,n̸=r

crjk(h) crjk(n)
∗

Prr(f)
(k = 0, . . . , l − 2; j = 1, . . . , k + 1)

ql−(k+1)+j,j |brj(f)|2

Prr(f)
(k = l − 1; j = 1, . . . , l).

(14)

As the generalized power contribution simultaneously measures the degree of

influence between various combinations of the noises, multi-directional causations

between variables can be evaluated. The details can be found in Tanokura and

Kitagawa (2015).

3 Empirical Analysis

3.1 Data

We use the time series data of three stock market indices such as TOPIX (Japan),

DAX Index (Germany) and S&P 500 (US) for the period from January 4, 1993

to May 31, 2019 (6,890 days).

To evaluate the influence of external information on the stock markets for the

last 26 years, we focus on two influential indices such as WTI crude oil futures

which is often referred to as a proxy of the oil price, and JPYUSD which is the

foreign exchange rate of the Japanese Yen against the US dollar. Data source is

Bloomberg LP. Hereafter, we refer to TOPIX, DAX Index, S&P 500, WTI crude

oil futures and JPYUSD as TPX, DAX, SP, WTI and JPY, respectively.

The missing price on a market holiday is taken the price on the previous

trading day.

3.2 Return Decomposition

We apply the seasonal adjustment model proposed by Kitagawa and Gersch to

each log-transformed variable. Here, we suppose no seasonality for each index.

Therefore, the following decomposition is performed for each yn:

log yn = tn + pn + wn, wn ∼ N(0, σ2). (15)
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We refer to the trend component tn as KG-trend. Taking 1-day difference of (15),

log yn − log yn−1 = tn − tn−1 + pn − pn−1 + wn − wn−1

is obtained. Therefore, the daily return rn is decomposed as

rn = rtn + rcn, (16)

where rtn = tn − tn−1 and rcn = (pn − pn−1) + (wn −wn−1) is referred to as the

return trend component and the return cyclical component, respectively.

For a long-term return, we define the k-day return (k > 1) as

rn(k) = log yn − log yn−k. (17)

For example, we take k = 260 as 260-day return, i.e., 1-year return, k = 780 as

3-year return and k = 1, 300 as 5-year return. Then, as rn(k) = rn+ rn−1+ · · ·+
rn−k+1, it can be decomposed as

rn(k) =
k−1∑
i=1

(rtn−i + rcn−i) = rtn(k) + ctn(k). (18)

Here, we refer to rtn(k) and rcn(k) as k-day return trend component and k-day

return cyclical component, respectively. Note that rtn(k) is the k-day difference

of the KG-trend.

3.3 Characteristics of KG-trend

Figure 1 shows the decomposition of the log-transformed TPX. By minimizing

AIC (Akaike 1998), the trend order two and the AR order two are selected.

The top graph shows the log-transformed TPX and its KG-trend, the middle

one shows the stationary AR component, and the bottom one does the noise.

Although the KG-trend does not look like a smooth trend curve due to the data

length of 26 years long, the smooth KG-trend can be found in the short-term

period, as shown in Figure 2 for the detailed period of June 1, 2018 to December

24, 2018.

Similarly, the other four variables are decomposed respectively, as shown in

Figure 3. The trend order two and the AR order two are also selected for all

indices by AIC.
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Figure 1: The decomposition of the log-transformed TOPIX (TPX): The index
and the KG-trend (top), the stationary AR component (middle) and the noise
(bottom).

Figure 2: The log-transformed TOPIX(TPX) and the KG-trend for the detailed
period of June 1, 2018 to December 24, 2018.
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Figure 3: The decomposition of the log-transformed S & P 500(SP), DAX Index
(DAX), WTI crude oil futures (WTI) and JPYUSD (JPY) from top to bottom.
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Generally, stock prices always show zigzag movements even though they are in

an up-trend or a down-trend. In order to indicate a relatively long-term trend of

price movements, a simple moving average for the period of k-day is practically

often used. However, as it is based on past prices, the longer k is for taking

averages, the later a peak or a bottom of moving averages appears, which can

be seen in the 20-day moving average (blue line) and the longer 60-day moving

average (green line) for TPX in Figure 4. On the other hand, we found that the

KG-trend (orange line) which is exponential-transformed corresponding to the

original TPX, appropriately captures a peak or a bottom of the price movements.

This is one of the merits of KG-trend.

Figure 4: Comparison of a KG-trend with moving averages: the 20-day moving
average (blue line), the 60-day moving average (green line) and the KG-trend
(orange line) of TPX (black line).

As a KG-trend is estimated as a smoother which is fully utilized the price

information during the whole period, it updates its own past values when a new

information is added. Let us examine how a KG-trend changes. We compare the

KG-trend for the whole period of January 4, 1993 to May 31, 2019 (6,890 days)

with the one for Period C of January 4, 1993 to June 30, 2008 (4,041 days). In

fact, the KG-trend for Period C was estimated based on the price information

from January 4, 1993 to June 30, 2008.

The top graph in Figure 5 shows the KG-trend for the whole period (orange

line) and the one for Period C (blue line) for TPX. As the differences between

them in Period C are too small to distinguish the orange line from the blue one,

the difference: the KG-trend for the whole period minus the KG-trend for Period

C is shown in the bottom graph. The difference was in a significantly small range

of (−0.0005, 0.0005) until the end of May 1, 2008. As shown in the KG-trend

for the whole period (orange line) of the top graph, the bankruptcy of Lehman

Brothers occurred after Period C. As the KG-trend for Period C does not reflect

this bankruptcy, since then, the difference has widen downward to −0.00559 at

the end date of Period C.

Similarly, in Figure 6, the difference: the KG-trend for the whole period
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minus the KG-trend for Period C for SP, DAX, WTI and JPY is shown, respec-

tively. It is intriguing that the difference for JPY has fallen in the small range

of (−0.003, 0.003) through Period C. It is because the KG-trend for the whole

period exhibited the similar transitions with the KG-trend for Period C for a

while after Period C. In fact, the sharp downtrend of JPY started at the middle

August and lasted until the end of January, 2009.

Figure 5: KG-trend for the whole period (orange line) and the one for Period
C (January 4, 1993 to June 30, 2008; blue line) (top), and the difference: the
KG-trend for the whole period minus the KG-trend for Period C (bottom) for
TPX.

Figure 6: Difference: the KG-trend for the whole period minus the KG-trend for
Period C for SP, DAX, WTI and JPY (from top to bottom).

From the point of view of long-term investment, the difference of KG-trends

at the end date of the period is small enough to ignore. Therefore, in this sense,

the stability of KG-trend is presumed.
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3.4 Properties of Return Decomposition

Now we observe some outstanding properties on components of return as stated

in (16) and (18). Figure 7 shows the return trend component (red line) and

the return cyclical component (blue line) of the daily return for TPX, SP, DAX

(left), WTI and JPY (right). It is found that the fluctuation range for return

trend component is almost one tenth of that for return cyclical component for

all indices. This implies the fluctuation of return cyclical component dominates

that of daily return. In fact, the correlation coefficient between return cyclical

component and daily return for TPX, SP, DAX, WTI and JPY is significantly

high values of 0.985, 0.989, 0.985, 0.986 and 0.983, respectively.

Figure 7: Return trend component (red line) and return cyclical component (blue
line) of daily return for TPX, SP, DAX (left), WTI and JPY (right).

Let us consider the case of long-term returns. For example, Figure 8 shows

the return trend component (red line) and the return cyclical component (blue

line) of the 1-year (260-day) return for TPX, SP, DAX, WTI and JPY. Unlike

the above-mentioned case of daily returns, the return trend component largely

swings and the fluctuation range is larger than that of return cyclical component

for all indices. In fact, the correlation coefficient between return trend compo-

nent and 1-year return for TPX, SP, DAX, WTI and JPY significantly increases

to 0.993, 0.992, 0.993, 0.991 and 0.992, respectively. Also, those between return

cyclical component and 1-year return for TPX, SP, DAX, WTI and JPY largely

12



decreases to 0.152, 0.166, 0.154, 0.176 and 0.166, respectively.

Figure 8: Return trend component (red line) and return cyclical component (blue
line) of 1-year return for TPX, SP, DAX (left), WTI and JPY (right).

The next Table 1 compares the transition of correlation coefficients between

return trend component and the return of 5-day, 20-day, 60-day, 3-year (780-

day) and 5-year (1, 300-day) in the upper row, with that between return cyclical

component and the each return for TPX, SP, DAX, WTI and JPY in the lower

row. It is noteworthy that the longer period of return is, the larger the correlation

coefficient of return trend component becomes. That is, long-term returns are

closely related to the behavior of return trend component. Instead, the smaller

the correlation coefficient of return cyclical component becomes. It is clarified

that the return cyclical component plays an important role in fluctuations of

daily return, while the trend component becomes more significant in fluctuations

of longer term return.

Note that we do not consider the time difference between stock markets in this

article. In practice, the New York market is open after the Tokyo stock market

was closed on the same day. Table 2 compares the correlation coefficients of

return trend component of 1-year return between markets. We divide the whole

period of analysis into the four sub-periods as follows. Period C which stated

before is divided into Period G: January 4, 1993 to October 17, 2000 and Period

H: October 18, 2000 to June 30, 2008. The rest of the whole period is divided
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Correlation coefficients 5-day 20-day 60-day 3-year 5-year
with: return return return return return

TPX return trend component 0.515 0.874 0.966 0.998 0.998
SP return trend component 0.486 0.849 0.954 0.998 0.998
DAX return trend component 0.528 0.880 0.965 0.998 0.998
WTI return trend component 0.515 0.873 0.966 0.995 0.997
JPY return trend component 0.560 0.890 0.970 0.998 0.998
TPX return cyclical component 0.923 0.675 0.338 0.089 0.080
SP return cyclical component 0.937 0.725 0.393 0.092 0.077
DAX return cyclical component 0.920 0.674 0.347 0.091 0.082
WTI return cyclical component 0.924 0.677 0.339 0.128 0.104
JPY return cyclical component 0.911 0.663 0.320 0.092 0.086

Table 1: Correlation coefficient of return trend component with the return of 5-
day, 20-day, 60-day, 3-year (780-day) and 5-year (1, 300-day) for TPX, SP, DAX,
WTI and JPY in the upper row, and that of return cyclical component with the
return of 5-day, 20-day, 60-day, 3-year (780-day) and 5-year (1, 300-day) for TPX,
SP, DAX, WTI and JPY in the lower row.

into Period I: July 1, 2008 to February 15, 2013 and Period J: February 16, 2013

to May 31, 2019.

For reference, the lowest row shows the correlation coefficient between TPX

and SP on the same day. Compared with the correlation coefficient between TPX

and SP (1-day before), it is interesting that there were no significant differences

between them. As a whole, the correlation coefficients reached the highest in

Period I reflecting the spillover of crises. It is notable that the correlation co-

efficients of TPX with SP and DAX, were not so high in Period G, that is, the

1990’s.

Correlation coefficients Period G Period H Period I Period J Whole period
TPX and SP (1-day before) 0.299 0.535 0.813 0.712 0.590
DAX and TPX 0.281 0.563 0.757 0.701 0.558
DAX and SP 0.543 0.874 0.890 0.713 0.782
TPX and SP 0.295 0.532 0.815 0.701 0.587

Table 2: Correlation coefficient of return trend component of 1-year return be-
tween stock market indices: TPX and SP (1-day before), DAX and TPX, DAX
and SP, and TPX and SP for Period G: January 4, 1993 to October 17, 2000,
Period H: October 18, 2000 to June 30, 2008, Period I: July 1, 2008 to February
15, 2013 and Period J: February 16, 2013 to May 31, 2019.

On the other hand, the correlation coefficient of return cyclical component of

daily return between stock market indices appears differently as shown in Table 3.

The correlation coefficients between DAX and TPX were always the lowest level

through all sub-periods. Unlike in the case of return trend component, compared

the correlation coefficient between TPX and SP (1-day before) with that between

TPX and SP (the lowest row), it is found that the time difference makes sense even

though the correlation is relatively not so high. Similar with the case of return
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trend component in Table 2, the correlation coefficients reached the highest in

Period I reflecting the spillover of crises.

Correlation coefficients Period G Period H Period I Period J Whole period
TPX and SP (1-day before) 0.294 0.378 0.548 0.458 0.422
DAX and TPX 0.224 0.175 0.281 0.229 0.223
DAX and SP 0.290 0.572 0.672 0.504 0.526
TPX and SP 0.045 0.102 0.096 0.065 0.092

Table 3: Correlation coefficient of return cyclical component of daily return be-
tween stock market indices: TPX and SP (1-day before), DAX and TPX, DAX
and SP, and TPX and SP for Period G: January 4, 1993 to October 17, 2000,
Period H: October 18, 2000 to June 30, 2008, Period I: July 1, 2008 to February
15, 2013 and Period J: February 16, 2013 to May 31, 2019.

For daily investment, the time difference should be considered, however, we

leave the further investigation for a future work.

3.5 Fluctuation Characteristics of Each Component

In the previous section, we clarify that the dominant component for daily re-

turns is the return cyclical component and that for 1-year returns is the return

trend component. In order to detect information flows of the above-mentioned

dominant components, we investigate the fluctuation relationships of component

between three stock market indices.

Now we conduct the generalized power contribution analysis to each compo-

nent of daily return and 1-year (260-day) return, respectively. A five-variate AR

model is fitted to each component of TPX, SP, DAX, WTI and JPY for each

sub-periods of G: January 4, 1993 to October 17, 2000, H: October 18, 2000 to

June 30, 2008, I: July 1, 2008 to February 15, 2013 and J: February 16, 2013 to

May 31, 2019, and generalized power contributions are calculated.

Figure 9 shows the graph matrix of the generalized power contributions % of

return trend component of 1-year return for three stock markets with power spec-

tra. From top row to bottom row, the four sub-periods are shown, and from left

column to right column, the generalized power contributions % of return trend

component of 1-year return for TPX, SP and DAX. Each graph shows each pro-

portion of contributor within the power spectrum (white line) at each frequency.

For example, in Period G (the 1990s), the contribution from the index itself occu-

pied 60−80 % for TPX, while that for SP and DAX was only 20 %, respectively.

Interestingly, this is the lowest contribution from the index itself among four sub-

periods for SP and DAX. This implies the global diversification already started

in the US and Germany. Furthermore, from the middle graph in Period G, it

is very impressive that TPX was involved in all correlated noise contributing to

SP, and all the contributions are mostly constant at any frequency. On the other
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hand, from the top left graph, it is noteworthy that TPX was independent or

self-contained in terms of fluctuations of 1-year return. The number of concerned

indices of correlated noise such as TPX+DAX is mostly two for Period G, while

more concerned indices of correlated noise contributed largely since then (i.e.,

the 2000s). There can be found some common noise contributions among coun-

tries and among sub-periods. As a whole, after the occurrence of the bankruptcy

of Lehman Brothers in Period I, the contribution from various correlated noises

increased.
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Figure 9: Generalized power contribution % and log-transformed power spectrum
(rhs; white line) of return trend component of 1-year return for TPX, SP and
DAX for the sub-periods of G, H, I and J (from top to bottom).
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Next, consider the case of daily return. In Figure 10, the graph matrix of the

generalized power contributions % of return cyclical component of daily return

for three indices with power spectra are shown. From top row to bottom row, the

four sub-periods are shown, and from left column to right column, the generalized

power contributions % of return cyclical component of daily return for TPX, SP

and DAX. Each graph shows each proportion of contributor within the power

spectrum (white line) at each frequency. Compared with the previous case of

1-year return trend component, the magnitude of power spectrum significantly

decreased for all indices according to the right hand scale. The contribution from

index itself keeps consistently at least 20 % for all indices. In particular, in the

current Period J, SP received the constantly 30 % self-contribution. This can be

reflected by the recent bullish US stock market which has updated its highest

record.

As a summary of the generalized power contribution analysis, Figure 11 shows

the transitions of top 3 contributors with power contribution % of 1-year return

trend component of TPX, SP and DAX (left) and those of daily return cyclical

component of TPX, SP and DAX (right) for the sub-periods of G, H, I and J (from

top to bottom). Each power contribution % is calculated for all frequency domain.

For daily return cyclical component (right), the top 1 contributor was the index

itself for all sub-periods. On the other hand, for 1-year return trend component

(left), the top 1 were various kinds of noises. In Period G (the 1990s), for 1-

year return trend component, it is astonishing that TPX was concerned with all

three indices as not only the independent noise but also correlated noises. Then,

in Period H (the 2000s), TPX lost its own contribution. This implies that the

dependence of TPX on external information strengthened in fluctuations of 1-year

return. Despite that, it is interesting that the independent noise of TPX largely

contributed to other two indices. On the other hand, SP strongly contributed to

all three indices, especially, DAX. As for daily return cyclical component (right),

ALL-TPX largely contributed to all three indices in Period H. This implies that

TPX was isolated in fluctuations of daily return. In Period I which was after

the bankruptcy of Lehman Brothers, ALL-WTI largely contributed to TPX and

DAX for 1-year return trend component (left), and to all three markets for return

cyclical component (right). That is, WTI was isolated in fluctuations of both

daily and 1-year returns. The contribution strength of SP remained in Period I.

However, in the current Period J which was after the European debt crisis, the top

3 contributors were concentrated on DAX, TPX+DAX+JPY and TPX+DAX for

all three markets for 1-year return trend component (left).
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Figure 10: Generalized power contribution % and log-transformed power spec-
trum (rhs; white line) of return cyclical component of daily return for TPX, SP
and DAX for the sub-periods of G, H, I and J (from top to bottom).
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Figure 11: Top 3 contributors with power contribution % of return trend com-
ponent of 1-year return of TPX, SP and DAX (left) and those of return cyclical
component of daily return of TPX, SP and DAX (right) for the sub-periods of
G, H, I and J (from top to bottom).

In Period J, the outstanding contribution of TPX for 1-year return trend

component may be recovered as the contribution of SP to DAX disappeared.

Moreover, the correlated noise of TPX+DAX+JPY commonly contributed to

both 1-year return trend component and daily return cyclical component.

Our findings indicate the importance of observing the mutual relationships

of long-term fluctuations, i.e., trends, between these markets. The information

flows of influential component to return detected by statistical modeling can be

useful in building an investment strategy and making an economic policy.

4 Conclusions

Aiming at detecting information flows for short-term and long-term investments

by investigating the fluctuation relationships between dominant components of

stock market return, we conducted the analysis on the three stock market indices

such as TOPIX (Japan), DAX Index (Germany) and S&P 500 (US) for the period

from January 4, 1993 to May 31, 2019 (6,890 days).

Compared with moving averages in practical technical analysis, we showed

one of the merits of the KG-trend which is extracted from a stock market index

by a seasonal adjustment model proposed by Gersch and Kitagawa (1983) and

Kitagawa and Gersch (1984, 1996). In fact, we decomposed each stock market

return into the return trend component and the return cyclical component which

were derived by applying the seasonal adjustment model to the stock market

index. It was found that the return cyclical component was dominant in daily
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return and so was the return trend component in 1-year return. This implies the

effectiveness of applying the seasonal adjustment model. Then, to evaluate the

influence of external information on the stock markets for the last 26 years, we

focused on two influential indices such as WTI crude oil futures which is often

referred to as a proxy of the oil price, and JPYUSD which is the foreign exchange

rate of the Japanese Yen against the US dollar. We investigated the relationships

of fluctuation between dominant components by conducting generalized power

contribution analysis (Tanokura and Kitagawa 2004, 2015).

In the 1990s, for return trend component of 1-year return, TPX was con-

cerned with all three market indices not only as the independent noise but also

as correlated noises. Then, in the 2000s, TPX lost its own contribution, how-

ever, the independent noise of TPX largely contributed to other two markets.

This implies that TPX strengthened the dependency on external information but

remained isolated in terms of 1-year return fluctuation. On the other hand, in

the 2000s, SP strongly contributed to all three indices in fluctuations of 1-year

return.

As for return cyclical component of daily return, ALL-TPX largely con-

tributed to all three indices in the period of early 2000s before the Lehman shock.

This implies that TPX was isolated even in fluctuations of daily return. In the

period before the bankruptcy of Lehman Brothers, ALL-WTI largely contributed

to TPX and DAX for return trend component of 1-year return, and to all three

indices for return cyclical component of daily return. This reflects the current oil

market situation. Because WTI were isolated in fluctuations of both daily and 1-

year returns. The contribution strength of SP remained after the Lehman shock.

However, in the current period after the European debt crisis, the top 3 contribu-

tors were concentrated on DAX, TPX+DAX+JPY and TPX+DAX for all three

markets for return trend component of 1-year return. As the contribution of SP

to DAX disappeared and the correlated noise of TPX+DAX+JPY commonly

contributed to both return trend component and return cyclical component, the

strength of SP contribution decreased. The outstanding contribution of TPX for

return trend component of 1-year return in the 1990s may be recovered.

Our findings in this article indicate the importance of observing the mu-

tual relationships of long-term fluctuations which is trends, between these stock

markets. The information flows of influential component to return fluctuations

detected by statistical modeling can provide the useful information for building

an investment strategy and making an economic policy.

Finally, following future works can be considered. As a KG-trend is estimated

as a smoother which is fully utilized the price information during the whole period,

it updates its own past values when a new information is added. Therefore, the

existence of the difference between the past KG-trend and the updated KG-trend
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close to the end of the past period will be investigated. In addition, the influence

of the time difference between the New York market and the Tokyo stock market

on the same day should be investigated. Utilizing the information flows, the asset

allocation between three markets can be further analyzed. This can be practically

useful.
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